
1

Java:
A Software
Revolution?

http://courses.coreservlets.com

Agenda
 Truths / Myths About Java

 Java is Web-Enabled?

 Java is Safe?

 Java is Cross-Platform?

 Java is Simple?

 Java is Powerful?

 Common Java Protocols and Packages

 The Future of Java

 Getting Started

 Questions and (Hopefully) Answers

2

Java is Web-Enabled?

 Truth: Web browsers can run Java “applets”
 The Web can be used for software delivery and

execution, not just document delivery and display

 No more installation or updates; just a bookmark

 Large, complex applets best suited for intranets.
Fits the APL model better than the WWW at large.

 Truth: Java’s network library is easy to use

 Ordinary mortals can do socket programming

 Standard distributed object protocol and DBMS API

Hubble Space Telescope Monitoring:
“NASA Goddard’s Most Successful SW Project Ever.”

3

Java is Web-Enabled?
 Myth: Java is only for the Web

 Java “applets” run in Web pages

 Java “applications” run stand-alone

 Current usage (roughly)
Client (applet): 5%

Desktop (application): 45%

Server (servlets/JSP/EJB): 50%

Tomahawk Strike Coordination
Planner (APL/PPSD)

4

Java is Safe?

Dilbert copyright United Media. Used with permission.

• JAVA: Just Another Virus Architecture?

Java is Safe?

 Truth: Restrictions on permissible operations can
be enforced

 No “raw” memory manipulation (directly or indirectly).
 Thus, it is easy to identify prohibited operations.

 Applets, by default, prohibited from:
 Reading from the local disk

 Writing to the local disk

 Executing local programs

 Opening network connections other than to HTTP server

 Discovering private info about user (username,
directories, OS patch level, applications installed, etc.).

5

Java is Safe?
 Myth: Applets cannot harm your computer

 Denial of service

 Browser misconfiguration

 Implementation bugs

 Myth: Java is too restricted to be useful
 Restrictions apply only to applets, not regular Java

programs

 Digital signatures support relaxed restrictions

 Myth: Applets with digital signatures are no more
or less safe than ActiveX
 Relaxed security in applets not “all or nothing” as in

ActiveX

 Truth: Java programs can compile to
machine-independent bytecode

 Truth: All major operating systems have
Java runtime environments

 Most bundle it (Solaris, MacOS, Windows XP, OS/2)

Java
Source Code

Java Bytecode

Compiler

(javac)

Java Bytecode

Execution

JIT Compiler
or Interpreter

Compile Time Run Time

Java is Cross-Platform?

6

Mars Rover Controller and
Simulator

Java is Cross-Platform?
 Myth: Safety and machine independence can be

achieved with no performance penalty
 Current systems are about 20% slower than C++

 Upcoming releases claim to lower or eliminate that gap

 I expect the gap to stay at 10% or more

 Commercial compilers are sometimes faster than free
ones

 Myth: Java is interpreted
 Early releases were interpreted

 Many major “Just in Time” (JIT) compilers

 HotSpot and “native” compilers even faster (IBM,
Symantec, TowerJ, etc.)

7

•Truth: Java has a portable graphics library

“Native look & feel” -- Java 1.1 UI controls adapt to OS

“Pluggable look & feel” -- Java 2 controls can change looks

•Myth: The graphics library has everything
most applications need.

AWT (Java 1.0 and 1.1) was weak. JFC/Swing (Java 2)
much more complete and powerful.

Java is Cross-Platform?

Dilbert copyright United Media. Used with permission.

Java is Cross-Platform?

 Truth: (Opinion) Native look and feel was the
right choice

8

Java Foundation Classes (JFC)
Improve Graphics Considerably
 More GUI Controls

 More customizable

 Pluggable
Look and Feel

 Native Fonts

 Richer
Drawing
Operations

Java is Cross-Platform?
 Myth: Write Once Run Anywhere

 Cross-platform code can be achieved, but you must
test on all platforms you will deliver on.
 Java applications can execute local code

 The graphics library behaves slightly differently on
different platforms

 The behavior of the thread scheduler is only loosely defined

 Myth: Java will kill Microsoft
 There is also no longer immediate danger of the

reverse (Microsoft killing Java)

 Microsoft wavered between trying to fight Java and
joining it and making money by dominating the
market. With .NET, they are back to fighting it again.

9

Sun Mantra:
“100% Pure Java”

Java is Simple?

 Truth: Java greatly simplifies several
language features
 Java has automatic memory management

 Does Windows and takes out the garbage

 No dangling pointers. No memory leaks.

 Java simplifies pointer handling
 No explicit reference/dereference operations

 No makefiles

 No header files

 C++ syntax streamlined

 C# is comparable to Java, at least as far as the
core language goes

10

Rapid Application Development
in Java

 Information Retrieval for multi-
gigabyte text corpus (APL RTDC)

 Geoplot for distributed
simulation (APL STD)

Java is Simple?
 Myth: Java programming is simple

 Programming is always hard
 Java is nothing like HTML; only a little bit like JavaScript

 Programmers typically push complexity envelope
 Multithreaded and network programming

11

Java is Powerful?
 Truth: Java has a rich set of standard libraries

 Networking

 Threads (lightweight processes)

 Distributed objects

 Database access

 Graphics: GUI controls and drawing

 Data structure library

 Arbitrary precision integral and fixed-point arithmetic

 Digital signatures

 Serialization (transmitting/reassembling data
structures)

 File and stream compression

MEL - Master Environmental
Library (DMSO)

12

Java is Powerful?

 Myth: Java will increase programmer
productivity for all applications by XXX%.

 Myth: Java will kill C++

 Myth: All software should be written in Java
 Unix utilities: C

 Small/medium Windows-only programs: Visual Basic

 String parsing: Perl

 High-performance, single-platform OO systems: C++

 Air traffic control, aircraft flight software: Ada

 Knowledge-based systems: Lisp/CLOS

 Java also a good alternative for many of these

Java and C++

Although Java will certainly not
kill off C++, Java and C++ do
compete for some of the same
territory.

Hmm, does The C++ Report
think that the way to keep your
C++ code robust is to port it to
Java?

13

Key Java Packages
and Protocols

 Core Technologies
 JDBC

 RMI (and Jini)

 JavaBeans

 Swing

 Java 2D

 Standard Extensions
 Servlets

(and JavaServer Pages)

 Enterprise Java Beans (and JNDI)

 Java 3D

Java Packages and Protocols:
JDBC (Java DataBase Connectivity)

 Standardizes mechanism for making connection to
database server
 Requires server-specific driver on client. No change to server.

 Standardizes mechanism for sending queries
 Either regular or parameterized queries (stored procedures)

 Standardizes data structure of query result
 Assumes relational data, so data structure is a table

 Does not standardize SQL syntax
 Queries are simply strings

 Server extensions and enhancements supported

14

Java Packages and Protocols:
Remote Method Invocation (RMI)
 Built-in Distributed Object Protocol

 RMI lets a developer access a Java object and manipulate it in
the normal manner. Behind the scenes, each function call really
goes over the network to a remote object.

 Arbitrary Java data structures can be sent over the network with
little or no special packaging, due to Java’s “serialization”
mechanism

 Similar to a simplified CORBA, but restricted to
Java-to-Java communication

 Jini
 RMI-based protocol for self-documenting services.

 Allows real “plug and play” -- no separate drivers

 Jury is out on eventual success. Security and industry
adoption are open questions.

Java Packages and Protocols:
JavaBeans

 JavaBeans is to Java as ActiveX is to Visual C++.

 Lets you package a Java program
as a software “component”

 Visual tools can modify/manipulate
it without knowing anything about
it in advance
 For example, you can drop a Bean into

Visual Café, IBM VisualAge for Java,
Inprise (Borland) JBuilder, Sybase PowerJ,
Metrowerks CodeWarrior, Sun JavaWorkshop, etc., and it is
automatically available from their tool palette for drag-and-
drop development

 Better security and portability than ActiveX

 More ActiveX components available

15

Java Packages and Protocols:
Swing

 Standard GUI-control (widget) library in Java 2

 Many more built-in controls

 Much more flexible and customizable

 Includes many small features aimed at
commercial applications
 Tooltips, tabbed panes, on-line

help, HTML support, dockable
toolbars, multi-document
interface, etc.

 Look and feel can be
changed at run time

Java Packages and Protocols:
Java 2D

 Standard drawing library in Java 2

 Many new drawing attributes
 Fill patterns and images

 Arbitrary fonts

 Pen thicknesses and dashing patterns

 Color mixing rules and transparency

 Coordinate transformations
 Floating-point coordinate system

 Mapping from memory coords to
screen or printer coords

 Affine transforms: translate, scale,
rotate, and shear

16

Java Packages and Protocols:
Java 3D

 Standard extension to Java
 Not part of “core” Java language like Java 2D

 Built on top of Direct3D or OpenGL,
depending on platform

 Scene-graph based model, not primarily immediate-
mode rendering

Java Packages and Protocols:
Servlets and JavaServer Pages (JSP)

 Servlets: Java’s answer to CGI
 Efficient: thread, not process, per request
 Convenient: HTTP headers, cookies, etc.
 Powerful: persistence, session tracking, etc.
 Secure: no buffer overflows or shell escapes

 Supported by virtually all Web servers:
 Native support: Netscape/iPlanet, IBM WebSphere, Oracle 8i/9i

and Oracle Application Server, BEA WebLogic, Silverstream,
Sapphire/Web, etc.

 Via add-on engine: Apache, Microsoft IIS and Personal
WebServer, Netscape FastTrack, O’Reilly WebSite, StarNine
WebSTAR for MacOS, etc.

 JavaServer Pages (JSP)
 Convenient and efficient way to combine servlets and HTML.

Portable alternative to ASP & ColdFusion.

17

Java Packages and Protocols:
Enterprise JavaBeans (EJB)

 EJBs are to server components
what regular JavaBeans are to
application components

 Standardizes access to
services like load balancing,
persistence, failover, etc.

 Builds on JavaBeans, CORBA, and RMI
“under the hood”

 Potentially accessible via non-Java programs

 Application Servers Supporting EJB
 BEA WebLogic, IBM WebSphere, Netscape/iPlanet, Oracle,

Progress SW Apptivity, NetDynamics, Sybase, Bluestone,
Saphire/Web etc.

The Future of Java

 Core language
 Java 2 (aka JDK 1.2-1.5) released for Windows in Dec ‘98.

Richer set of GUI controls, better drawing model, extensive data
structure library (“collections”), better audio support, standard
CORBA interface, better performance. Core language evolution
slowed.

 Standard extensions
 Servlets, JSP, Jini, JAXP, etc. Continue to evolve rapidly.

 Java on the server: current growth is here

 Java for small devices and embedded apps
 Java 2 Micro Edition (PDAs, cell phones, etc.), JavaCard

 Future of Real-Time Java is still unknown (www.rtj.org)

 Legal battles over?

18

The Future of Java:
Improved Performance

0

50

100

150

200

250

1.1.3 1.1.5 1.2B2 1.2B3 1.2B4

JHU/APL Information Retrieval Benchmark

The Future of Java:
More Growth

0

100.000.000

200.000.000

300.000.000

400.000.000

500.000.000

600.000.000

700.000.000

800.000.000

900.000.000

1.000.000.000

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0 0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.
96

5.
96

9.
96

1.
97

5.
97

Web Documents On-Line Java Programs On-Line

19

The Future of Java:
More Jobs

 Even in economic downturn, most companies that
do large amounts of software development have
shortages of good Java developers

 IBM has over 2,500 professionals involved
with Java product development

 Seen on a blackboard in the background of a video
clip at the JavaOne conference:

if (you.canRead(this))

you.canGet(new Job(!problem));

The Future of Java:
Java is Driving the Software Industry

20

Which Java Version Should
You Use?

 Applets
 Use JDK 1.1 if you want to support the WWW at large.
 Internet Explorer 4.0 and later and Netscape 4.06 and later support

JDK 1.1. Netscape 6/7 support JDK 1.3/1.4.
 Java Plug-In is required if you want to use Java 2 on a browser other

than Netscape 6 or 7. Mozilla Firefox depends on the Java plug-in.

 Applications
 For standard applications use JDK 1.4
Download: j2sdk-1_4_2_11-windows-i586-p.exe from http://java.sun.com/

 Common Approach
 Use JDK 1.4, but bookmark the JDK 1.1 API to check available

methods when writing applets for Web at large.
 For class, use JDK 1.4 and Firefox or IE 6

Getting Started: Web
Web Pages

 http://java.sun.com/
The Java Software web site, with the latest information on Java technology,
product information, news, and features.

 http://java.sun.com/docs
Java Platform Documentation provides access to white papers, the Java Tutorial
and other documents.

 http://java.sun.com/jdc
The Java Developer Connection web site. (Free registration required.) Additional
technical information, news, and features; user forums; support information, and
much more.

 http://java.sun.com/products/
Java Technology Products & API

 Create and run a Java program
 Create the file (use text editor, e.g. notepad)
 Compile it (use the program javac)
 Run it (use the program java)

21

Getting Started: Details
 Create the File

 Write and save a file (say Test.java) that defines public
class Test

 File and class names are case sensitive and must match exactly

 Compile the program
 Compile Test.java through

> javac Test.java

 This step creates a file called Test.class
 If you get a “deprecation” warning, this means you are

using a Java construct that has a newer alternative (ie it
still works but is not recommended)
 Use “javac -deprecation Test.java” for an explanation, then

look the newer construct up in the on-line API

Getting Started: Details
(Continued)

 Run the program
 For a stand-alone application, run it with

> java Test

 Note that the command is java, not javac, and that you refer
to Test, not Test.class

 For an applet that will run in a browser, run it by loading
the HTML page that refers to it (or use appletviewer)

22

Basic Hello World Application

 “Application” is Java lingo for a stand-alone Java
program
 Note that the class name and the filename must match

 A file can contain multiple classes, but only one can be declared
public, and that one’s name must match the filename

 File HelloWorld.java:
public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world.");

}

}

Basic Hello World Application

 Compiling:
javac HelloWorld.java

 Running:
java HelloWorld

 Output:
Hello, world.

23

Command Line Arguments

 File ShowArgs.java:
public class ShowArgs {
public static void main(String[] args) {
for(int i=0; i<args.length; i++) {
System.out.println("Arg " + i +

" is " + args[i]);
}

}
}

 Differences from C
 In Java, String is a real type

 Java arrays have an associated length
 The filename is not part of the command line arguments

Command Line Arguments,
Results

 Compiling and Running:

> javac ShowArgs.java

> java ShowArgs fee fie foe fum

Arg 0 is fee

Arg 1 is fie

Arg 2 is foe

Arg 3 is fum

24

Basic Hello WWW Applet

 File HelloWWW.java:
import java.applet.Applet;
import java.awt.*;

public class HelloWWW extends Applet {
public void init() {
setBackground(Color.gray);
setForeground(Color.white);
setFont(new Font("SansSerif", Font.BOLD, 30));

}

public void paint(Graphics g) {
g.drawString("Hello, World Wide Web.", 5, 35);

}
}

Basic Hello WWW Applet
 File HelloWWW.html:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">
<HTML>
<HEAD>

<TITLE>HelloWWW: Simple Applet Test.</TITLE>
</HEAD>

<BODY>
<H1>HelloWWW: Simple Applet Test.</H1>

<APPLET CODE="HelloWWW.class" WIDTH=400 HEIGHT=40>
Error! You must use a Java enabled browser.

</APPLET>

</BODY>
</HTML>

25

Basic Hello WWW Applet

 Compiling:
javac HelloWWW.java

 Running:
Load HelloWWW.html in a Java-enabled browser

Customizing Applets
import java.applet.Applet;
import java.awt.*;

public class Message extends Applet {
private int fontSize;
private String message;

public void init() {
setBackground(Color.black);
setForeground(Color.white);
fontSize = getSize().height - 10;
setFont(new Font("SansSerif", Font.BOLD, fontSize));
// Read heading message from PARAM entry in HTML.
message = getParameter("MESSAGE");

}

public void paint(Graphics g) {
if (message != null)
g.drawString(message, 5, fontSize+5);

}
}

26

Customizing Applets
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>The Message Applet</TITLE>
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>The <CODE>Message</CODE> Applet</H1>
<P>
<APPLET CODE="Message.class" WIDTH=325 HEIGHT=25>

<PARAM NAME="MESSAGE" VALUE="Tiny">
Sorry, these examples require Java

</APPLET>
<P>
<APPLET CODE="Message.class" WIDTH=325 HEIGHT=50>

<PARAM NAME="MESSAGE" VALUE="Small">
Sorry, these examples require Java

</APPLET>
...
</BODY>
</HTML>

Customizing Applets

27

Some Predefined Classes
javax.swing Class JButton

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.AbstractButton
javax.swing.JButton

Constructor Summary
JButton()
Creates a button with no set text or icon.

JButton(Action a)
Creates a button where properties are taken from
the Action supplied.

JButton(Icon icon)
Creates a button with an icon.

JButton(String text)
Creates a button with text.
…

Method Summary
protected void configurePropertiesFromAction (Action a)
Factory method which sets the AbstractButton's properties according to values from the Action instance.

AccessibleContext getAccessibleContext ()
Gets the AccessibleContext associated with this JButton.

String getUIClassID ()
Returns a string that specifies the name of the L&F class that renders this component.

Boolean isDefaultButton ()
Gets the value of the defaultButton property, which if true means that this button is the current default
button for its JRootPane.

protected String paramString ()
Returns a string representation of this JButton.
…

Some Predefined Classes
Class StrictMath

java.lang.Object
java.lang.StrictMath

Method Summary
…
static float abs (float a)
Returns the absolute value of a float value.

static double acos (double a)
Returns the arc cosine of an angle, in the range of 0.0 through pi.

static double asin (double a)
Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

static double atan (double a)
Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.
…

Field Summary

static double E
The double value that is closer than any other to e, the
base of the natural logarithms.

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

28

Useful list of Java IDEs
They are in NO specific order!

Eclipse
This is a very good and open source IDE. It is used a lot commercially and personally. It was made in Java so
it's cross-platform. It has a lot of support for additional plug-ins to extend your developing needs. What I love
about Eclipse is that it compiles your code as you type. It highlights compiling errors and mistakes like how MS
Word does for mis-spelled words.
Netbeans
This is a very good IDE also. It has a built-in GUI Builder for those you like that R.A.D. . It is used a lot
commercially too. It was made in Java so it's cross-platform like Eclipse.
BlueJ
This is an IDE developed towards first time Java developers. It teaches you a lot of programming concepts in
Java and has a nice UML tool.
JCreator
This is my first Java IDE I used. It is very good and very easy to use. This IDE was made in C++ unlike the ones
above, which were all made in Java. Only runs on Windows platform.

IntelliJ IDEA
IntelliJ IDEA is an intelligent Java IDE intensely focused on developer productivity that provides a robust
combination of enhanced development tools.
Borland JBuilder
This is a great commerial IDE for Java. It does have a price but some developers believe it's worth it. It also has
a built-in Java GUI Builder.
Dr. Java
Dr. Java is a lightweight development environment for writing Java programs. It is designed primarily for
students, providing an intuitive interface and the ability to interactively evaluate Java code. It also includes
powerful features for more advanced users.

Summary
 Java is a complete language, supporting both

standalone applications and Web development

 Java is compiled to bytecode and can be run on
any platform that supports a Java Virtual
Machine

 Java 2 Platform is available in a Standard
Edition, Enterprise Edition, or Micro Edition

 Most browsers support only JDK 1.1

 Compiling: use “javac”

 Executing standalone programs: use “java”

 Executing applets: load HTML file in browser

29

Thank you for your attention!

1

Basic Java
Syntax

Agenda
 Creating, compiling, and executing simple

Java programs

 Accessing arrays

 Looping

 Using if statements

 Comparing strings

 Building arrays
 One-step process

 Two-step process

 Using multidimensional arrays

 Manipulating data structures

 Handling errors

2

Getting Started
 Name of file must match name of class

 It is case sensitive, even on Windows

 Processing starts in main
 public static void main(String[] args)

 Routines usually called “methods,” not “functions.”

 Printing is done with System.out
 System.out.println, System.out.print

 Compile with “javac”
 Open DOS window; work from there

 Supply full case-sensitive file name (with file extension)

 Execute with “java”
 Supply base class name (no file extension)

Example

 File: HelloWorld.java
public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world.");

}

}

 Compiling
DOS> javac HelloWorld.java

 Executing
DOS> java HelloWorld

Hello, world.

3

More Basics
 Use + for string concatenation
 Arrays are accessed with []

 Array indices are zero-based
 The argument to main is an array of strings that

correspond to the command line arguments
 args[0] returns first command-line argument
 args[1] returns second command-line argument
 Etc.

 The length field gives the number of elements
in an array
 Thus, args.length gives the number of

command-line arguments
 Unlike in C/C++, the name of the program is not

inserted into the command-line arguments

Example
 File: ShowTwoArgs.java

public class ShowTwoArgs {

public static void main(String[] args) {

System.out.println("First arg: " + args[0]);

System.out.println("Second arg: " + args[1]);

}

}
 Compiling

DOS> javac ShowTwoArgs.java

 Executing
DOS> java ShowTwoArgs Hello World
First args Hello
Second arg: Class

DOS> java ShowTwoArgs
[Error message]

4

Looping Constructs
 while

while (continueTest) {

body;

}

 do
do {

body;

} while (continueTest);

 for
for(init; continueTest; updateOp) {

body;

}

Loops
public static void listNums1(int max) {
int i = 0;
while (i <= max) {
System.out.println("Number: " + i);
i++; // "++" means "add one"

}
}
public static void listNums2(int max) {
int i = 0;
do {
System.out.println("Number: " + i); i++;

} while (i <= max); // Don’t forget semicolon
}

public static void listNums3(int max) {
for(int i=0; i<max; i++) {
System.out.println("Number: " + i);

}
}

5

Aside: Defining Multiple Methods
in Single Class

public class LoopTest {

public static void main(String[] args) {

listNums1(5);

listNums2(6);

listNums3(7);

}

public static void listNums1(int max) {…}

public static void listNums2(int max) {…}

public static void listNums3(int max) {…}

}

Loop Example

 File ShowArgs.java:

public class ShowArgs {

public static void main(String[] args) {

for(int i=0; i<args.length; i++) {

System.out.println("Arg " + i +

" is " +

args[i]);

}

}

}

6

If Statements
Single Option
if (boolean-expression) {

statement;

}

Multiple Options
if (boolean-expression) {
statement1;

} else {
statement2;

}
 ==, !=

 Equality, inequality. In addition to comparing primitive types, ==
tests if two objects are identical (the same object), not just if they
appear equal (have the same fields).

 <, <=, >, >=
 Numeric less than, less than or equal to, greater than, greater

than or equal to.
 &&, ||

 Logical AND, OR.
 !

 Logical negation.

Strings
 String is a real class in Java, not an array of characters

as in C and C++.

 The String class has a shortcut method to create a new
object: just use double quotes
 This differs from normal objects, where you use the new

construct to build an object

 Use equals to compare string
public static void main(String[] args) {
String match = "Test";
if (args.length == 0) {
System.out.println("No args");

} else if (args[0] == match) {
System.out.println("Match");

} else { System.out.println("No match"); }
}

 Prints "No match" for all inputs

 Fix: if (args[0].equals(match))

7

Wrapper Classes

 Each primitive data type has a corresponding
object (wrapper class)

 The data is stored as an immutable field of the object

Primitive Corresponding
Data Type Object Class

 byte Byte
 short Short
 int Integer
 long Long
 float Float
 double Double
 char Character
 boolean Boolean

Wrapper Uses

 Defines useful constants for each data type
 For example,

Integer.MAX_VALUE
Float.NEGATIVE_INFINITY

 Convert between data types
 Use parseXxx method to convert a String to the

corresponding primitive data type
try {

String value = "3.14e6";
Double d = Double.parseDouble(value);

} catch (NumberFormatException nfe) {
System.out.println("Can't convert: " + value);

}

8

Wrappers: Converting Strings

Data Type Convert String using either …
 byte Byte.parseByte(string)

 new Byte(string).byteValue()
 short Short.parseShort(string)

 new Short(string).shortValue()
 int Integer.parseInteger(string)

 new Integer(string).intValue()
 long Long.parseLong(string)

 new Long(string).longValue()
 float Float.parseFloat(string)

 new Float(string).floatValue()
 double Double.parseDouble(string)

 new Double(string).doubleValue()

Reading from the keyboard
// import java.io.*;
public class MyInput {

/* Read a string from the keyboard */
public static String readString() {
BufferedReader br
= new BufferedReader(new InputStreamReader(System.in), 1);
// Declare and initialize the string
String string = " ";
// Get the string from the keyboard
try {
string = br.readLine();

}
catch (IOException ex) {
System.out.println(ex);

}
// Return the string obtained from the keyboard
return string;

}
/**Read an int value from the keyboard*/
public static int readInt() {
return Integer.parseInt(readString());

}
/**Read a double value from the keyboard*/
public static double readDouble() {
return Double.parseDouble(readString());

}
}

9

Building Arrays:
One-Step Process

 Declare and allocate array in one fell swoop
type[] var = { val1, val2, ... , valN };

 Examples:
int[] values = { 10, 100, 1000 };

Point[] points = { new Point(0, 0),

new Point(1, 2),

... };

Building Arrays:
Two-Step Process

 Step 1: allocate an array of references:
type[] var = new type[size];
 Eg:
int[] values = new int[7];
Point[] points = new Point[someArray.length];

 Step 2: populate the array
points[0] = new Point(...);
points[1] = new Point(...);
...
Points[6] = new Point(…);

 If you fail to populate an entry
 Default value is 0 for numeric arrays
 Default value is null for object arrays

10

Multidimensional Arrays
 Multidimensional arrays are implemented as

arrays of arrays

int[][] twoD = new int[64][32];

String[][] cats = { { "Caesar", "blue-point" },
{ "Heather", "seal-point" },
{ "Ted", "red-point" } };

 Note: the number of elements in each row (dimension) need
not be equal

int[][] irregular = { { 1 },
{ 2, 3, 4},
{ 5 },
{ 6, 7 } };

TriangleArray: Example
public class TriangleArray {

public static void main(String[] args) {

int[][] triangle = new int[10][];

for(int i=0; i<triangle.length; i++) {
triangle[i] = new int[i+1];

}

for (int i=0; i<triangle.length; i++) {
for(int j=0; j<triangle[i].length; j++) {

System.out.print(triangle[i][j]);
}
System.out.println();

}
}

}

11

TriangleArray: Result

> java TriangleArray

0

00

000

0000

00000

000000

0000000

00000000

000000000

0000000000

Passing Arrays to Methods
Java uses pass by value to pass parameters to a
method. There are important differences between
passing a value of variables of primitive data
types and passing arrays.

 For a parameter of a primitive type value, the
actual value is passed. Changing the value of the
local parameter inside the method does not affect
the value of the variable outside the method.

 For a parameter of an array type, the value of the
parameter contains a reference to an array; this
reference is passed to the method. Any changes
to the array that occur inside the method body
will affect the original array that was passed as
the argument.

12

Array: an Example
import java.io.*; // for I/O
class HighArray {

private double[] a; // ref to array a
private int nElems; // number of data items

//--
public HighArray(int max) { // constructor

a = new double[max]; // create the array
nElems = 0; // no items yet

}
//--
public boolean find(double searchKey) { // find value

int j;
for(j=0; j<nElems; j++) if(a[j] == searchKey) break;
if(j == nElems) // gone to end?

return false; // yes, can't find it
else

return true; // no, found it
}
//--
public void insert(double value) { // put element into array

a[nElems] = value; // insert it
nElems++; // increment size

}

Array: an Example (Cont.)
public boolean delete(double value){

int j;
for(j=0; j<nElems; j++) if(value == a[j]) break;
if(j==nElems) // can't find it

return false;
else { // found it

for(int k=j; k<nElems; k++) // move higher ones down
a[k] = a[k+1]; nElems--; // decrement size
return true;

}
}
//--
public void display() { // displays array contents

for(int j=0; j<nElems; j++)
System.out.print(a[j] + " "); // display it

System.out.println("");
}
//--
} // end class HighArray

The class user, the HighArrayApp class, need not worry about index numbers
or any other array details. Amazingly, the class user does not even need to
know what kind of data structure the HighArray class is using to store the data.
The structure is hidden behind the interface.

13

Array: an Example (Cont.)
class HighArrayApp {
public static void main(String[] args) {
int maxSize = 100; // array size
HighArray arr; // reference to array
arr = new HighArray(maxSize); // create the array
arr.insert(77); // insert 10 items
arr.insert(99); arr.insert(44); arr.insert(55);
arr.insert(22); arr.insert(88); arr.insert(11);
arr.insert(00); arr.insert(66); arr.insert(33);
arr.display(); // display items
int searchKey = 35; // search for item
if(arr.find(searchKey))

System.out.println("Found " + searchKey);
else

System.out.println("Can't find " + searchKey);
arr.delete(00); // delete 3 items
arr.delete(55);
arr.delete(99);
arr.display(); // display

} // end main()
} // end class HighArrayApp

Output: 77 99 44 55 22 88 11 0 66 33
Can't find 35
77 44 22 88 11 66 33

The process of separating the how
from the what—how an operation is
performed inside a class, as opposed
to what's visible to the class user—is
called abstraction. Abstraction is an
important aspect of software
engineering.

Recursion: an Example
import java.io.*; // for I/O
class AnagramApp {

static int size; static int count;
static char[] arrChar = new char[100];

public static void main(String[] args) throws IOException {
System.out.print("Enter a word: "); // get word
System.out.flush();
String input = getString();
size = input.length(); // find its size
count = 0;
for(int j=0; j<size; j++) arrChar[j] = input.charAt(j);
doAnagram(size); // anagram it

} // end main()
public static void doAnagram(int newSize) {

if(newSize == 1) return; // go no further
for(int j=0; j<newSize; j++) {

doAnagram(newSize-1); // anagram remaining
if(newSize==2) displayWord(); // display it
rotate(newSize); // rotate word

}
}
public static void rotate(int newSize){ // rotate left

int j; int position = size - newSize;
char temp = arrChar[position]; // save first letter
for(j=position+1; j<size; j++) // shift others left

arrChar[j-1] = arrChar[j];
arrChar[j-1] = temp; // put first on right

}

14

Recursion: an Example (Cont.)
public static void displayWord() {

if(count < 99) System.out.print(" ");
if(count < 9) System.out.print(" ");
System.out.print(++count + " ");
for(int j=0; j<size; j++) System.out.print(arrChar[j]);
System.out.print(" ");
System.out.flush();
if(count%6 == 0) System.out.println("");

}
public static String getString() throws IOException {

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}
} // end class AnagramApp

Enter a word: cats
1 cats 2 cast 3 ctsa 4 ctas 5 csat 6 csta
7 atsc 8 atcs 9 asct 10 astc 11 acts 12 acst
13 tsca 14 tsac 15 tcas 16 tcsa 17 tasc 18 tacs
19 scat 20 scta 21 satc 22 sact 23 stca 24 stac

Data Structures

 Java 1.0 introduced two synchronized data
structures in the java.util package
 Vector

 A strechable (resizeable) array of Objects

 Time to access an element is constant regardless of position

 Time to insert element is proportional to the size of the vector

 In Java 2 (eg JDK 1.2 and later), use ArrayList

 Hashtable
 Stores key-value pairs as Objects

 Neither the keys or values can be null

 Time to access/insert is constant

 In Java 2, use HashMap

15

Useful Vector Methods

 addElement/insertElementAt/setElementAt
 Add elements to the vector

 removeElement/removeElementAt
 Removes an element from the vector

 firstElement/lastElement
 Returns a reference to the first and last element, respectively

(without removing)

 elementAt
 Returns the element at the specified index

 indexOf
 Returns the index of an element that equals the object specified

 contains
 Determines if the vector contains an object

Useful Vector Methods

 elements
 Returns an Enumeration of objects in the vector

Enumeration elements = vector.elements();
while(elements.hasMoreElements()) {
System.out.println(elements.nextElement());

}

 size
 The number of elements in the vector

 capacity
 The number of elements the vector can hold before

becoming resized

16

Useful Hashtable Methods

 put/get
 Stores or retrieves a value in the hashtable

 remove/clear
 Removes a particular entry or all entries from the hashtable

 containsKey/contains
 Determines if the hashtable contains a particular key or element

 keys/elements
 Returns an enumeration of all keys or elements, respectively

 size
 Returns the number of elements in the hashtable

 rehash
 Increases the capacity of the hashtable and reorganizes it

Collections Framework

 Additional data structures added by Java 2
Platform

Collection

Set

SortedSet

List

ArrayList
LinkedList
Vector†

HashSet

TreeSet

Map

SortedMap

HashMap
Hashtable†

TreeMap

Interface Concrete class †Synchronized Access

17

Collection Interfaces

 Collection
 Abstract class for holding groups of objects

 Set
 Group of objects containing no duplicates

 SortedSet
 Set of objects (no duplicates) stored in ascending order
 Order is determined by a Comparator

 List
 Physically (versus logically) ordered sequence of objects

 Map
 Stores objects (unordered) identified by unique keys

 SortedMap
 Objects stored in ascending order based on their key value

Collections Class

 Use to create synchronized data structures
List list = Collection.synchronizedList(new ArrayList());

Map map = Collections.synchronizedMap(new HashMap());

 Provides useful (static) utility methods
 sort

 Sorts (ascending) the elements in the list
 max, min

 Returns the maximum or minimum element in the collection
 reverse

 Reverses the order of the elements in the list
 shuffle

 Randomly permutes the order of the elements

18

Summary

 Loops, conditional statements, and array
access is the same as in C and C++

 String is a real class in Java

 Use equals, not ==, to compare strings

 You can allocate arrays in one step or in two
steps

 Vector or ArrayList is a useful data
structure
 Can hold an arbitrary number of elements

 Handle exceptions with try/catch blocks

Thank you for your attention!

1

Java Data
Structures

Agenda

 The limitations of arrays

 Java Collection Framework hierarchy

 Use the Iterator interface to traverse a
collection

 Set interface, HashSet, and TreeSet

 List interface, ArrayList, and LinkedList

 Vector and Stack

 Map, HashMap, and TreeMap

 Collections and Arrays classes

2

Limitations of arrays

 Once an array is created, its size
cannot be altered.

 Array provides inadequate support
for inserting, deleting, sorting, and
searching operations.

Collections Framework
 Additional data structures added by Java 2 Platform.

Supports two types of collections, named collections
and maps.

Collection

Set

SortedSet

List

ArrayList
LinkedList
Vector†

HashSet

TreeSet

Map

SortedMap

HashMap
Hashtable†

TreeMap

Interface Concrete class †Synchronized Access

Arrays

3

The Collection Interface
 Collection

 Abstract class for holding
groups of objects

 Set
 Group of objects containing no

duplicates
 SortedSet

 Set of objects (no duplicates)
stored in ascending order

 Order is determined by a
Comparator

 List
 Physically (versus logically)

ordered sequence of objects
 Map

 Stores objects (unordered)
identified by unique keys

 SortedMap
 Objects stored in ascending

order based on their key value
 Neither duplicate or null keys

are permitted

Collection

+add(element: Object): boolean
+addAll(collection: Collection): boolean
+clear(): void
+contains(elment: Object): boolean
+containsAll(collection: Collection):boolean
+equals(object: Object): boolean
+hashcode(): int
+iterator(): Iterator
+remove(element: Object): boolean
+removeAll(collection: Collection): boolean
+retainAll(collection: Collection): boolean
+size(): int
+toArray(): Object[]
+toArray(array: Object[]): Object[]

Collections Class
 Use to create synchronized data structures

List list = Collection.synchronizedList(new ArrayList());

Map map = Collections.synchronizedMap(new HashMap());

 Provides useful (static) utility methods
 sort

 Sorts (ascending) the elements in the list
 max, min

 Returns the maximum or minimum element in the collection
 reverse

 Reverses the order of the elements in the list
 shuffle

 Randomly permutes the order of the elements

4

Using the Collections Class

This example demonstrates using the methods
in the Collections class. The example creates a
list, sorts it, and searches for an element. The
example wraps the list into a synchronized and
read-only list.

RunTestCollections

The HashSet Class
The HashSet class is a concrete class that implements
Set. It can be used to store duplicate-free elements.

This example creates a hash set filled with strings, and
uses an iterator to traverse the elements in the list.
import java.util.*;
public class TestHashSet {
public static void main(String[] args) {

// Create a hash set
Set set = new HashSet();
set.add("Red"); set.add("Yellow"); set.add("White");
set.add("Green"); set.add("Orange"); set.add("Gray");
set.add("Black"); set.add("Red");
System.out.println(set);
// Obtain an iterator for the hash set
Iterator iterator = set.iterator();
// Display the elements in the hash set
while (iterator.hasNext()) System.out.print(iterator.next() + " ");

}
}

TestHashSet

Run

5

Useful Hashtable Methods
 put/get

 Stores or retrieves a value in the hashtable

 remove/clear
 Removes a particular entry or all entries from the hashtable

 containsKey/contains
 Determines if the hashtable contains a particular key or

element

 keys/elements
 Returns an enumeration of all keys or elements,

respectively

 size
 Returns the number of elements in the hashtable

 rehash
 Increases the capacity of the hashtable and reorganizes it

The Set Interface
The Set interface extends the Collection interface. It does not
introduce new methods or constants, but it stipulates that an
instance of Set contains no duplicate elements. The concrete
classes that implement Set must ensure that no duplicate
elements can be added to the set. That is no two elements e1
and e2 can be in the set such that e1.equals(e2) is true.

SortedSet is a subinterface of Set, which guarantees that the
elements in the set are sorted. TreeSet is a concrete class that
implements the SortedSet interface. You can use an iterator to
traverse the elements in the sorted order. The elements can be
sorted in two ways.
1. One way is to use the Comparable interface.
2. The other way is to specify a comparator for the elements in the set
if the class for the elements does not implement the Comparable
interface, or you don’t want to use the compareTo method in the class
that implements the Comparable interface. This approach is referred to
as order by comparator.

6

Using TreeSet to Sort Elements
in a Set

This example creates a hash set filled with strings, and
then creates a tree set for the same strings. The strings
are sorted in the tree set using the compareTo method in
the Comparable interface.

The example also creates a tree set of geometric objects.
The geometric objects are sorted using the compare
method in the Comparator interface.

GeometricObjectComparator Run

TestTreeSet

The List Interface
A set stores non-duplicate elements. To allow duplicate
elements to be stored in a collection, you need to use a
list. A list can not only store duplicate elements, but can
also allow the user to specify where the element is stored.
The user can access the element by index.

The ArrayList class and the LinkedList class are concrete
implementations of the List interface. Which of the two classes
you use depends on your specific needs.
If you need to support random access through an index without
inserting or removing elements from any place other than the end,
ArrayList offers the most efficient collection.
If, however, your application requires the insertion or deletion of
elements from any place in the list, you should choose LinkedList.

A list can grow or shrink dynamically. An array is fixed
once it is created. If your application does not require
insertion or deletion of elements, the most efficient data
structure is the array.

7

The List Interface

List

+add(index: int, element: Object) : boolean
+addAll(index: int, collection: Collection) : boolean
+get(index: int) : Object
+indexOf(element: Object) : int
+lastIndexOf(element: Object) : int
+listIterator() : ListIterator
+listIterator(startIndex: int) : ListIterator
+remove(index: int) : int
+set(index: int, element: Object) : Object
+subList(fromIndex: int, toIndex: int) : List

Collection

The List Iterator

ListIterator

+add(element: Object) : void
+hasPrevious() : boolean
+nextIndex() : int
+previousIndex() : int
+previous() : Object
+previousIndex() : int
+set(element: Object) : void

Iterator

8

Using ArrayList and LinkedList

This example creates an array list filled with numbers,
and inserts new elements into the specified location in
the list. The example also creates a linked list from the
array list, inserts and removes the elements from the
list. Finally, the example traverses the list forward and
backward.

RunTestList

The Vector and Stack Classes

The Java Collections Framework was introduced with
Java 2. Several data structures were supported prior
to Java 2. Among them are the Vector class and the
Stack class. These classes were redesigned to fit into
the Java Collections Framework, but their old-style
methods are retained for compatibility. This section
introduces the Vector class and the Stack class.

In Java 2, Vector is the same as ArrayList, except that Vector
contains the synchronized methods for accessing and modifying
the vector.

9

The Vector Class

Vector

+addElement(element: Object) : void
+capacity() : void
+copyInto(anArray: Object[]) : void
+elementAt(index: int) : Object
+elements() : Enumeration
+ensureCapacity() : void
+firstElement() : int
+insertElementAt(index: int) : void
+lastElement() : Object
+removeAllElements() : void
+removeElement(element: Object) : void
+removeElementAt(index: int) : void
+setElementAt(element: Object, index: int) : void
+setSize(newSize: int) : void
+trimToSize() : void

List addElement/insertElementAt/setElementAt
Add elements to the vector

 removeElement/removeElementAt
Removes an element from the vector

 firstElement/lastElement
Returns a reference to the first and last element,
respectively (without removing)

 elementAt
Returns the element at the specified index

 indexOf
Returns the index of an element that equals the
object specified

 contains
Determines if the vector contains an object

 elements
Returns an Enumeration of objects in the vector

Enumeration elements = vector.elements();
while(elements.hasMoreElements()) {
System.out.println(elements.nextElement());
}

 size
The number of elements in the vector

 capacity
The number of elements the vector can hold
before becoming resized

The Stack Class

The Stack class represents
a last-in-first-out stack of
objects. The elements are
accessed only from the top
of the stack. You can
retrieve, insert, or remove
an element from the top of
the stack.

Stack

+empty() : boolean
+peek() : Object
+pop() : Object
+push(element: Object) : void
+search(element: Object) : int

Vector

10

Using Vector and Stack

The program reads student scores from
the keyboard, stores the scores in the
vector, finds the best scores, and then
assigns grades for all the students. A
negative score signals the end of the
input.

RunAssignGradeUsingVector

The Map Interface

The Map interface maps keys
to the elements. The keys are
like indexes. In List, the
indexes are integer. In Map,
the keys can be any objects.

The HashMap and TreeMap
classes are two concrete
implementations of the Map
interface. The HashMap class
is efficient for locating a value,
inserting a mapping, and
deleting a mapping. The
TreeMap class, implementing
SortedMap, is efficient for
traversing the keys in a sorted
order.

Map

+clear() : void
+containsKey(key: Object) : boolean
+containsValue(value: Object) : boolean
+entrySet() : Set
+get(key: Object) : Object
+isEmpty() : boolean
+keySet() : Set
+put(key: Object, value: Object) : Object
+putAll(m: Map) : void
+remove(key: Object) : Object
+size() : int
+values() : Collection

11

Using HashMap and TreeMap

This example creates a hash map that maps
borrowers to mortgages. The program first
creates a hash map with the borrower’s name as
its key and mortgage as its value. The program
then creates a tree map from the hash map, and
displays the mappings in ascending order of the
keys.

RunTestMap

The Arrays
Class

Arrays

+asList(a: Object[]) : List
+binarySearch(a: byte[],key: byte) : int
+binarySearch(a: char[], key: char) : int
+binarySearch(a: double[], key: double) : int
+binarySearch(a,: float[] key: float) : int
+binarySearch(a: int[], key: int) : int
+binarySearch(a: long[], key: long) : int
+binarySearch(a: Object[], key: Object) : int
+binarySearch(a: Object[], key: Object, c: Comparator) : int
+binarySearch(a: short[], key: short) : int
+equals(a: boolean[], a2: boolean[]) : boolean
+equals(a: byte[], a2: byte[]) : boolean
+equals(a: char[], a2: char[]) : boolean
+equals(a: double[], a2: double[]) : boolean
+equals(a: float[], a2: float[]) : boolean
+equals(a: int[], a2: int[]) : boolean
+equals(a: long[], a2: long[]) : boolean
+equals(a: Object[], a2: Object[]) : boolean
+equals(a: short[], a2: short[]) : boolean
+fill(a: boolean[], val: boolean) : void
+fill(a: boolean[], fromIndex: int, toIndex: int, val: boolean) : void

Overloaded fill method for char, byte, short, int, long, float, double,
and Object.

+sort(a: byte[]) : void
+sort(a: byte[], fromIndex: int, toIndex: int) : void

Overloaded sort method for char, short, int, long, float, double, and
Object.

The Arrays class
contains various static
methods for sorting
and searching arrays,
for comparing arrays,
and for filling array
elements. It also
contains a method for
converting an array to
a list.

12

Using the Arrays Class

This example demonstrates using the methods in
the Arrays class. The example creates an array of
int values, fills part of the array with 50, sorts it,
searches for an element, and compares the array
with another array.

RunTestArrays

Summary

Collection

Set

SortedSet

List

ArrayList
LinkedList
Vector†
(obsolete)

HashSet

TreeSet

Map

SortedMap

HashMap
Hashtable†

TreeMap

Interface Concrete class †Synchronized Access

Arrays

13

Thank you for your attention!

1

Object-Oriented
Programming

Agenda

 Similarities and differences between
Java and C++

 Object-oriented nomenclature and
conventions

 Instance variables (fields)

 Methods (member functions)

 Constructors

2

Object-Oriented Programming in
Java

 Similarities with C++
 User-defined classes can be used the same way as built-in

types.

 Basic syntax

 Differences from C++
 Methods (member functions) are the only function type

 Object is the topmost ancestor for all classes

 All methods use the run-time, not compile-time, types (i.e.
all Java methods are like C++ virtual functions)

 The types of all objects are known at run-time

 All objects are allocated on the heap (always safe to return
objects from methods)

 Single inheritance only

Object-Oriented Nomenclature

 “Class” means a category of things
 A class name can be used in Java as the type of a field

or local variable or as the return type of a function
(method)

 “Object” means a particular item that belongs to a
class
 Also called an “instance”

 For example, consider the following line:

String s1 = "Hello";
 Here, String is the class, and the variable s1 and the

value "Hello" are objects (or “instances of the String
class”)

3

Example 1: Instance Variables
class Ship1 {

public double x, y, speed, direction;
public String name;

}

public class Test1 {
public static void main(String[] args) {
Ship1 s1 = new Ship1();
s1.x = 0.0;
s1.y = 0.0;
s1.speed = 1.0;
s1.direction = 0.0; // East
s1.name = "Ship1";
Ship1 s2 = new Ship1();
s2.x = 0.0;
s2.y = 0.0;
s2.speed = 2.0;
s2.direction = 135.0; // Northwest
s2.name = "Ship2";

s1.x = s1.x + s1.speed
* Math.cos(s1.direction * Math.PI / 180.0);

s1.y = s1.y + s1.speed
* Math.sin(s1.direction * Math.PI / 180.0);

s2.x = s2.x + s2.speed
* Math.cos(s2.direction * Math.PI / 180.0);

s2.y = s2.y + s2.speed
* Math.sin(s2.direction * Math.PI / 180.0);

System.out.println(s1.name + " is at ("
+ s1.x + "," + s1.y + ").");

System.out.println(s2.name + " is at ("
+ s2.x + "," + s2.y + ").");

}
}

Output:

Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Compiling and Running:

javac Test1.java
java Test1

4

Example 1: Major Points

 Java naming convention

 Format of class definitions

 Creating classes with “new”

 Accessing fields with
“variableName.fieldName”

Java Naming Conventions

 Leading uppercase letter in class name

public class MyClass {

...

}

 Leading lowercase letter in field, local variable, and
method (function) names

 myField, myVar, myMethod

5

First Look at Java Classes
 The general form of a simple class is

modifier class Classname {

modifier data-type field1;
modifier data-type field2;
...
modifier data-type fieldN;

modifier Return-Type methodName1(parameters) {
//statements

}
...
modifier Return-Type methodName2(parameters) {
//statements

}
}

Objects and References
 Once a class is defined, you can easily declare a

variable (object reference) of the class
Ship s1, s2;
Point start;
Color blue;

 Object references are initially null
 The null value is a distinct type in Java and should not be

considered equal to zero

 A primitive data type cannot be cast to an object (use
wrapper classes)

 The new operator is required to explicitly create the
object that is referenced

ClassName variableName = new ClassName();

6

Accessing Instance Variables

 Use a dot between the variable name and the field
name, as follows: variableName.fieldName

 For example, Java has a built-in class called Point that
has x and y fields

Point p = new Point(2, 3); // Build a Point object
int xSquared = p.x * p.x; // xSquared is 4
int xPlusY = p.x + p.y; // xPlusY is 5
p.x = 7;
xSquared = p.x * p.x; // Now xSquared is 49

 One major exception applies to the “access fields
through varName.fieldName” rule
 Methods can access fields of current object without

varName
 This will be explained when methods (functions) are

discussed

Example 2: Methods
class Ship2 {
public double x=0.0, y=0.0, speed=1.0,
direction=0.0;
public String name = "UnnamedShip";

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}
public void move() {
double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}
public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}

7

Methods (Continued)
public class Test2 {
public static void main(String[] args) {
Ship2 s1 = new Ship2();
s1.name = "Ship1";
Ship2 s2 = new Ship2();
s2.direction = 135.0; // Northwest
s2.speed = 2.0;
s2.name = "Ship2";
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}
 Compiling and Running:

javac Test2.java
java Test2

Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Example 2: Major Points

 Format of method definitions

 Methods that access local fields

 Calling methods

 Static methods

 Default values for fields

 public/private distinction

8

Defining Methods
(Functions Inside Classes)

 Basic method declaration:
public ReturnType methodName(type1 arg1,

type2 arg2, ...)
{
...
return(something of ReturnType);

}

 Exception to this format: if you declare the return type as
void

 This special syntax that means “this method isn’t going to
return a value – it is just going to do some side effect like
printing on the screen”

 In such a case you do not need (in fact, are not permitted),
a return statement that includes a value to be returned

Examples of Defining Methods
 Here are two examples:

 The first squares an integer
 The second returns the faster of two Ship objects,

assuming that a class called Ship has been defined that
has a field named speed

// Example function call:
// int val = square(7);
public int square(int x) {
return(x*x);

}
// Example function call:
// Ship faster = fasterShip(someShip, someOtherShip);
public Ship fasterShip(Ship ship1, Ship ship2) {
if (ship1.speed > ship2.speed) {

return(ship1);
} else {

return(ship2);
}

}

9

Exception to the “Field Access
with Dots” Rule

 You normally access a field through
variableName.fieldName

but an exception is when a method of a class wants to
access fields of that same class
 In that case, omit the variable name and the dot
 For example, a move method within the Ship class might

do:
public void move() {
x = x + speed * Math.cos(direction);
...

}
 Here, x, speed, and direction are all fields within the class that

the move method belongs to, so move can refer to the fields directly

 As we’ll see later, you still can use the
variableName.fieldName approach, and Java invents
a variable called this that can be used for that purpose

Calling Methods
 The term “method” means “function associated with an

object” (I.e., “member function”)
 The usual way that you call a method is by doing the

following:

variableName.methodName(argumentsToMethod);

 For example, the built-in String class has a method
called toUpperCase that returns an uppercase variation
of a String
 This method doesn’t take any arguments, so you just put

empty parentheses after the function (method) name.
String s1 = "Hello";

String s2 = s1.toUpperCase(); // s2 is now "HELLO"

10

Calling Methods (Continued)
 There are two exceptions to requiring a variable name

for a method call
 Calling a method defined inside the current class definition
 Functions (methods) that are declared “static”

 Calling a method that is defined inside the current class
 You don’t need the variable name and the dot
 For example, a Ship class might define a method called
degreeesToRadians, then, within another function in the
same class definition, do this:

double angle = degreesToRadians(direction);

 No variable name and dot is required in front of
degreesToRadians since it is defined in the same class as
the method that is calling it

Static Methods
 Static functions typically do not need to access any fields

within their class and are almost like global functions in
other languages

 You can call a static method through the class name
ClassName.functionName(arguments);

 For example, the Math class has a static method called
cos that expects a double precision number as an
argument
 So you can call Math.cos(3.5) without ever having any

object (instance) of the Math class

 Note on the main method
 Since the system calls main without first creating an

object, static methods are the only type of methods that
main can call directly (i.e. without building an object and
calling the method of that object)

11

Method Visibility
 public/private distinction

 A declaration of private means that “outside” methods
can’t call it -- only methods within the same class can
 Thus, for example, the main method of the Test2 class

could not have done
double x = s1.degreesToRadians(2.2);

 Attempting to do so would have resulted in an error at
compile time

 Only say public for methods that you want to
guarantee your class will make available to users

 You are free to change or eliminate private methods
without telling users of your class about

Declaring Variables in Methods
 When you declare a local variable inside of a method,

the normal declaration syntax looks like:

Type varName = value;

 The value part can be:
 A constant,

 Another variable,

 A function (method) call,

 A “constructor” invocation (a special type of function
prefaced by new that builds an object),

 Some special syntax that builds an object without
explicitly calling a constructor (e.g., strings)

12

Declaring Variables in Methods:
Examples

int x = 3;

int y = x;

// Special syntax for building a String object

String s1 = "Hello";

// Building an object the normal way

String s2 = new String("Goodbye");

String s3 = s2;

String s4 = s3.toUpperCase(); // Result: s4 is "GOODBYE"

// Assume you defined a findFastestShip method that

// returns a Ship

Ship ship1 = new Ship();

Ship ship2 = ship1;

Ship ship3 = findFastestShip();

Example 3: Constructors
class Ship3 {

public double x, y, speed, direction;

public String name;

public Ship3(double x, double y,

double speed, double direction,

String name) {

this.x = x; // "this" differentiates instance vars

this.y = y; // from local vars.

this.speed = speed;

this.direction = direction;

this.name = name;

}

private double degreesToRadians(double degrees) {

return(degrees * Math.PI / 180.0);

}

...

13

Constructors (Continued)
public void move() {

double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}
public void printLocation() {

System.out.println(name + " is at ("
+ x + "," + y + ").");

}
}
public class Test3 {

public static void main(String[] args) {
Ship3 s1 = new Ship3(0.0, 0.0, 1.0, 0.0, "Ship1");
Ship3 s2 = new Ship3(0.0, 0.0, 2.0, 135.0, "Ship2");
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}

Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Example 3: Major Points

 Format of constructor definitions

 The “this” reference

 Destructors (not!)

14

Constructors
 Constructors are special functions called when a class is

created with new
 Constructors are especially useful for supplying values of

fields
 Constructors are declared through:

public ClassName(args) {
...

}
 Notice that the constructor name must exactly match the

class name
 Constructors have no return type (not even void), unlike a

regular method
 Java automatically provides a zero-argument constructor if

and only if the class doesn’t define it’s own constructor
 That’s why you could say

Ship1 s1 = new Ship1();
in the first example, even though a constructor was never defined

The this Variable
 The this object reference can be used inside any non-

static method to refer to the current object
 The common uses of the this reference are:

1. To pass a reference to the current object as a parameter to other
methods

someMethod(this);

2. To resolve name conflicts
Using this permits the use of instance variables in methods that have

local variables with the same name

 Note that it is only necessary to say this.fieldName
when you have a local variable and a class field with
the same name; otherwise just use fieldName with no
this

15

Destructors

This Page Intentionally Left Blank

After the assignment of objects, e.g. c1 = c2, c1 points to the same
object referenced by c2. The object previously referenced by c1 is no
longer useful. This object is known as garbage. Garbage is automatically
collected by JVM.

TIP: If you know that an object is no longer needed, you can explicitly
assign null to a reference variable for the object. The Java VM will
automatically collect the space if the object is not referenced by any
variable.

Summary
 Class names should start with upper case; method names

with lower case
 Methods must define a return type or void if no result is

returned

 Access fields via objectName.fieldName

 Access methods via objectName.methodName(args)

 If a method accepts no arguments, the arg-list in the method
declaration is empty instead of void as in C

 Static methods do not require an instance of the class; they
can be accessed through the class name

 The this reference refers to the current object

 Class constructors do not declare a return type

 Java performs its own memory management and requires no
destructors

16

Agenda

 Overloading

 Designing “real” classes

 Inheritance

 Advanced topics
 Abstract classes

 Interfaces

 Understanding polymorphism

 Setting a CLASSPATH and using packages

 Visibility modifiers

 Creating on-line documentation using JavaDoc

Example 4: Overloading
class Ship4 {

public double x=0.0, y=0.0, speed=1.0,
direction=0.0;
public String name;
public Ship4(double x, double y,

double speed, double direction,
String name) {

this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;
this.name = name;

}
public Ship4(String name) {

this.name = name;
}
private double degreesToRadians(double degrees) {

return(degrees * Math.PI / 180.0);
}
...

17

Overloading (Continued)
...

public void move() {

move(1);

}

public void move(int steps) {

double angle = degreesToRadians(direction);

x = x + (double)steps * speed * Math.cos(angle);

y = y + (double)steps * speed * Math.sin(angle);

}

public void printLocation() {

System.out.println(name + " is at ("

+ x + "," + y + ").");

}

}

Overloading: Testing and Results
public class Test4 {

public static void main(String[] args) {

Ship4 s1 = new Ship4("Ship1");

Ship4 s2 = new Ship4(0.0, 0.0, 2.0, 135.0,
"Ship2");

s1.move();

s2.move(3);

s1.printLocation();

s2.printLocation();

}

}

 Output:
Ship1 is at (1,0).

Ship2 is at (-4.24264,4.24264).

18

Overloading: Major Points
 Idea

 Allows you to define more than one function or
constructor with the same name
 Overloaded functions or constructors must differ in the

number or types of their arguments (or both), so that Java
can always tell which one you mean

 Simple examples:
 Here are two square methods that differ only in the

type of the argument; they would both be permitted
inside the same class definition.

// square(4) is 16
public int square(int x) { return(x*x); }
// square("four") is "four four"
public String square(String s) {
return(s + " " + s);

}

Example: OOP Design and Usage
/** Ship example to demonstrate OOP in Java. */

public class Ship {

private double x=0.0, y=0.0, speed=1.0,
direction=0.0;

private String name;

…

/** Get current X location. */

public double getX() {

return(x);

}

/** Set current X location. */

public void setX(double x) {

this.x = x;

}

19

Example: Inheritance
public class Speedboat extends Ship {

private String color = "red";

public Speedboat(String name) {
super(name);
setSpeed(20);

}
public Speedboat(double x, double y,

double speed, double direction,
String name, String color) {

super(x, y, speed, direction, name);
setColor(color);

}
public void printLocation() {

System.out.print(getColor().toUpperCase() + " ");
super.printLocation();

}
...

}

Inheritance Example: Testing
public class SpeedboatTest {

public static void main(String[] args) {

Speedboat s1 = new Speedboat("Speedboat1");

Speedboat s2 = new Speedboat(0.0, 0.0, 2.0,
135.0, "Speedboat2", "blue");

Ship s3 = new Ship(0.0, 0.0, 2.0, 135.0, "Ship1");

s1.move();

s2.move();

s3.move();

s1.printLocation();

s2.printLocation();

s3.printLocation();

}

}

20

Inheritance Example: Result
 Compiling and Running:

javac SpeedboatTest.java

 The above calls javac on Speedboat.java and Ship.java
automatically

java SpeedboatTest

 Output
RED Speedboat1 is at (20,0).

BLUE Speedboat2 is at (-1.41421,1.41421).

Ship1 is at (-1.41421,1.41421).

Example: Major Points

 Format for defining subclasses

 Using inherited methods

 Using super(…) for inherited constructors
 Only when the zero-arg constructor is not OK

 Using super.someMethod(…) for inherited
methods
 Only when there is a name conflict

21

Inheritance
 Syntax for defining subclasses

public class NewClass extends OldClass {

...

}

 Nomenclature:
 The existing class is called the superclass, base class or parent class

 The new class is called the subclass, derived class or child class

 Effect of inheritance
 Subclasses automatically have all public fields and methods of the

parent class

 You don’t need any special syntax to access the inherited fields and
methods; you use the exact same syntax as with locally defined fields
or methods.

 You can also add in fields or methods not available in the superclass

 Java doesn’t support multiple inheritance

Inherited constructors and
super(...)

 When you instantiate an object of a subclass, the system
will automatically call the superclass constructor first
 By default, the zero-argument superclass constructor is called

unless a different constructor is specified

 Access the constructor in the superclass through
super(args)

 If super(…) is used in a subclass constructor, then super(…)
must be the first statement in the constructor

 Constructor life-cycle
 Each constructor has three phases:

1. Invoke the constructor of the superclass

2. Initialize all instance variables based on their initialization
statements

3. Execute the body of the constructor

22

Overridden methods and
super.method(...)

 When a class defines a method using the same name,
return type, and arguments as a method in the superclass,
then the class overrides the method in the superclass
 Only non-static methods can be overridden

 If there is a locally defined method and an inherited method
that have the same name and take the same arguments,
you can use the following to refer to the inherited method

super.methodName(...)

 Successive use of super (super.super.methodName) will not
access overridden methods higher up in the hierarchy; super can
only be used to invoke overridden methods from within the class
that does the overriding

Advanced OOP Topics

 Abstract classes

 Interfaces

 Polymorphism details

 CLASSPATH

 Packages

 Visibility other than public or private

 JavaDoc details

23

Abstract Classes
 Idea

 Abstract classes permit declaration of classes that define only
part of an implementation, leaving the subclasses to provide the
details

 A class is considered abstract if at least one
method in the class has no implementation
 An abstract method has no implementation (known in C++ as a

pure virtual function)

 Any class with an abstract method must be declared abstract

 If the subclass overrides all the abstract methods in the
superclass, than an object of the subclass can be instantiated

 An abstract class can contain instance variables
and methods that are fully implemented
 Any subclass can override a concrete method inherited from the

superclass and declare the method abstract

Abstract Classes (Continued)
 An abstract class cannot be instantiated, however

references to an abstract class can be declared

public abstract ThreeDShape {
public abstract void drawShape(Graphics g);
public abstract void resize(double scale);

}

ThreeDShape s1;
ThreeDShape[] arrayOfShapes
= new ThreeDShape[20];

 Classes from which objects can be instantiated are
called concrete classes

24

Interfaces

 Idea
 Interfaces define a Java type consisting purely

of constants and abstract methods

 An interface does not implement any of the
methods, but imposes a design structure on
any class that uses the interface

 A class that implements an interface must
either provide definitions for all methods or
declare itself abstract

Interfaces (Continued)
 Modifiers

 All methods in an interface are implicitly abstract and the
keyword abstract is not required in a method declaration

 Data fields in an interface are implicitly static final
(constants)

 All data fields and methods in an interface are implicitly
public

public interface Interface1 {
DataType CONSTANT1 = value1;
DataType CONSTANT2 = value2;

ReturnType1 method1(ArgType1 arg);
ReturnType2 method2(ArgType2 arg);

}

25

Interfaces (Continued)
 Extending Interfaces

 Interfaces can extend other interfaces, which brings rise to sub-
interfaces and super-interfaces

 Unlike classes, however, an interface can extend more than one
interface at a time

public interface Displayable extends Drawable, Printable
{
// Additonal constants and abstract methods
...

}

 Implementing Multiple Interfaces
 Interfaces provide a form of multiple inheritance because a class

can implement more than one interface at a time
public class Circle extends TwoDShape

implements Drawable, Printable {

...

}

Polymorphism

 “Polymorphic” literally means “of multiple shapes” and
in the context of object-oriented programming,
polymorphic means “having multiple behavior”

 A polymorphic method results in different actions
depending on the object being referenced
 Also known as late binding or run-time binding

 In practice, polymorphism is used in conjunction with
reference arrays to loop through a collection of
objects and to access each object's polymorphic
method

26

Polymorphism: Example
public class PolymorphismTest {

public static void main(String[] args) {

Ship[] ships = new Ship[3];

ships[0] = new Ship(0.0, 0.0, 2.0, 135.0, "Ship1");

ships[1] = new Speedboat("Speedboat1");

ships[2] = new Speedboat(0.0, 0.0, 2.0, 135.0,

"Speedboat2", "blue");

for(int i=0; i<ships.length ; i++) {

ships[i].move();

ships[i].printLocation();

}

}

}

Output
RED Speedboat1 is at (20,0).
BLUE Speedboat2 is at (-1.41421,1.41421).
Ship1 is at (-1.41421,1.41421).

CLASSPATH
 The CLASSPATH environment variable defines a

list of directories in which to look for classes
 Default = current directory and system libraries

 Best practice is to not set this when first learning Java!

 Setting the CLASSPATH
set CLASSPATH = .;C:\java;D:\cwp\echoserver.jar

setenv CLASSPATH .:~/java:/home/cwp/classes/

 The period indicates the current working directory

 Supplying a CLASSPATH
javac –classpath .;D:\cwp WebClient.java

java –classpath .;D:\cwp WebClient

27

Creating Packages
 A package lets you group classes in subdirectories to

avoid accidental name conflicts
 To create a package:

1. Create a subdirectory with the same name as the desired
package and place the source files in that directory

2. Add a package statement to each file

package packagename;

3. Files in the main directory that want to use the package
should include

import packagename.*;

 The package statement must be the first statement in
the file

 If a package statement is omitted from a file, then the
code is part of the default package that has no name

Package Directories
 The package hierarchy reflects the file system

directory structure

 The root of any package must be accessible through
a Java system default directory or through the
CLASSPATH environment variable

Package java.math

28

Visibility Modifiers

 public
 This modifier indicates that the variable or method can be

accessed anywhere an instance of the class is accessible
 A class may also be designated public, which means that any

other class can use the class definition

 The name of a public class must match the filename, thus a file
can have only one public class

 private
 A private variable or method is only accessible from methods

within the same class

 Declaring a class variable private "hides" the data within the
class, making the data available outside the class only through
method calls

Visibility Modifiers, cont.
 protected

 Protected variables or methods can only be accessed by
methods within the class, within classes in the same
package, and within subclasses

 Protected variables or methods are inherited by
subclasses of the same or different package

 [default]
 A variable or method has default visibility if a modifier is

omitted
 Default visibility indicates that the variable or method can

be accessed by methods within the class, and within
classes in the same package

 Default variables are inherited only by subclasses in the
same package

29

Protected Visibility: Example

 Cake, ChocolateCake, and Pie inherit a calories field

 However, if the code in the Cake class had a reference to
object of type Pie, the protected calories field of the Pie
object could not be accessed in the Cake class
 Protected fields of a class are not accessible outside its branch of the

class hierarchy (unless the complete tree hierarchy is in the same
package)

Default Visibility: Example

 Even through inheritance, the fat data field cannot cross the
package boundary
 Thus, the fat data field is accessible through any Dessert, Pie, and

Cake object within any code in the Dessert package

 However, the ChocolateCake class does not have a fat data field, nor
can the fat data field of a Dessert, Cake, or Pie object be accessed
from code in the ChocolateCake class

30

Visibility Summary
 Modifiers

Data Fields and Methods public protected default private

Accessible from same class? yes yes yes yes

Accessible to classes (nonsubclass) yes yes yes no
from the same package?

Accessible to subclass from the yes yes yes no
same package?

Accessible to classes (nonsubclass) yes no no no
from different package?

Accessible to subclasses from yes no no no
different package?

Inherited by subclass in the yes yes yes no
same package?

Inherited by subclass in different yes yes no no
package?

Other Modifiers

 final
 For a class, indicates that it cannot be subclassed
 For a method or variable, cannot be changed at runtime or

overridden in subclasses

 synchronized
 Sets a lock on a section of code or method
 Only one thread can access the same synchronized code at

any given time

 transient
 Variables are not stored in serialized objects sent over the

network or stored to disk
 native

 Indicates that the method is implement using C or C++

31

Comments and JavaDoc
 Java supports 3 types of comments

 // Comment to end of line.

 /* Block comment containing multiple lines.
Nesting of comments in not permitted. */

 /** A JavaDoc comment placed before class
definition and nonprivate methods.
Text may contain (most) HTML tags,
hyperlinks, and JavaDoc tags. */

 JavaDoc
 Used to generate on-line documentation

javadoc Foo.java Bar.java

 JavaDoc 1.4 Home Page
 http://java.sun.com/j2se/1.4/docs/tooldocs/javadoc/

Useful JavaDoc Tags
 @author

 Specifies the author of the document
 Must use javadoc –author ... to generate in output

/** Description of some class ...
*
* @author
* Larry Brown
*/

 @version
 Version number of the document
 Must use javadoc –version ... to generate in output

 @param
 Documents a method argument

 @return
 Documents the return type of a method

32

Useful JavaDoc Command-line
Arguments

 -author
 Includes author information (omitted by default)

 -version
 Includes version number (omitted by default)

 -noindex
 Tells javadoc not to generate a complete index

 -notree
 Tells javadoc not to generate the tree.html class hierarchy

 -link, -linkoffline
 Tells javadoc where to look to resolve links to other packages

-link http://java.sun.com/j2se/1.3/docs/api
-linkoffline http://java.sun.com/j2se/1.3/docs/api

c:\jdk1.3\docs\api

JavaDoc, Example
/** Ship example to demonstrate OOP in Java.
*
* @author
* Larry Brown
* @version 2.0
*/

public class Ship {
private double x=0.0, y=0.0, speed=1.0, direction=0.0;
private String name;

/** Build a ship with specified parameters. */

public Ship(double x, double y, double speed,
double direction, String name) {

setX(x);
setY(y);
setSpeed(speed);
setDirection(direction);
setName(name);

}
...

> javadoc -linkoffline http://java.sun.com/j2se/1.3/docs/api

c:\jdk1.3\docs\api -author -version -noindex -notree Ship.java

33

JavaDoc: Result

Java API and Core Java classes

 java.lang
Contains core Java classes, such as numeric classes,
strings, and objects. This package is implicitly imported to
every Java program.

 java.awt
Contains classes for graphics.

 java.io
Contains classes for input and output
streams and files.

 java.applet
Contains classes for supporting applets.

34

 java.util
Contains many utilities, such as date.

 java.net
Contains classes for supporting network communications.

 java.awt.image
Contains classes for managing bitmap images.

 java.awt.peer
Platform-specific GUI implementation.

 Others:

java.sql
java.rmi

Java API and Core Java classes,

Summary
 Overloaded methods/constructors, except for the

argument list, have identical signatures
 Use extends to create a new class that inherits

from a superclass
 Java does not support multiple inheritance

 An inherited method in a subclass can be
overridden to provide custom behavior
 The original method in the parent class is accessible

through super.methodName(...)

 Interfaces contain only abstract methods and
constants
 A class can implement more than one interface

35

Summary (Continued)
 With polymorphism, binding of a method to an object is

determined at run-time
 The CLASSPATH defines in which directories to look for

classes

 Packages help avoid namespace collisions
 The package statement must be first statement in the source file

before any other statements

 The four visibility types are: public, private, protected,
and default (no modifier)
 Protected members can only cross package boundaries through

inheritance

 Default members are only inherited by classes in the same
package

Thank you for your attention!

1

Java
Input/Output

Agenda
 Handling files and directories through the

File class

 Understanding which streams to use for
character-based or byte-based streams

 Character File input and output

 Formatting output

 Reading data from the console

 Binary File input and output

 Random Access Files

2

File Class
 A File object can refer to either a file or a directory

File file1 = new File("data.txt");
File file1 = new File("C:\java");

 To obtain the path to the current working directory use

System.getProperty("user.dir");

 To obtain the file or path separator use
System.getProperty("file.separator");
System.getProperty("path.separator");

or

File.separator()
File.pathSeparator()

Useful File Methods
 isFile/isDirectory

 canRead/canWrite

 length
 or 0 if nonexistant

 list
 If the File object is a directory, returns a String

array of all the files and directories contained in the
directory; otherwise, null

 mkdir
 Creates a new subdirectory

 delete
 Deletes the directory and returns true if successful

 toURL
 Converts the file path to a URL object

3

Directory Listing, Example
import java.io.*;

public class DirListing {

public static void main(String[] args) {

File dir = new File(System.getProperty("user.dir"));

if(dir.isDirectory()) {

System.out.println("Directory of " + dir);

String[] listing = dir.list();

for(int i=0; i<listing.length; i++) {

System.out.println("\t" + listing[i]);

}

}

}

}

Number of lines in the file
import java.io.*;

public class LineCounts {
public static void main(String[] args) {

if (args.length == 0) {
System.out.println("Usage: java LineCounts <file-names>");
return;

}
for (int i = 0; i < args.length; i++) {

System.out.print(args[i] + ": ");
countLines(args[i]);

}
} // end main()
static void countLines(String fileName) {

BufferedReader in; // A stream for reading from the file.
int lineCount = 0; // Number of lines in the file.
try {

in = new BufferedReader(new FileReader(fileName));
} catch (Exception e) {

System.out.println("Error. Can't open file."); return;
}
try {
while (in.readLine() != null) { lineCount++; }

} catch (Exception e) {
System.out.println("Error. Problem in reading file.");
return; }

System.out.println(lineCount);
}

} // end class LineCounts

4

DirectoryListing, Result
> java DirListing

Directory of C:\java\

DirListing.class

DirListing.java

test

TryCatchExample.class

TryCatchExample.java

XslTransformer.class

XslTransformer.java

Streams
 A stream is an abstraction of the continuous one-way

flow of data.

Program

Output Stream

File

Input Stream

5

Input/Output
 The java.io package provides over 60

input/output classes (streams)
 Streams are either byte-oriented or character-

oriented
 The InputStream/OutputStream class is the root of

all byte stream classes, and the Reader/Writer class is
the root of all character stream classes. The subclasses
of InputStream/OutputStream are analogous to the
subclasses of Reader/Writer

 Use DataStreams for byte-oriented I/O
 Use Readers and Writers for character-based I/O

 Character I/O uses an encoding scheme

 Note: An IOException may occur during any I/O operation

Input/Output
 The data streams (DataInputStream and

DataOutputStream) read and write Java primitive
types in a machine-independent fashion, which
enables you to write a data file in one machine and
read it on another machine that has a different
operating system or file structure.

 Java introduces buffered streams that speed up
input and output by reducing the number of reads
and writes. In the case of input, a bunch of data is
read all at once instead of one byte at a time. In the
case of output, data are first cached into a buffer,
then written all together to the file.

 Using buffered streams is highly recommended.

6

Character File Output
Desired … Methods Construction

Character
FileOuput

FileWriter
write(int char)
write(byte[] buffer)
write(String str)

File file = new File("filename");

FileWriter fout = new FileWriter(file); or

FileWriter fout = new FileWriter("filename");

Buffered
CharacterFile
Output

BufferedWriter
write(int char)
write(char[] buffer)
write(String str)
newLine()

File file = new File("filename");

FileWriter fout = new FileWriter(file);

BufferedWriter bout = new BufferedWriter(fout); or

BufferedWriter bout = new BufferedWriter(
new FileWriter(new File("filename")));

Character Output

PrintWriter
write(int char)
write(char[] buffer)
writer(String str)
writer(String str)
writer(String str)
print(…)
println(…)

FileWriter fout = new FileWriter("filename");

PrintWriter pout = new PrintWriter(fout); or

PrintWriter pout = new PrintWriter(
new FileWriter("filename")); or

PrintWriter pout = new PrintWriter(
new BufferedWriter(
new FileWriter("filename")));

PrintWriter
The data output stream outputs a binary representation
of data, so you cannot view its contents as text. In Java,
you can use print streams to output data into files.
These files can be viewed as text.

The PrintStream and PrintWriter classes provide
this functionality.

Some methods:
void print(String s)
void println(String s)
void print(int i)
void println(int i)
void print(float f)
void println(float f)
void print(double d)
void println(double d)
. . .

7

^itawe matrica od in.dat i nejzino zapi{uvawe vo out.dat.

import java.io.*;
public class Mio {

public static void main(String[] args) {
int i, j, m, n;
double[][] a = new double[100][100];
try {

// file input and output streams
FileReader frs = new FileReader("in.dat");
FileWriter fws = new FileWriter("out.dat");

// Create a stream tokenizer
StreamTokenizer in = new StreamTokenizer(frs);
PrintWriter out = new PrintWriter(fws);

// First two tokens are m and n
in.nextToken(); m=(int)in.nval;
in.nextToken(); n=(int)in.nval;
for(i = 1; i <= m; i++) for(j = 1; j <= n; j++)

{in.nextToken(); a[i][j]=in.nval; }
out.println(m + " " + n);
for(i=1; i <= m; i++) { for(j=1; j<= n; j++)

out.print(a[i][j] + " ");
out.println(); }

frs.close(); fws.close();
}catch (IOException ex) {

System.out.println(ex.getMessage());
}

}
}

FileWriter
 Constructors

 FileWriter(String filename)/FileWriter(File
file)
 Creates a output stream using the default encoding

 FileWriter(String filename, boolean append)
 Creates a new output stream or appends to the existing output

stream (append = true)
 Useful Methods

 write(String str)/write(char[] buffer)
 Writes string or array of chars to the file

 write(int char)
 Writes a character (int) to the file

 flush
 Writes any buffered characters to the file

 close
 Closes the file stream after performing a flush

 getEncoding
 Returns the character encoding used by the file stream

8

CharacterFileOutput, Example
import java.io.*;

public class CharacterFileOutput {
public static void main(String[] args) {

FileWriter out = null;

try {
out = new FileWriter("book.txt");
System.out.println("Encoding: " + out.getEncoding());
out.write("Core Web Programming");
out.close();
out = null;

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();
try {

if (out != null) {
out.close();

}
} catch(IOException ioe2) { }

}
}

}

CharacterFileOutput, Result
> java CharacterFileOutput

Encoding: Cp1252

> type book.txt

Core Web Programming

 Note: Cp1252 is Windows Western Europe / Latin-1
 To change the system default encoding use

System.setProperty("file.encoding", "encoding");

 To specify the encoding when creating the output steam, use an
OutputStreamWriter

OutputStreamWriter out =

new OutputStreamWriter(

new FileOutputStream("book.txt", "8859_1"));

9

Formatting Output
 Use DecimalFormat to control spacing and

formatting
 Java has no printf method

 Approach
1. Create a DecimalFormat object describing the

formatting

DecimalFormat formatter =
new DecimalFormat("#,###.##");

2. Then use the format method to convert values
into formatted strings

formatter.format(24.99);

Formatting Characters

Symbol Meaning
0 Placeholder for a digit.
Placeholder for a digit.

 If the digit is leading or trailing zer, then don't display.
. Location of decimal point.
, Display comma at this location
- Minus sing
E Scientific notation.

 Indicates the location to separate the mattissa from the exponent.
% Multipy the value by 100 and display as a percent.

10

NumFormat, Example
import java.text.*;

public class NumFormat {

public static void main (String[] args) {

DecimalFormat science = new
DecimalFormat("0.000E0");

DecimalFormat plain = new DecimalFormat("0.0000");

for(double d=100.0; d<140.0; d*=1.10) {

System.out.println("Scientific: " +
science.format(d) + " and Plain: " +

plain.format(d));

}

}

}

NumFormat, Result
> java NumFormat

Scientific: 1.000E2 and Plain: 100.0000

Scientific: 1.100E2 and Plain: 110.0000

Scientific: 1.210E2 and Plain: 121.0000

Scientific: 1.331E2 and Plain: 133.1000

11

Character File Input

Desired … Methods Construction

Character File Input

FileReader
read()
read(char[] buffer)
write(byte[] buffer)
write(String str)

File file = new File("filename");

FileReader fin = new FileReader(file); or

FileReader fin = new FileReader("filename");

Buffered
CharacterFile Input

BufferedReader
read()
read(char[] buffer)
readLine()

File file = new File("filename");

FileReader fin = new FileReader(file);

BufferedReader bin = new BufferedReader(fin); or

BufferedReader bin = new BufferedReader(
new FileReader(

new File("filename")));

FileReader
 Constructors

 FileReader(String filename)/FileReader(File file)

 Creates a input stream using the default encoding

 Useful Methods
 read/read(char[] buffer)

 Reads a single character or array of characters

 Returns –1 if the end of the steam is reached

 reset
 Moves to beginning of stream (file)

 skip
 Advances the number of characters

 Note: Wrap a BufferedReader around the FileReader
to read full lines of text using readLine

12

CharacterFileInput, Example
import java.io.*;

public class CharacterFileInput {
public static void main(String[] args) {

File file = new File("book.txt");
FileReader in = null;

if(file.exists()) {
try {

in = new FileReader(file);
System.out.println("Encoding: " + in.getEncoding());
char[] buffer = new char[(int)file.length()];
in.read(buffer);
System.out.println(buffer);
in.close();

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();
...

}
}

}
}

CharacterFileInput, Result
> java CharacterFileInput

Encoding: Cp1252

Core Web Programming

 Alternatively, could read file one line at a time:

BufferedReader in =

new BufferedReader(new FileReader(file));

String lineIn;

while ((lineIn = in.readLine()) != null) {

System.out.println(lineIn);

}

13

Console Input
 To read input from the console, a stream must be

associated with the standard input, System.in
import java.io.*;

public class IOInput{
public static void main(String[] args) {

BufferedReader keyboard;
String line;
try {

System.out.print("Enter value: ");
System.out.flush();
keyboard = new BufferedReader(

new InputStreamReader(System.in));
line = in.readLine();

} catch(IOException e) {
System.out.println("Error reading input!"); }

}
}

}

Displaying a File in a Text Area

 Objective: View a file in a text area. The user enters a
filename in a text field and clicks the View button; the
file is then displayed in a text area.

ViewFile

Run

14

Binary File Input and Output
 Handle byte-based I/O using a

DataInputStream or DataOutputStream

 The readFully method blocks until all bytes are read
or an EOF occurs

 Values are written in big-endian fashion regardless of
computer platform

DataType DataInputStream DataOutputStream

 byte readByte writeByte
 short readShort writeShort
 int readInt writeInt
 long readLong writeLong
 float readFloat writeFloat
 double readDouble writeDouble
 boolean readBoolean writeBoolean
 char readChar writeChar
 String readUTF readUTF
 byte[] readFully

UCS Transformation Format –
UTF-8

 UTF encoding represents a 2-byte Unicode
character in 1-3 bytes
 Benefit of backward compatibility with existing ASCII

data (one-byte over two-byte Unicode)

 Disadvantage of different byte sizes for character
representation

UTF Encoding
 Bit Pattern Representation

 0xxxxxxx ASCII (0x0000 - 0x007F)
 10xxxxxx Second or third byte
 110xxxxx First byte in a 2-byte sequence (0x0080 - 0x07FF)
 1110xxxx First byte in a 3-byte sequence (0x0800 - 0xFFFF)

15

Binary File Output
Desired … Methods Construction

Binary File
Output
bytes

FileOutputStream
write(byte)
write(byte[] buffer)

File file = new File("filename");

FileOutputStream fout = new FileOutputStream(file); or

FileOutputStream fout = new FileOutputStream("filename");

Binary File
Output

byte
short
int
long
float
double
char
boolean

DataOutputStream
writeByte(byte)
writeShort(short)
writeInt(int)
writeLong(long)
writeFloat(float)
writeDouble(double)
writechar(char)
writeBoolean(boolean)
writeUTF(string)
writeBytes(string)
writeChars(string)

File file = new File("filename");

FileOutputStream fout = new FileOutputStream(file);

DataOutputStream dout = new DataOutputStream(fout); or

DataOutputStream dout = new DataOutputStream(
new FileOutputStream(new File("filename")));

Buffered
Binary

File Output

BufferedOutput
Stream

File file = new File("filename");
FileOutputStream fout = new FileOutputStream(file);
DataOutputStream dout = new DataOutputStream(fout);
BufferedOutputStream bout = new BufferedOutputStream(dout);
or
BufferedOutputStream dout = new BufferedOutputStream (
new DataOutputStream (new FileOutputStream (new

File("filename"))));

BinaryFileOutput, Example
import java.io.*;

public class BinaryFileOutput {

public static void main(String[] args) {
int[] primes = { 1, 2, 3, 4, 5, 11, 17, 19 };
DataOutputStream out = null;

try {
out = new DataOutputStream(

new FileOutputStream("primes.dat"));

for(int i=0; i<primes.length; i++) {
out.writeInt(primes[i]);

}
out.close();

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();

}
}

}

16

Binary File Input
Desired … Methods Construction

Binary File
Input
bytes

FileInputStream
read()
read(byte[] buffer)

File file = new File("filename");

FileInputStream fin = new FileInputStream(file); or

FileInputStream fin = new FileInputStream("filename");

Binary File
Input

byte
short
int
long
float
double
char
boolean

DataOutputStream
readByte()
readShort()
readInt()
readLong()
readFloat()
readDouble()
readchar()
readBoolean()
readUTF()
readFully(byte[] buffer)

File file = new File("filename");

FileInputStream fin = new FileInputStream(file);

DataInputStream din = new DataInputStream(fin); or

DataInputStream din = new DataInputStream(
new FileInputStream(new File("filename")));

Buffered
Binary

File Input

BufferedInput
Stream

File file = new File("filename");
FileInputStream fin = new FileInputStream(file);
DataInputStream din = new DataInputStream(fin);
BufferedInputStream bin = new BufferedInputStream(din);
or
BufferedInputStream din = new BufferedInputStream (

new DataInputStream (
new FileInputStream (

new File("filename"))));

BinaryFileInput, Example
import java.io.*;

public class BinaryFileInput {
public static void main(String[] args) {

DataInputStream in = null;
File file = new File("primes.dat");
try {

in = new DataInputStream(
new FileInputStream(file));

int prime;
long size = file.length()/4; // 4 bytes per int
for(long i=0; i<size; i++) {

prime = in.readInt();
System.out.println(prime);

}
in.close();

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();

}
}

}

17

Using Data Streams

TestDataStream

Run

DataInputStream dis

program
mytemp.dat

mytemp.dat

DataOutputStream dos

FileInputStream

FileOutputStream

Random Access Files

 Java provides the RandomAccessFile class to allow
a file to be read and updated at the same time.

 The RandomAccessFile class extends Object and
implements DataInput and DataOutput interfaces.

 Many methods in RandomAccessFile are the same
as those in DataInputStream and
DataOutputStream. For example, readInt(),
readLong(), writeDouble(), readLine(),
writeInt(), and writeLong() can be used in data
input stream or data output stream as well as in
RandomAccessFile streams.

18

RandomAccessFile Methods
 void seek(long pos) throws IOException;

Sets the offset from the beginning of RandomAccessFile
stream to where the next read or write occurs.

 long getFilePointer() IOException;
Returns the current offset, in bytes, from the beginning of the
file to where the next read or write occurs.

 long length()IOException
Returns the length of the file.

 final void writeChar(int v) throws IOException
Writes a character to the file as a two-byte Unicode, with the
high byte written first.

 final void writeChars(String s)
throws IOException

Writes a string to the file as a sequence of characters.

RandomAccessFile:
Constructor

RandomAccessFile raf = new RandomAccessFile(
"test.dat", "rw"); //allows read and write

RandomAccessFile raf = new RandomAccessFile(
"test.dat", "r"); //read only

// 6. Reading/writing random access files
RandomAccessFile rf = new RandomAccessFile("rtest.dat", "rw");

for (int i = 0; i < 10; i++) rf.writeDouble(i*1.414);
rf.close();
rf = new RandomAccessFile("rtest.dat", "rw");
rf.seek(5*8);
rf.writeDouble(47.0001);
rf.close();
rf = new RandomAccessFile("rtest.dat", "r");
for (int i = 0; i < 10; i++)

System.out.println("Value " + i + ": " + rf.readDouble());
rf.close();

19

Example: Using Random
Access Files

 Objective: Create a program that registers
students and displays student information.

Run

TestRandomAccessFile

Summary

 A File can refer to either a file or a directory

 Use Readers and Writers for character-based I/O
 A BufferedReader is required for readLine
 Java provides no printf; use DecimalFormat for formatted

output

 Use DataStreams for byte-based I/O
 Chain a FileOutputStream to a DataOutputStream for binary

file output

 Chain a FileInputStream to a DataInputStream for binary file
input

 Use RandomAccessFile class for random
access to a file

20

Thank you for your attention!

1

Applets and
Basic Graphics

Agenda

 Applet restrictions

 Basic applet and HTML template

 The applet life-cycle

 Customizing applets through HTML parameters

 Methods available for graphical operations

 Loading and drawing images

 Controlling image loading

 Java Plug-In and HTML converter

2

Security Restrictions:
Applets Cannot…

 Read from the local (client) disk
 Applets cannot read arbitrary files

 They can, however, instruct the browser to display pages that
are generally accessible on the Web, which might include
some local files

 Write to the local (client) disk
 The browser may choose to cache certain files, including some

loaded by applets, but this choice is not under direct control of
the applet

 Open network connections other than to the
server from which the applet was loaded
 This restriction prevents applets from browsing behind network

firewalls

Applets Cannot…
 Link to client-side C code or call programs

installed on the browser machine
 Ordinary Java applications can invoke locally installed programs

(with the exec method of the Runtime class) as well as link to local
C/C++ modules (“native” methods)

 These actions are prohibited in applets because there is no way to
determine whether the operations these local programs perform
are safe

 Discover private information about the user
 Applets should not be able to discover the username of the person

running them or specific system information such as current users,
directory names or listings, system software, and so forth

 However, applets can determine the name of the host they are on;
this information is already reported to the HTTP server that
delivered the applet

3

Applet Template
import java.applet.Applet;

import java.awt.*;

public class AppletTemplate extends Applet {

// Variable declarations.

public void init() {

// Variable initializations, image loading, etc.

}

public void paint(Graphics g) {

// Drawing operations.

}

}

 Browsers cache applets: in Netscape, use Shift-RELOAD to force loading
of new applet. In IE, use Control-RELOAD

 Can use appletviewer for initial testing

Applet HTML Template
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

<HTML>

<HEAD>

<TITLE>A Template for Loading Applets</TITLE>

</HEAD>

<BODY>

<H1>A Template for Loading Applets</H1>

<P>

<APPLET CODE="AppletTemplate.class" WIDTH=120 HEIGHT=60>

Error! You must use a Java-enabled browser.

</APPLET>

</BODY>

</HTML>

4

Applet Example
import java.applet.Applet;
import java.awt.*;

/** An applet that draws an image. */

public class JavaJump extends Applet {
private Image jumpingJava; // Instance var declarations here

public void init() { // Initializations here
setBackground(Color.white);
setFont(new Font("SansSerif", Font.BOLD, 18));
jumpingJava = getImage(getDocumentBase(),

"images/Jumping-Java.gif");
add(new Label("Great Jumping Java!"));
System.out.println("Yow! I'm jiving with Java.");

}

public void paint(Graphics g) { // Drawing here
g.drawImage(jumpingJava, 0, 50, this);

}
}

Applet Example: Result
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

<HTML>

<HEAD>

<TITLE>Jumping Java</TITLE>

</HEAD>

<BODY BGCOLOR="BLACK" TEXT="WHITE">

<H1>Jumping Java</H1>

<P>

<APPLET CODE="JavaJump.class"

WIDTH=250

HEIGHT=335>

Sorry, this example requires Java.

</APPLET>

</BODY>

</HTML>

5

Debugging Applets:
The Java Console

 Standard output (from System.out.println) is sent
to the Java Console
 Navigator: open from Window menu

 Communicator: open from Communicator … Tools

 IE 4: open from View menu (enable from Tools …
Internet Options … Advanced screen)

 IE 5/6 with Java plugin: go to Control Panel, click on
Java Plugin, and
select
"Show Console"
option.

Browser Calling Applet
Methods

start

leave the page

stop

init

return to the page

after init

exit

reload enters web page

6

Applications vs. Applets
 Similarities

 Since they both are subclasses of the
Container class, all the user interface
components, layout managers, and event-
handling features are the same for both
classes.

 Differences
 Applications are invoked by the Java
interpreter, and applets are invoked by the
Web browser.

 Applets have security restrictions

 Web browser creates graphical environment for
applets, GUI applications are placed in a
frame.

 You can always convert an applet into an application.

 You can convert an application to an applet as long as

The Applet Life Cycle
public class MyApplet extends Applet
{
public void init()
{ ... }
public void start()
{ ... }
public void paint(Graphics g)
{ ... }
public void stop()
{ ... }
public void destroy()
{ ... }
//your other methods

}

7

The Applet Life Cycle
 public void init()

 Called when applet is first loaded into the browser.
 Not called each time the applet is executed

 Common functions implemented in this method include creating threads,
loading images, setting up user-interface components, and getting
parameters from the <applet> tag in the HTML page.

 public void start()
 Called immediately after init initially
 Reinvoked each time user returns to page after having left it

 Also called to start animation threads and whenever the applet becomes
active again after a period of inactivity (for example, when the user returns
to the page containing the applet after surfing other Web pages).

 public void paint(Graphics g)
 Called by the browser after init and start and this method is where

user-level drawing is placed
 Reinvoked whenever the browser redraws the screen (typically when part

of the screen has been obscured and then reexposed)

The Applet Life Cycle
 public void stop()

 Called when the user leaves the page

 Used to stop animation threads
 When the user leaves the page, any threads the applet has started—but

not completed—will continue to run.

 public void destroy()
 Called when applet is killed by the browser
 Usually, you will not need to override this method unless you need to

release specific resources, such as threads that the applet created.

 Note nonstandard behavior in IE
 In some versions of Internet Explorer, unlike in Netscape, init is

called each time the user returns to the same page, and destroy
is called whenever the user leaves the page containing the
applet. I.e., applet is started over each time (incorrect behavior!).

8

Using Applets

 Objective: Compute mortgages. The applet
enables the user to enter the annual interest
rate, the number of years, and the loan
amount. Click the Compute Mortgage button,
and the applet displays the monthly payment
and the total payment.

MortgageApplet

Run Applet

Useful Applet Methods
 getCodeBase, getDocumentBase

 The URL of the:
Applet file - getCodeBase

HTML file - getDocumentBase

 getParameter
 Retrieves the value from the associated HTML PARAM

element

 getSize
 Returns the Dimension (width, height) of the applet

 getGraphics
 Retrieves the current Graphics object for the applet

 The Graphics object does not persist across paint
invocations

9

Useful Applet Methods
(Continued)

 showDocument (AppletContext method)

getAppletContext().showDocument(...)

 Asks the browser to retrieve and a display a Web page
 Can direct page to a named FRAME cell

 showStatus
 Displays a string in the status line at the bottom of the

browser

 getCursor, setCursor
 Defines the Cursor for the mouse, for example,
CROSSHAIR_CURSOR, HAND_CURSOR, WAIT_CURSOR

Useful Applet Methods
(Continued)

 getAudioClip, play
 Retrieves an audio file from a remote location and plays it

 JDK 1.1 supports .au only. Java 2 also supports MIDI, .aiff
and .wav

 getBackground, setBackground
 Gets/sets the background color of the applet
 SystemColor class provides access to desktop colors

 getForeground, setForeground
 Gets/sets foreground color of applet (default color of

drawing operations)

10

HTML APPLET Element
<APPLET CODE="..." WIDTH=xxx HEIGHT=xxx ...>

...

</APPLET>

 Required Attributes

 CODE
 Designates the filename of the Java class file to load

 Filename interpreted with respect to directory of current
HTML page (default) unless CODEBASE is supplied

 WIDTH and HEIGHT
 Specifies area the applet will occupy

 Values can be given in pixels or as a percentage of the
browser window (width only). Percentages fail in
appletviewer.

HTML APPLET Element
(Continued)

 Other Attributes

 ALIGN, HSPACE, and VSPACE
 Controls position and border spacing. Exactly the same as with

the IMG element

 ARCHIVE
 Designates JAR file (zip file with .jar extension) containing all

classes and images used by applet

 Save considerable time when downloading multiple class files

 NAME
 Names the applet for interapplet and JavaScript communication

 MAYSCRIPT (nonstandard)
 Permits JavaScript to control the applet

11

Setting Applet Parameters
<H1>Customizable HelloWWW Applet</H1>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>

<PARAM NAME="BACKGROUND" VALUE="LIGHT">

Error! You must use a Java-enabled browser.

</APPLET>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>

<PARAM NAME="BACKGROUND" VALUE="DARK">

Error! You must use a Java-enabled browser.

</APPLET>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>

Error! You must use a Java-enabled browser.

</APPLET>

Reading Applet Parameters
 Use getParameter(name) to retrieve the value of the

PARAM element

 The name argument is case sensitive
public void init() {
Color background = Color.gray;
Color foreground = Color.darkGray;
String backgroundType = getParameter("BACKGROUND");
if (backgroundType != null) {
if (backgroundType.equalsIgnoreCase("LIGHT")) {
background = Color.white;
foreground = Color.black;

} else if (backgroundType.equalsIgnoreCase("DARK")) {
background = Color.black;
foreground = Color.white;

}
}
...

}

12

Reading Applet Parameters: Result

Useful Graphics Methods
 drawString(string, left, bottom)

 Draws a string in the current font and color with the bottom
left corner of the string at the specified location

 One of the few methods where the y coordinate refers to
the bottom of shape, not the top. But y values are still with
respect to the top left corner of the applet window

 drawRect(left, top, width, height)
 Draws the outline of a rectangle (1-pixel border) in the

current color

 fillRect(left, top, width, height)
 Draws a solid rectangle in the current color

 drawLine(x1, y1, x2, y2)
 Draws a 1-pixel-thick line from (x1, y1) to (x2, y2)

13

Useful Graphics Methods
(Continued)

 drawOval, fillOval
 Draws an outlined and solid oval, where the arguments

describe a rectangle that bounds the oval

 drawPolygon, fillPolygon
 Draws an outlined and solid polygon whose points are

defined by arrays or a Polygon (a class that stores a
series of points)

 By default, polygon is closed; to make an open polygon
use the drawPolyline method

 drawImage
 Draws an image

 Images can be in JPEG or GIF (including GIF89A) format

Drawing Color

 setColor, getColor
 Specifies the foreground color prior to drawing operation

 By default, the graphics object receives the foreground
color of the window

 AWT has 16 predefined colors (Color.red,
Color.blue, etc.) or create your own color:
new Color(r, g, b)

 Changing the color of the Graphics object affects only
the drawing that explicitly uses that Graphics object

 To make permanent changes, call the applet’s
setForeground method.

14

Graphics Font
 setFont, getFont

 Specifies the font to be used for drawing text

 Determine the size of a character through
FontMetrics (in Java 2 use LineMetrics)

 Setting the font for the Graphics object does not
persist to subsequent invocations of paint

 Set the font of the window (I.e., call the applet’s
setFont method) for permanent changes to the font

 In JDK 1.1, only 5 fonts are available: Serif (aka
TimesRoman), SansSerif (aka Helvetica),
Monospaced (aka Courier), Dialog, and
DialogInput

Graphic Drawing Modes
 setXORMode

 Specifies a color to XOR with the color of underlying pixel
before drawing the new pixel

 Drawing something twice in a row will restore the original
condition

 setPaintMode
 Set drawing mode back to normal (versus XOR)

 Subsequent drawing will use the normal foreground color

 Remember that the Graphics object is reset to the default
each time. So, no need to call g.setPaintMode() in paint
unless you do non-XOR drawing after your XOR drawing

15

Graphics Behavior

 Browser calls repaint method to request
redrawing of applet
 Called when applet first drawn or applet is hidden by

another window and then reexposed

repaint()

update(Graphics g)

paint(Graphics g)

“sets flag”

Clears screen, calls paint

Drawing Images
 Register the Image (from init)

Image image = getImage(getCodeBase(), "file");

Image image = getImage (url);

 Loading is done in a separate thread
 If URL is absolute, then try/catch block is required

 Draw the image (from paint)

g.drawImage(image, x, y, window);

g.drawImage(image, x, y, w, h, window);

 May draw partial image or nothing at all
 Use the applet (this) for the window argument

16

Loading Applet Image from
Relative URL

import java.applet.Applet;

import java.awt.*;

/** An applet that loads an image from a relative URL. */

public class JavaMan1 extends Applet {

private Image javaMan;

public void init() {

javaMan = getImage(getCodeBase(),

"images/Java-Man.gif");

}

public void paint(Graphics g) {

g.drawImage(javaMan, 0, 0, this);

}

}

Image Loading Result

17

Loading Applet Image from
Absolute URL

import java.applet.Applet;
import java.awt.*;
import java.net.*;
...
private Image javaMan;
public void init() {
try {
URL imageFile =
new URL("http://www.corewebprogramming.com"

+ "/images/Java-Man.gif");
javaMan = getImage(imageFile);

} catch(MalformedURLException mue) {
showStatus("Bogus image URL.");
System.out.println("Bogus URL");

}
}

Loading Images in Applications
import java.awt.*;
import javax.swing.*;

class JavaMan3 extends JPanel {
private Image javaMan;

public JavaMan3() {
String imageFile = System.getProperty("user.dir")

+ "/images/Java-Man.gif";
javaMan = getToolkit().getImage(imageFile);
setBackground(Color.white);

}

public void paintComponent(Graphics g) {
super.paintComponent(g);
g.drawImage(javaMan, 0, 0, this);

}
...

18

...

public void paintComponent(Graphics g) {

super.paintComponent(g);

g.drawImage(javaMan, 0, 0, this);

}

public static void main(String[] args) {

JPanel panel = new JavaMan3();

WindowUtilities.setNativeLookAndFeel();

WindowUtilities.openInJFrame(panel, 380, 390);

}

}

 See Swing chapter for WindowUtilities

Loading Images in Applications

19

Controlling Image Loading
 Use prepareImage to start loading image

prepareImage(image, window)

prepareImage(image, width, height, window)

 Starts loading image immediately (on separate thread),
instead of when needed by drawImage

 Particularly useful if the images will not be drawn until the
user initiates some action such as clicking on a button or
choosing a menu option

 Since the applet thread immediately continues execution
after the call to prepareImage, the image may not be
completely loaded before paint is reached

Controlling Image Loading,
Case I: No prepareImage

 Image is not loaded over network until after Display
Image is pressed. 30.4 seconds.

20

Controlling Image Loading,
Case 2: With prepareImage

 Image loaded over network immediately. 0.05 seconds
after pressing button.

Controlling Image Loading:
MediaTracker

 Registering images with a MediaTracker to control image loading

MediaTracker tracker = new MediaTracker(this);

tracker.addImage(image1, 0);

tracker.addImage(image2, 1);

try {

tracker.waitForAll();

} catch(InterruptedException ie) {}

if (tracker.isErrorAny()) {

System.out.println("Error while loading image");

}

 Applet thread will block until all images are loaded

 Each image is loaded in parallel on a separate thread

21

Useful MediaTracker Methods
 addImage

 Register a normal or scaled image with a given ID

 checkAll, checkID
 Checks whether all or a particular registered image is done

loading

 isErrorAny, isErrorID
 Indicates if any or a particular image encountered an error

while loading

 waitForAll, waitForID
 Start loading all images or a particular image
 Method does not return (blocks) until image is loaded

 See TrackerUtil in book for simplified usage of
MediaTracker

Loading Images,
Case I: No MediaTracker

 Image size is wrong, since the image won’t be
done loading, and –1 will be returned

public void init() {

image = getImage(getDocumentBase(), imageName);

imageWidth = image.getWidth(this);

imageHeight = image.getHeight(this);

}

public void paint(Graphics g) {

g.drawImage(image, 0, 0, this);

g.drawRect(0, 0, imageWidth, imageHeight);

}

22

Loading Images,
Case 2: With MediaTracker

 Image is loaded before determining size
public void init() {

image = getImage(getDocumentBase(), imageName);

MediaTracker tracker = new MediaTracker(this);

tracker.addImage(image, 0);

try { tracker.waitForAll();

} catch(InterruptedException ie) {}

...

imageWidth = image.getWidth(this);

imageHeight = image.getHeight(this);

}

public void paint(Graphics g) {

g.drawImage(image, 0, 0, this);

g.drawRect(0, 0, imageWidth, imageHeight);

}

Loading Images: Results

Case 1 Case 2

23

Java Plug-In
 Internet Explorer and Netscape 4 only support

JDK 1.1

 Plugin provides support for the latest JDK
 http://java.sun.com/products/plugin/

 Java 2 Plug-In > 5 Mbytes

 Installing JDK 1.4 or 1.5 installs plugin automatically

 Older browsers require modification of APPLET
element to support OBJECT element (IE) or
EMBED element (Netscape)
 Use HTML Converter to perform the modification

 Not necessary with IE 5/6 or Netscape 6/7

Java Plug-In HTML Converter

24

Java Plug-In HTML Converter

 “Navigator for Windows Only” conversion

<EMBED type="application/x-java-applet;version=1.3"

CODE = "HelloWWW.class" CODEBASE = "applets"

WIDTH = 400 HEIGHT = 40

BACKGROUND = "LIGHT"

scriptable=false

pluginspage="http://java.sun.com/products/plugin/1.3/

plugin-install.html"

>

<NOEMBED>

Error! You must use a Java-enabled browser.

</NOEMBED>

</EMBED>

Java Plug-In HTML Converter
 “Internet Explorer for Windows and Solaris” conversion

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93"

WIDTH = 400 HEIGHT = 40

codebase="http://java.sun.com/products/plugin/1.3/

jinstall-13-win32.cab#Version=1,3,0,0"

>

<PARAM NAME = CODE VALUE = "HelloWWW.class" >

<PARAM NAME = CODEBASE VALUE = "applets" >

<PARAM NAME="type"

VALUE="application/x-java-applet;version=1.3">

<PARAM NAME="scriptable" VALUE="false">

<PARAM NAME = "BACKGROUND" VALUE ="LIGHT">

Error! You must use a Java-enabled browser.

</OBJECT>

25

Summary
 Applet operations are restricted

 Applet cannot read/write local files, call local programs, or
connect to any host other than the one from which it was
loaded

 The init method
 Called only when applet loaded, not each time executed

 This is where you use getParameter to read PARAM data

 The paint method
 Called each time applet is displayed

 Coordinates in drawing operations are wrt top-left corner

 Drawing images
 getImage(getCodeBase(), "imageFile") to “load”

 drawImage(image, x, y, this) to draw

End of Chapter

Thank you for your attention!

1

Java Scripts

Adding Dynamic Content
to Web Pages

Agenda
 Generating HTML Dynamically

 Monitoring User Events

 Basic JavaScript Syntax

 Applications
 Using JavaScript to customize Web pages

 Using JavaScript to make pages more dynamic

 Using JavaScript to validate CGI forms

 Using JavaScript to manipulate HTTP cookies

 Using JavaScript to interact with and control frames

 Controlling applets and calling Java from JavaScript

 Accessing JavaScript from Java

2

JavaScript

JavaScript

Is a programming/scripting
language

Enhances interactivity
and web page
functionality

Is embedded in HTML
documents or stored as
a.js file on the server

Runs on the client
(browser) side

Is an object-oriented
language

Easy to learn
Even for nonprogrammers

JavaScript? Jscript? Java?

JavaScript
Netscape created interpreted
language; started with
Netscape v2.0

Jscript
MS created interpreted language;
started with IE v3.0
Similar to JavaScript

Java
Created by Sun
Compile, object-oriented, platform independent programming language
Used to create Java applets (programs for web browsers)

Both versions have some
inconsistencies and

differences

3

Why Use JavaScript?

To change the web page after
it has been rendered with
button rollovers, dialog boxes,
popup windows, and status
bar text

Validate form input before
form data is sent to a script on
a server; search a small
database

Lots of scripts publicly available;
Easy to use

Code is interpreted not
compiled; don’t need to
declare variables

Increase server
efficiency since the
client processes the
script

Offers good functionality when
ISP doesn’t support CGI

Basic Structures

Objects
Organize information into containers:
window, location, history, document,
form

Properties Data related to objects:
document.bgColor; form.action

Methods Activities you can do with objects:
form.submit; window.open;
document.write

Events Actions that are triggered by a user:
onMouseOver; onSubmit; onClick;

JavaScript is case-sensitive!!!

4

Objects
Base object is a window. Smaller objects are inside the window

Location – current web document URL, protocol, path, and port

History – records all sites a web browser has visited in a session;
also has built in functions used to change contents of current
window

Document – all details of web page; headings, links, anchors, forms,
etc;
functions used to programmatically alter contents of text boxes,
radio buttons, and other form elements

Form – information about forms including ACTION and METHOD and
form elements

Container Objects

Window

Document

Form

5

Properties

Each object has a set of unique properties and methods

location.hostname -- contains the host and domain name or IP address

document.title -- reflects the content on <title> element

document.bgColor – reflects the background colour

form.action -- reflects the server URL

Syntax: Object.Property
Properties are variables that hold values associated with an object

Methods

() are used to pass the argument; multiple arguments are separated by
commas; even when no argument is passed the () are included

document.write(“Hello world”);
document.writeln(“ <h1>COMP4064: Web Technologies</h1>”);
location.toString()
window.alert(“string”) where “string” is a text message
window.open(URL, name)

Syntax: Object.Method()

Methods are programming commands that when called or executed
directly effect an object

6

Generating HTML Dynamically
 Idea

 Script is interpreted as page is loaded, and uses
document.write or document.writeln to
insert HTML at the location the script occurs

 Template
...
<BODY>
Regular HTML

<SCRIPT TYPE="text/javascript">
<!--
Build HTML Here
// -->
</SCRIPT>

More Regular HTML
</BODY>

A Simple Script
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>

<TITLE>First JavaScript Page</TITLE>
</HEAD>

<BODY>
<H1>First JavaScript Page</H1>

<SCRIPT TYPE="text/javascript">
<!--
document.write("<HR>");
document.write("Hello World Wide Web");
document.write("<HR>");
// -->
</SCRIPT>

</BODY>
</HTML>

7

Simple Script, Result

Script Locations

Text files with no HTML code

Stored on the server

Called from SRC
<script language=“javascript”
src=“myscript.js”>
</script>

Statements are read in order
First in the HEAD and then in
the body

You can combine JavaScript
source code with embedded
code

External .js Source File Embedded JavaScript

8

Script Locations: HEAD

<head>
<script language=“javascript”>
<!- -
alert(“Welcome to my web space!”);

//- ->
</script>
</head>

Scripts are embedded in the HEAD or BODY

Statement using the
Alert MethodComments hide the script from older

browsers; // for single line comments

/* */ for multiple line comments

Script Locations: BODY

<head>
<script type=“text/javascript”>
<!- -
function printDate() {document.write(“The date today is: “ +
Date());}
//- ->

</script>

Identify the function

Apply a method to write a literal
and the date taken from the function

9

Extracting Document Info with
JavaScript, Example

<HTML>
<HEAD>

<TITLE>Extracting Document Info with JavaScript</TITLE>
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>Extracting Document Info with JavaScript</H1>
<HR>

<SCRIPT TYPE="text/javascript">
<!--

function referringPage() {
if (document.referrer.length == 0) {
return("<I>none</I>");

} else {
return(document.referrer);

}
}

Extracting Document Info with
JavaScript, Example, cont.

...
document.writeln

("Document Info:\n" +
"\n" +
" URL: " + document.location + "\n" +
" Modification Date: " + "\n" +

document.lastModified + "\n" +
" Title: " + document.title + "\n" +
" Referring page: " + referringPage() +
"\n" +
"");

document.writeln
("Browser Info:" + "\n" +
"" + "\n" +
" Name: " + navigator.appName + "\n" +
" Version: " + navigator.appVersion + "\n"
+
"");

// -->
</SCRIPT>

<HR>
</BODY>
</HTML>

10

Extracting Document Info with
JavaScript, Result

Extracting Document Info with
JavaScript, Result

11

Multi-Browser Compatibility
1. Use Language Attribute
<SCRIPT LANGUAGE="JavaScript">
<!--
languageVersion = "1.0";
// -->
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.1">
<!--
languageVersion = "1.1";
// -->
</SCRIPT>

...

<SCRIPT LANGUAGE="JavaScript1.5">
<!--
languageVersion = "1.5";
// -->
</SCRIPT>

Note: Don’t include that attribute TYPE="text/javascript"

2. Use Vendor/Version Info
 navigator.appName

 navigator.appVersion

User Events, Example

<HTML>
<HEAD>
<TITLE>Simple JavaScript Button</TITLE>

<SCRIPT TYPE="text/javascript">
<!--
function dontClick() {
alert("I told you not to click!");

}
// -->
</SCRIPT>
</HEAD>

<BODY BGCOLOR="WHITE">
<H1>Simple JavaScript Button</H1>

<FORM>
<INPUT TYPE="BUTTON"

VALUE="Don't Click Me"
onClick="dontClick()">

</FORM>
</BODY>
</HTML>

Various onXxx Attributes: onClick, onLoad, onMouseOver, onFocus etc.

12

User Events, Result

Variables
JavaScript is loosely typed – don’t need to specify data types when
you declare variables. A value is only checked for proper type when
it is operated upon.

var varName=value;

keyword
varName is valid
variable name

value is variable’s initial value

varName can contain letters, numbers, and underscore but can’t
begin with a number

var x = 5; // int
x = 5.5; // float
x = "five point five"; // String

Variables declared inside a function are LOCAL to that function

13

JavaScript: Symbolic Date
<SCRIPT language=JavaScript>
<!--

var days = new Array(8);
days[1] = "Sunday";
days[2] = "Monday";
days[3] = "Tuesday";
days[4] = "Wednesday";
days[5] = "Thursday";
days[6] = "Friday";
days[7] = "Saturday";
var months = new

Array(13);
months[1] = "Jan";
months[2] = "Feb";
months[3] = "Mar";
months[4] = "Apr";
months[5] = "May";
months[6] = "Jun";

months[7] = "Jul";
months[8] = "Aug";
months[9] = "Sep";
months[10] = "Oct";
months[11] = "Nov";
months[12] = "Dec";
var dateObj = new

Date(document.lastModified)
var wday = days[dateObj.getDay()+1]
var lmonth =
months[dateObj.getMonth() + 1]
var date = dateObj.getDate()
if (date < 10) date = "0" + date
var fyear = dateObj.getYear()
document.write(wday + ", " + date +
"-" + lmonth + "-" + fyear)
-->
</SCRIPT>

Output: Monday, 17-Jul-2006

JavaScript Syntax: Function
Declarations

1. Declaration Syntax
 Functions are declared using the function reserved word
 The return value is not declared, nor are the types of the

arguments

 Examples:

function square(x) {
return(x * x);

}

function factorial(n) {
if (n <= 0) {
return(1);

} else {
return(n * factorial(n - 1));

}
}

14

JavaScript Syntax: Function
Declarations, cont.

2. First Class Functions
Functions can be passed and assigned to variables

Example

var fun = Math.sin;

alert("sin(pi/2)=" + fun(Math.PI/2));

JavaScript Syntax: Objects and
Classes

1. Fields Can Be Added On-the-Fly
 Adding a new property (field) is a simple matter of

assigning a value to one

 If the field doesn’t already exist when you try to
assign to it, JavaScript will create it automatically.

 For instance:

var test = new Object();

test.field1 = "Value 1"; // Create field1 property

test.field2 = 7; // Create field2 property

15

JavaScript Syntax: Objects and
Classes, cont.

2. You Can Use Literal Notation
 You can create objects using a shorthand “literal”

notation of the form

{ field1:val1, field2:val2, ... , fieldN:valN }

 For example, the following gives equivalent values
to object1 and object2

var object1 = new Object();

object1.x = 3;

object1.y = 4;

object1.z = 5;

object2 = { x:3, y:4, z:5 };

JavaScript Syntax: Objects and
Classes, cont.

3. The "for/in" Statement Iterates Over Properties
 JavaScript, unlike Java or C++, has a construct that

lets you easily retrieve all of the fields of an object

 The basic format is as follows:

for(fieldName in object) {

doSomethingWith(fieldName);

}

 Also, given a field name, you can access the field
via object["field"] as well as via
object.field

16

Field Iteration, Example
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">
<HTML>
<HEAD>

<TITLE>For/In Loops</TITLE>

<SCRIPT TYPE="text/javascript">
<!--

function makeObjectTable(name, object) {
document.writeln("<H2>" + name + "</H2>");
document.writeln("<TABLE BORDER=1>\n" +

" <TR><TH>Field<TH>Value");
for(field in object) {
document.writeln (" <TR><TD>" + field +

"<TD>" + object[field]);
}
document.writeln("</TABLE>");

}
// -->
</SCRIPT>

Field Iteration, Example
...
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>For/In Loops</H1>

<SCRIPT TYPE="text/javascript">
<!--

var test = new Object();
test.field1 = "Field One";
test.field2 = "Field Two";
test.field3 = "Field Three";
makeObjectTable("test", test);

// -->
</SCRIPT>

</BODY>
</HTML>

17

Field Iteration, Result

The for/in statement
iterates over object
properties

JavaScript Syntax: Objects and
Classes

4. A “Constructor” is Just a Function that Assigns to “this”
• JavaScript does not have an exact equivalent to Java’s class

definition

• The closest you get is when you define a function that assigns
values to properties in the this reference

• Calling this function using new binds this to a new Object

• For example, following is a simple constructor for a Ship class

function Ship(x, y, speed, direction) {
this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;

}

18

Constructor, Example
var ship1 = new Ship(0, 0, 1, 90);
makeObjectTable("ship1", ship1);

JavaScript Syntax: Objects and
Classes, cont.

5. Methods Are Function-Valued Properties
 No special syntax for defining methods of objects
 Instead, you simply assign a function to a property

19

Class Methods

 Consider a version of the Ship class that includes a move method

function degreesToRadians(degrees) {
return(degrees * Math.PI / 180.0);

}
function move() {

var angle = degreesToRadians(this.direction);
this.x = this.x + this.speed * Math.cos(angle);
this.y = this.y + this.speed * Math.sin(angle);

}
function Ship(x, y, speed, direction) {

this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;
this.move = move;

}

5. Methods Are Function-Valued Properties
 No special syntax for defining methods of objects
 Instead, you simply assign a function to a property

Class Methods, Result
var ship1 = new Ship(0, 0, 1, 90);

makeObjectTable("ship1 (originally)", ship1);

ship1.move();

makeObjectTable("ship1 (after move)", ship1);

20

JavaScript Syntax: Objects and
Classes, cont.

5. Arrays
 For the most part, you can use arrays in JavaScript a lot like

Java arrays.
 Here are a few examples:
var squares = new Array(5);
for(var i=0; i<squares.length; i++) {

vals[i] = i * i;
}
// Or, in one fell swoop:
var squares = new Array(0, 1, 4, 9, 16);
var array1 = new Array("fee", "fie", "fo", "fum");
// Literal Array notation for creating an array.
var array2 = ["fee", "fie", "fo", "fum"];

 Behind the scenes, however, JavaScript simply represents
arrays as objects with numbered fields
 You can access named fields using either object.field or

object["field"], but numbered fields only via
object[fieldNumber]

Array, Example
var arrayObj = new Object();
arrayObj[0] = "Index zero";
arrayObj[10] = "Index ten";
arrayObj.field1 = "Field One";
arrayObj["field2"] = "Field Two";

makeObjectTable("arrayObj",
arrayObj);

21

Application: Adjusting to the
Browser Window Size

 Netscape 4.0 introduced the
window.innerWidth and
window.innerHeight properties
 Lets you determine the usable size of the current

browser window

Determining Browser Size,
Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Strawberries</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function image(url, width, height) {
return('<IMG SRC="' + url + '"' + ' WIDTH=' + width +

' HEIGHT=' + height + '>');
}
function strawberry1(width) {
return(image("Strawberry1.gif", width,
Math.round(width*1.323)));

}
function strawberry2(width) {
return(image("Strawberry2.gif", width,
Math.round(width*1.155)));

}
// -->
</SCRIPT>
</HEAD>

22

Determining Browser Size,
Example, cont.

...
<SCRIPT TYPE="text/javascript">
<!--
var imageWidth = window.innerWidth/4;
var fontSize = Math.min(7,Math.round(window.innerWidth/100));

document.writeln
('<TABLE>\n' +
' <TR><TD>' + strawberry1(imageWidth) + '\n' +
' <TH>\n' +
' "Doubtless God <I>could</I> have made\n' +
' a better berry, but doubtless He\n' +
' never did."\n' +
' <TD>' + strawberry2(imageWidth) + '\n' +
'</TABLE>');

// -->
</SCRIPT>
<HR>

Strawberries are my favorite garden crop; a fresh ...
</BODY>
</HTML>

Determining Browser Size,
Results

23

Application: Using JavaScript to
Make Pages Dynamic

 Modifying Images Dynamically
 The document.images property contains an

array of Image objects corresponding to each
IMG element in the current document

 To display a new image, simply set the SRC
property of an existing image to a string
representing a different image file

Modifying Images, Example
 The following function changes the first image in a

document

function changeImage() {
document.images[0].src = "images/new-image.gif";

}

 Referring to images by name is easier:

<IMG SRC="cool-image.jpg" NAME="cool"
WIDTH=75 HEIGHT=25>

function improveImage() {
document.images["cool"].src = "way-cool.jpg";

}

24

Modifying Images: A Clickable
Image Button, Example

<SCRIPT TYPE="text/javascript">

<!--

imageFiles = new Array("images/Button1-Up.gif",

"images/Button1-Down.gif",

"images/Button2-Up.gif",

"images/Button2-Down.gif");

imageObjects = new Array(imageFiles.length);

for(var i=0; i<imageFiles.length; i++) {

imageObjects[i] = new Image(150, 25);

imageObjects[i].src = imageFiles[i];

}

function setImage(name, image) {

document.images[name].src = image;

}

Modifying Images: A Clickable
Image Button, Example

function clickButton(name, grayImage) {
var origImage = document.images[name].src;
setImage(name, grayImage);
var resetString =

"setImage('" + name + "', '" + origImage + "')";
setTimeout(resetString, 100);

}
// -->
</SCRIPT>

</HEAD>
...
<A HREF="location1.html"

onClick="clickButton('Button1', 'images/Button1-Down.gif')">
<IMG SRC="images/Button1-Up.gif" NAME="Button1"

WIDTH=150 HEIGHT=25>

<A HREF="location2.html"
onClick="clickButton('Button2', 'images/Button2-Down.gif')">

<IMG SRC="images/Button2-Up.gif" NAME="Button2"
WIDTH=150 HEIGHT=25>

...

25

Highlighting Images Under the
Mouse, Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">

<HTML>

<HEAD>

<TITLE>High Peaks Navigation Bar</TITLE>

<SCRIPT TYPE="text/javascript">

<!—

// Given "Foo", returns "images/Foo.gif".

function regularImageFile(imageName) {

return("images/" + imageName + ".gif");

}

// Given "Bar", returns "images/Bar-Negative.gif".

function negativeImageFile(imageName) {

return("images/" + imageName + "-Negative.gif");

}

Highlighting Images Under the
Mouse, Example, cont.

// Cache image at specified index. E.g., given index 0,
// take imageNames[0] to get "Home". Then preload
// images/Home.gif and images/Home-Negative.gif.

function cacheImages(index) {
regularImageObjects[index] = new Image(150, 25);
regularImageObjects[index].src =
regularImageFile(imageNames[index]);

negativeImageObjects[index] = new Image(150, 25);
negativeImageObjects[index].src =
negativeImageFile(imageNames[index]);

}

imageNames = new Array("Home", "Tibet", "Nepal",
"Austria", "Switzerland");

regularImageObjects = new Array(imageNames.length);
negativeImageObjects = new Array(imageNames.length);

// Put images in cache for fast highlighting.
for(var i=0; i<imageNames.length; i++) {

cacheImages(i);
}

26

Highlighting Images Under the
Mouse, Example, cont.

...
function highlight(imageName) {

document.images[imageName].src = negativeImageFile(imageName);
}
function unHighlight(imageName) {

document.images[imageName].src = regularImageFile(imageName);
}
// -->
</SCRIPT>
</HEAD>
<BODY BGCOLOR="WHITE">
<TABLE BORDER=0 WIDTH=150 BGCOLOR="WHITE"

CELLPADDING=0 CELLSPACING=0>
<TR><TD><A HREF="Tibet.html"

TARGET="Main"
onMouseOver="highlight('Tibet')"
onMouseOut="unHighlight('Tibet')">
<IMG SRC="images/Tibet.gif"

NAME="Tibet"
WIDTH=150 HEIGHT=25 BORDER=0>

...

Highlighting Images Under the
Mouse, Result

27

Making Pages Dynamic:
Moving Layers

 Netscape 4 introduced “layers” – regions that can
overlap and be positioned arbitrarily

 JavaScript 1.2 lets you access layers via the
document.layers array, each element of which is
a Layer object with properties corresponding to the
attributes of the LAYER element

 A named layer can be accessed via
document.layers["layer name"] rather than
by using an index, or simply by using
document.layerName

Moving Layers, Example
 Descriptive overlays slowly “drift” to final spot when button

clicked

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Camps on K-3</TITLE>

<SCRIPT TYPE="text/javascript">
<!--
function hideCamps() {
// Netscape 4 document model.
document.layers["baseCamp"].visibility = "hidden";
document.layers["highCamp"].visibility = "hidden";
// Or document.baseCamp.visibility = "hidden";

}

function moveBaseCamp() {
baseCamp.moveBy(1, 3);
if (baseCamp.pageX < 130) {
setTimeout("moveBaseCamp()", 10);

}
}

28

Moving Layers, Example, cont.
function showBaseCamp() {
hideCamps();
baseCamp = document.layers["baseCamp"];
baseCamp.moveToAbsolute(0, 20);
baseCamp.visibility = "show";
moveBaseCamp();

}
function moveHighCamp() {

highCamp.moveBy(2, 1);
if (highCamp.pageX < 110) {
setTimeout("moveHighCamp()", 10);

}
}

function showHighCamp() {
hideCamps();
highCamp = document.layers["highCamp"];
highCamp.moveToAbsolute(0, 65);
highCamp.visibility = "show";
moveHighCamp();

}
// -->
</SCRIPT>

Moving Layers, Example, cont.
<LAYER ID="highCamp" PAGEX=50 PAGEY=100 VISIBILITY="hidden">

<TABLE>
<TR><TH BGCOLOR="WHITE" WIDTH=50>

High Camp
<TD>

</TABLE>
</LAYER>
<LAYER ID="baseCamp" PAGEX=50 PAGEY=100 VISIBILITY="hidden">

<TABLE>
<TR><TH BGCOLOR="WHITE" WIDTH=50>

Base Camp
<TD>

</TABLE>
</LAYER>

<FORM>
<INPUT TYPE="Button" VALUE="Show Base Camp"

onClick="showBaseCamp()">
<INPUT TYPE="Button" VALUE="Show High Camp"

onClick="showHighCamp()">
<INPUT TYPE="Button" VALUE="Hide Camps"

onClick="hideCamps()">
</FORM>

29

Moving Layers, Result

Moving Layers, Result

30

Application: Using JavaScript to
Validate CGI Forms

1. Accessing Forms
 The document.forms property contains an array

of Form entries contained in the document

 As usual in JavaScript, named entries can be
accessed via name instead of by number, plus
named forms are automatically inserted as
properties in the document object, so any of the
following formats would be legal to access forms

var firstForm = document.forms[0];

// Assumes <FORM NAME="orders" ...>

var orderForm = document.forms["orders"];

// Assumes <FORM NAME="register" ...>

var registrationForm = document.register;

Application: Using JavaScript to
Validate CGI Forms, cont.

2. Accessing Elements within Forms
 The Form object contains an elements property that

holds an array of Element objects

 You can retrieve form elements by number, by
name from the array, or via the property name:

var firstElement = firstForm.elements[0];

// Assumes <INPUT ... NAME="quantity">

var quantityField = orderForm.elements["quantity"];

// Assumes <INPUT ... NAME="submitSchedule">

var submitButton = register.submitSchedule;

31

Checking Form Values
Individually, Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>On-Line Training</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
...
// When the user changes and leaves textfield, check
// that a valid choice was entered. If not, alert
// user, clear field, and set focus back there.
function checkLanguage() {

// or document.forms["langForm"].elements["langField"]
var field = document.langForm.langField;
var lang = field.value;
var prefix = lang.substring(0, 4).toUpperCase();
if (prefix != "JAVA") {
alert("Sorry, '" + lang + "' is not valid.\n" +

"Please try again.");
field.value = ""; // Erase old value
field.focus(); // Give keyboard focus

}
}

Checking Form Values
Individually, Example, cont.

// -->
</SCRIPT>
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>On-Line Training</H1>

<FORM ACTION="cgi-bin/registerLanguage" NAME="langForm">
To see an introduction to any of our on-line training
courses, please enter the name of an important Web
programming language below.
<P>
Language:
<INPUT TYPE="TEXT" NAME="langField"

onFocus="describeLanguage()"
onBlur="clearStatus()"
onChange="checkLanguage()">

<P>
<INPUT TYPE="SUBMIT" VALUE="Show It To Me">
</FORM>

</BODY>
</HTML>

32

Checking Form Values
Individually, Results

Checking Values When Form is
Submitted, Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Camp Registration</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function isInt(string) {

var val = parseInt(string);
return(val > 0);

}
function checkRegistration() {

var ageField = document.registerForm.ageField;
if (!isInt(ageField.value)) {
alert("Age must be an integer.");
return(false);

}
...
// Format looks OK. Submit form.
return(true);

}
// -->
</SCRIPT>

33

Checking Values When Form is
Submitted, Example, cont.

<BODY BGCOLOR="WHITE">
<H1>Camp Registration</H1>

<FORM ACTION="cgi-bin/register"
NAME="registerForm"
onSubmit="return(checkRegistration())">

Age: <INPUT TYPE="TEXT" NAME="ageField"
onFocus="promptAge()"
onBlur="clearStatus()">

Rank: <INPUT TYPE="TEXT" NAME="rankField"

onFocus="promptRank()"
onBlur="clearStatus()">

Serial Number: <INPUT TYPE="TEXT" NAME="serialField"

onFocus="promptSerial()"
onBlur="clearStatus()">

<P>
<INPUT TYPE="SUBMIT" VALUE="Submit Registration">
</FORM>

</BODY>
</HTML>

Checking Values When Form is
Submitted, Results

34

Application: Using JavaScript to
Store and Examine Cookies

1. Using document.cookies

 Set it (one cookie at a time) to store values

document.cookie = "name1=val1";

document.cookie = "name2=val2; expires=" + someDate;

document.cookie = "name3=val3; path=/;

domain=test.com";

 Read it (all cookies in a single string) to access
values

Application: Using JavaScript to
Store and Examine Cookies

2. Parsing Cookies

function cookieVal(cookieName, cookieString) {

var startLoc = cookieString.indexOf(cookieName);

if (startLoc == -1) {

return(""); // No such cookie

}

var sepLoc = cookieString.indexOf("=", startLoc);

var endLoc = cookieString.indexOf(";", startLoc);

if (endLoc == -1) { // Last one has no ";"

endLoc = cookieString.length;

}

return(cookieString.substring(sepLoc+1, endLoc));

}

35

Cookie, Example
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Widgets "R" Us</TITLE>
<SCRIPT TYPE="text/javascript">
<!--

function storeCookies() {
var expires = "; expires=Monday, 01-Dec-01 23:59:59 GMT";
var first = document.widgetForm.firstField.value;
var last = document.widgetForm.lastField.value;
var account = document.widgetForm.accountField.value;
document.cookie = "first=" + first + expires;
document.cookie = "last=" + last + expires;
document.cookie = "account=" + account + expires;

}

// Store cookies and give user confirmation.
function registerAccount() {

storeCookies();
alert("Registration Successful.");

}

Cookie, Example, cont.
function cookieVal(cookieName, cookieString) {

var startLoc = cookieString.indexOf(cookieName);
if (startLoc == -1) {

return(""); // No such cookie
}
var sepLoc = cookieString.indexOf("=", startLoc);
var endLoc = cookieString.indexOf(";", startLoc);
if (endLoc == -1) { // Last one has no ";"

endLoc = cookieString.length;
}
return(cookieString.substring(sepLoc+1, endLoc));

}
function presetValues() {

var firstField = document.widgetForm.firstField;
var lastField = document.widgetForm.lastField;
var accountField = document.widgetForm.accountField;
var cookies = document.cookie;
firstField.value = cookieVal("first", cookies);
lastField.value = cookieVal("last", cookies);
accountField.value = cookieVal("account", cookies);

}
// -->
</SCRIPT>

36

Cookie, Examaple, cont.
</HEAD>
<BODY BGCOLOR="WHITE" onLoad="presetValues()">

<H1>Widgets "R" Us</H1>

<FORM ACTION="servlet/cwp.Widgets"
NAME="widgetForm"
onSubmit="storeCookies()">

First Name: <INPUT TYPE="TEXT" NAME="firstField">

Last Name: <INPUT TYPE="TEXT" NAME="lastField">

Account Number: <INPUT TYPE="TEXT" NAME="accountField">

Widget Name: <INPUT TYPE="TEXT" NAME="widgetField">

<INPUT TYPE="BUTTON" VALUE="Register Account"

onClick="registerAccount()">
<INPUT TYPE="SUBMIT" VALUE="Submit Order">

</FORM>
</BODY>
</HTML>

Cookie, Example, Result

37

Application: Using JavaScript to
Interact with Frames

 Idea
 The default Window object contains a frames

property holding an array of frames (other
Window objects) contained by the current
window or frame.
 It also has parent and top properties referring to the

directly enclosing frame or window and the top-level
window, respectively.

 All of the properties of Window can be applied to any of
these entries.

Displaying a URL in a Particular
Frame, Example

 ShowURL.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">

<HTML>

<HEAD>

<TITLE>Show a URL</TITLE>

</HEAD>

<FRAMESET ROWS="150, *">

<FRAME SRC="GetURL.html" NAME="inputFrame">

<FRAME SRC="DisplayURL.html" NAME="displayFrame">

</FRAMESET>

</HTML>

38

Displaying a URL in a Particular
Frame, Example, cont.

 GetURL.html
<HTML>
<HEAD>

<TITLE>Choose a URL</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function showURL() {

var url = document.urlForm.urlField.value;
// or parent.frames["displayFrame"].location = url;
parent.displayFrame.location = url;

}

function preloadUrl() {
if (navigator.appName == "Netscape") {
document.urlForm.urlField.value =
"http://home.netscape.com/";

} else {
document.urlForm.urlField.value =
"http://www.microsoft.com/";

}
}
...

Displaying a URL in a Particular
Frame, Example, cont.

 GetURL.html, cont.

<BODY BGCOLOR="WHITE" onLoad="preloadUrl()">

<H1 ALIGN="CENTER">Choose a URL</H1>

<CENTER>

<FORM NAME="urlForm">

URL: <INPUT TYPE="TEXT" NAME="urlField" SIZE=35>

<INPUT TYPE="BUTTON" VALUE="Show URL"

onClick="showURL()">

</FORM>

</CENTER>

</BODY>

</HTML>

39

Displaying a URL in a Particular
Frame, Result

Displaying a URL in a Particular
Frame, Result, cont.

40

Giving a Frame the Input Focus,
Example

 If JavaScript is manipulating the frames, the fix
is easy: just add a call to focus in showUrl:
function showURL() {

var url = document.urlForm.urlField.value;

parent.displayFrame.location = url;

// Give frame the input focus

parent.displayFrame.focus();

}

 Fixing the problem in regular HTML documents
is a bit more tedious
 Requires adding onClick handlers that call focus to

each and every occurrence of A and AREA that
includes a TARGET, and a similar onSubmit handler
to each FORM that uses TARGET

Application: Accessing Java
from JavaScript

1. Idea
 Netscape 3.0 introduced a package called

LiveConnect that allows JavaScript to talk to Java
and vice versa

 Applications:
 Calling Java methods directly.

 In particular, this section shows how to print debugging
messages to the Java console

 Using applets to perform operations for JavaScript
 In particular, this section shows how a hidden applet can be

used to obtain the client hostname, information not otherwise
available to JavaScript

 Controlling applets from JavaScript
 In particular, this section shows how LiveConnect allows user

actions in the HTML part of the page to trigger actions in the
applet

41

Application: Accessing Java
from JavaScript

 Calling Java Methods Directly
 JavaScript can access Java variables and methods

simply by using the fully qualified name. For instance:

java.lang.System.out.println("Hello Console");

 Limitations:
 Can’t perform operations forbidden to applets

 No try/catch, so can’t call methods that throw exceptions

 Cannot write methods or create subclasses

Controlling Applets from
JavaScript, Example

 MoldSimulation.html, cont.
<BODY BGCOLOR="#C0C0C0">
<H1>Mold Propagation Simulation</H1>

<APPLET CODE="RandomCircles.class" WIDTH=100 HEIGHT=75>
</APPLET>
<P>
<APPLET CODE="RandomCircles.class" WIDTH=300 HEIGHT=75>
</APPLET>
<P>
<APPLET CODE="RandomCircles.class" WIDTH=500 HEIGHT=75>
</APPLET>

<FORM>
<INPUT TYPE="BUTTON" VALUE="Start Simulations"

onClick="startCircles()">
<INPUT TYPE="BUTTON" VALUE="Stop Simulations"

onClick="stopCircles()">
</FORM>

</BODY>
</HTML>

42

Controlling Applets from
JavaScript, Example

 MoldSimulation.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Mold Propagation Simulation</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function startCircles() {

for(var i=0; i<document.applets.length; i++) {
document.applets[i].startCircles();

}
}

function stopCircles() {
for(var i=0; i<document.applets.length; i++) {
document.applets[i].stopCircles();

}
}
// -->
</SCRIPT>
</HEAD>

Controlling Applets from
JavaScript, Example

 RandomCircles.java

public class RandomCircles extends Applet
implements Runnable {

private boolean drawCircles = false;

public void startCircles() {
Thread t = new Thread(this);
t.start();

}

public void run() {
Color[] colors = { Color.lightGray, Color.gray,

Color.darkGray, Color.black };
int colorIndex = 0;
int x, y;
int width = getSize().width;
int height = getSize().height;

Graphics g = getGraphics();
drawCircles = true;
...

43

Controlling Applets from
JavaScript, Example

 RandomCircles.java, cont.
while(drawCircles) {

x = (int)Math.round(width * Math.random());
y = (int)Math.round(height * Math.random());
g.setColor(colors[colorIndex]);
colorIndex = (colorIndex + 1) % colors.length;
g.fillOval(x, y, 10, 10);
pause(0.1);

}
}

public void stopCircles() {
drawCircles = false;

}

private void pause(double seconds) {
try {

Thread.sleep((int)(Math.round(seconds * 1000.0)));
} catch(InterruptedException ie) {}

}
}

Controlling Applets from
JavaScript, Results

44

Accessing JavaScript from Java
 Steps

1. Obtain and install the JSObject class
– Installed with Netscape 4 (javar40.jar)

– JDK 1.4 includes JSObject in jaws.jar
 See Chapter 24 in

http://java.sun.com/j2se/1.4.1/docs/guide/plugin/developer
_guide/contents.html

2. Import it in your applet
import netscape.javascript.JSObject

3. From the applet, obtain a JavaScript reference to
the current window

JSObject window = JSObject.getWindow(this);

Accessing JavaScript from Java,
cont.

 Steps, cont.
4. Read the JavaScript properties of interest

– Use getMember to access properties of the JSObject
JSObject someForm =

(JSObject)document.getMember("someFormName");

5. Set the JavaScript properties of interest
– Use setMember to set properties of the JSObject

document.setMember("bgColor", "red");

6. Call the JavaScript methods of interest
String[] message = { "An alert message" };
window.call("alert", message);
window.eval("alert(’An alert message’)");

7. Give the applet permission to access its Web page
<APPLET CODE=... WIDTH=... HEIGHT=... MAYSCRIPT>
...
</APPLET>

45

Matching Applet Background
with Web Page, Example

 MatchColor.java
import java.applet.Applet;
import java.awt.*;
import netscape.javascript.JSObject;

public class MatchColor extends Applet {
public void init() {

JSObject window = JSObject.getWindow(this);
JSObject document =

(JSObject)window.getMember("document");
// E.g., "#ff0000" for red
String pageColor = (String)document.getMember("bgColor");
// E.g., parseInt("ff0000", 16) --> 16711680
int bgColor =

Integer.parseInt(pageColor.substring(1, 7), 16);
setBackground(new Color(bgColor));

}
}

Matching Applet Background
with Web Page, Example, cont.

 MatchColor.html

<HTML>

<HEAD>

<TITLE>MatchColor</TITLE>

</HEAD>

<BODY BGCOLOR="RED">

<H1>MatchColor</H1>

<APPLET CODE="MatchColor.class"

WIDTH=300 HEIGHT=300 MAYSCRIPT>

</APPLET>

</BODY>

</HTML>

46

Applet That Controls HTML Form
Values, Example

 See on-line example for Everest.html

Summary

 JavaScript permits you to:
 Customize Web pages based on the situation

 Make pages more dynamic

 Validate HTML form input

 Manipulate cookies

 Control frames

 Integrate Java and JavaScript

 Web resources:

http://www.javascriptsource.com

47

Thank you for your attention!

1

AWT
Components

Agenda
 Basic AWT windows

 Canvas, Panel, Frame, Dialog

 Creating lightweight components

 Closing frames

 Using object serialization to save components
to disk

 Basic AWT user interface controls

 Button, checkbox, radio button, list box,
scrollbars

 Processing events in GUI controls

2

Windows and Layout Management
 Containers

 Most windows are a Container that can hold other
windows or GUI components. Canvas is the major
exception.

 Layout Managers
 Containers have a LayoutManager that

automatically sizes and positions components that
are in the window

 You can change the behavior of the layout manager
or disable it completely. Details in next lecture.

 Events
 Windows and components can receive mouse and

keyboard events, just as in previous lecture.

Windows and Layout Management

 Drawing in Windows
 To draw into a window, make a subclass with its own
paint method

 Having one window draw into another window is not
usually recommended

 Popup Windows
 Some windows (Frame and Dialog) have their own

title bar and border and can be placed at arbitrary
locations on the screen

 Other windows (Canvas an Panel) are embedded
into existing windows only

3

Canvas Class
 Major Purposes

 A drawing area
 A custom Component that does not need to contain

any other Component (e.g. an image button)

 Default Layout Manager - None
 Canvas cannot contain any other Components

 Creating and Using
 Create the Canvas

Canvas canvas = new Canvas();

Or, since you typically create a subclass of Canvas
that has customized drawing via its paint method:

SpecializedCanvas canvas =
new SpecializedCanvas();

Canvas (Continued)
 Creating and Using, cont.

 Size the Canvas
canvas.setSize(width, height);

 Add the Canvas to the current Window
add(canvas);

or depending on the layout manager you can position
the Canvas
add(canvas, BorderLayout.Region_Name);

If you first create a separate window (e.g. a Panel),
then put the Canvas in the window using something
like

someWindow.add(canvas);

4

Canvas Example
import java.awt.*;
/** A Circle component built using a Canvas. */

public class Circle extends Canvas {
private int width, height;

public Circle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius;
height = 2*radius;
setSize(width, height);

}
public void paint(Graphics g) {
g.fillOval(0, 0, width, height);

}
public void setCenter(int x, int y) {
setLocation(x - width/2, y - height/2);

}
}

Canvas Example (Continued)
import java.awt.*;

import java.applet.Applet;

public class CircleTest extends Applet {

public void init() {

setBackground(Color.lightGray);

add(new Circle(Color.white, 30));

add(new Circle(Color.gray, 40));

add(new Circle(Color.black, 50));

}

}

5

Canvases are Rectangular and
Opaque: Example

public class CircleTest2 extends Applet {

public void init() {

setBackground(Color.lightGray);

setLayout(null); // Turn off layout manager.

Circle circle;

int radius = getSize().width/6;

int deltaX = round(2.0*(double)radius/Math.sqrt(2.0));

for (int x=radius; x<6*radius; x=x+deltaX) {

circle = new Circle(Color.black, radius);

add(circle); circle.setCenter(x, x);

}

}

private int round(double num) {

return((int)Math.round(num));

}

}

Canvases are Rectangular and
Opaque: Result

Standard components have an associated peer
(native window system object).

6

Component Class
 Direct Parent Class of Canvas
 Ancestor of all Window Types
 Useful Methods

 getBackground/setBackground
 getForeground/setForeground

Change/lookup the default foreground color
Color is inherited by the Graphics object of the

component
 getFont/setFont

Returns/sets the current font
 Inherited by the Graphics object of the component

 paint
Called whenever the user call repaint or when the

component is obscured and reexposed

Component Class (Continued)
 Useful Methods

 setVisible
 Exposes (true) or hides (false) the component

 Especially useful for frames and dialogs

 setSize/setBounds/setLocation

 getSize/getBounds/getLocation
 Physical aspects (size and position) of the component

 list
 Prints out info on this component and any components

it contains; useful for debugging

 invalidate/validate
 Tell layout manager to redo the layout

 getParent
 Returns enclosing window (or null if there is none)

7

Lightweight Components

 Components that inherit directly from
Component have no native peer

 The underlying component will show through
except for regions directly drawn in paint

 If you use a lightweight component in a
Container that has a custom paint method, call
super.paint or the lightweight components
will not be drawn

Lightweight Components: Example
public class BetterCircle extends Component {

private Dimension preferredDimension;
private int width, height;

public BetterCircle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius; height = 2*radius;
preferredDimension = new Dimension(width, height);
setSize(preferredDimension);

}
public void paint(Graphics g) {

g.setColor(getForeground());
g.fillOval(0, 0, width, height);

}
public Dimension getPreferredSize() {

return(preferredDimension);
}
public Dimension getMinimumSize() {
return(preferredDimension);

}
...

}

8

Lightweight Components: Result

Lightweight components can be transparent

Panel Class
 Major Purposes

 To group/organize components
 A custom component that requires embedded

components
 Default Layout Manager - FlowLayout

 Shrinks components to their preferred (minimum) size
 Places them left to right in centered rows

 Creating and Using
 Create the Panel

Panel panel = new Panel();
 Add Components to Panel

panel.add(someComponent);
panel.add(someOtherComponent);
...

9

Panel (Continued)
 Creating and Using, continued

 Add Panel to Container
 To an external container

 container.add(panel);

 From within a container
 add(panel);

 To an external container that is using BorderLayout
 container.add(panel,region);

 Note the lack of an explicit setSize
 The components inside determine the size of a panel; the

panel is no larger then necessary to hold the components

 A panel holding no components has a size of zero

 Note: Applet is a subclass of Panel

No Panels: Example
import java.applet.Applet;

import java.awt.*;

public class ButtonTest1 extends Applet {

public void init() {

String[] labelPrefixes = { "Start", "Stop",
"Pause", "Resume" };

for (int i=0; i<4; i++) {

add(new Button(labelPrefixes[i] + " Thread1"));

}

for (int i=0; i<4; i++) {

add(new Button(labelPrefixes[i] + " Thread2"));

}

}

}

10

No Panels: Result

Panels: Example
import java.applet.Applet;
import java.awt.*;

public class ButtonTest2 extends Applet {
public void init() {
String[] labelPrefixes = { "Start", "Stop",

"Pause", "Resume" };
Panel p1 = new Panel();
for (int i=0; i<4; i++) {
p1.add(new Button(labelPrefixes[i] + " Thread1"));

}
Panel p2 = new Panel();
for (int i=0; i<4; i++) {
p2.add(new Button(labelPrefixes[i] + " Thread2"));

}
add(p1);
add(p2);

}
}

11

Panels: Result

Container Class
 Ancestor of all Window Types Except Canvas

 Inherits all Component Methods

 Useful Container Methods
 add

 Add a component to the container (in the component array)

 If using BorderLayout, you can also specify in which region to
place the component

 remove
 Remove the component from the window (container)

 getComponents
 Returns an array of components in the window

 Used by layout managers

 setLayout
 Changes the layout manager associated with the window

12

Frame Class
 Major Purpose

 A stand-alone window with its own title and menu bar,
border, cursor, and icon image

 Can contain other GUI components
 Default LayoutManager: BorderLayout

 BorderLayout
 Divides the screen into 5 regions: North, South, East,

West, and Center
 To switch to the applet’s layout manager use

 setLayout(new FlowLayout());

 Creating and Using – Two Approaches:
 A fixed-size Frame
 A Frame that stretches to fit what it contains

Creating a Fixed-Size Frame
 Approach

Frame frame = new Frame(titleString);
frame.add(somePanel,BorderLayout.CENTER);
frame.add(otherPanel, BorderLayout.NORTH);
...
frame.setSize(width, height);
frame.setVisible(true);

 Note: be sure you pop up the frame last
 Odd behavior results if you add components to a window

that is already visible (unless you call doLayout on the
frame)

13

Creating a Frame that Stretches to
Fit What it Contains

 Approach
Frame frame = new Frame(titleString);

frame.setLocation(left, top);

frame.add(somePanel, BorderLayout.CENTER);

...

frame.pack();

frame.setVisible(true);

 Again, be sure to pop up the frame after adding
the components

Frame Example 1
 Creating the Frame object in main

public class FrameExample1 {
public static void main(String[] args) {
Frame f = new Frame("Frame Example 1");
f.setSize(400, 300);
f.setVisible(true);

}
}

14

Frame Example 2

 Using a Subclass of Frame

public class FrameExample2 extends Frame {
public FrameExample2() {
super("Frame Example 2");
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new FrameExample2();

}
}

A Closeable Frame
import java.awt.*;
import java.awt.event.*;

public class CloseableFrame extends Frame {

public CloseableFrame(String title) {
super(title);
enableEvents(AWTEvent.WINDOW_EVENT_MASK);

}

public void processWindowEvent(WindowEvent event){
super.processWindowEvent(event); // Handle listeners
if (event.getID() == WindowEvent.WINDOW_CLOSING){
System.exit(0);

}
}

}
 If a Frame is used in an Applet, use dispose instead of
System.exit(0)

15

Dialog Class

 Major Purposes
 A simplified Frame (no cursor, menu, icon image).

 A modal Dialog that freezes interaction with other AWT
components until it is closed

 Default LayoutManager: BorderLayout

 Creating and Using
 Similar to Frame except constructor takes two additional

arguments: the parent Frame and a boolean specifying
whether or not it is modal
Dialog dialog =

new Dialog(parentFrame, titleString, false);

Dialog modalDialog =

new Dialog(parentFrame, titleString, true);

A Confirmation Dialog
class Confirm extends Dialog

implements ActionListener {
private Button yes, no;

public Confirm(Frame parent) {
super(parent, "Confirmation", true);
setLayout(new FlowLayout());
add(new Label("Really quit?"));
yes = new Button("Yes");
yes.addActionListener(this);
no = new Button("No");
no.addActionListener(this);
add(yes);
add(no);
pack();
setVisible(true);

}

16

A Confirmation Dialog
(Continued)

public void actionPerformed(ActionEvent
event) {

if (event.getSource() == yes) {
System.exit(0);

} else {
dispose();

}
}

}

Using Confirmation Dialog
public class ConfirmTest extends Frame {

public static void main(String[] args) {

new ConfirmTest();

}

public ConfirmTest() {

super("Confirming QUIT");

setSize(200, 200);

addWindowListener(new ConfirmListener());

setVisible(true);

}

public ConfirmTest(String title) {

super(title);

}

17

Using Confirmation Dialog
(Continued)

private class ConfirmListener extends
WindowAdapter {

public void windowClosing(WindowEvent event) {

new Confirm(ConfirmTest.this);

}

}

}

A Confirmation Dialog: Result

Modal dialogs freeze interaction with all other Java components

18

Serializing Windows

 Serialization of Objects
 Can save state of serializable objects to disk

 Can send serializable objects over the network

 All objects must implement the Serializable
interface
 The interface is a marker; doesn’t declare any methods
 Declare data fields not worth saving as transient

 All AWT components are serializable

Serialization,
Writing a Window to Disk

try {

File saveFile = new File("SaveFilename");

FileOutputStream fileOut =

new FileOutputStream(saveFile);

ObjectOutputStream out =

new ObjectOutputStream(fileOut);

out.writeObject(someWindow);

out.flush();

out.close();

} catch(IOException ioe) {

System.out.println("Error saving window: " +
ioe);

}

19

Serialization,
Reading a Window from Disk
try {

File saveFile = new File("SaveFilename");

FileInputStream fileIn =

new FileInputStream(saveFile);

ObjectInputStream in =

new ObjectInputStream(fileIn);

someWindow = (WindowType)in.readObject();

doSomethingWith(someWindow); // E.g. setVisible.

} catch(IOException ioe) {

System.out.println("Error reading file: " +
ioe);

} catch(ClassNotFoundException cnfe) {

System.out.println("No such class: " + cnfe);

}

AWT GUI Controls

 Automatically drawn - you don’t override paint

 Positioned by layout manager

 Use native window-system controls (widgets)

 Controls adopt look and feel of underlying
window system

 Higher level events typically used
 For example, for buttons you don’t monitor mouse

clicks, since most OS’s also let you trigger a button by
hitting RETURN when the button has the keyboard
focus

20

GUI Event Processing
 Decentralized Event Processing

 Give each component its own event-handling methods

 The user of the component doesn’t need to know
anything about handling events

 The kind of events that the component can handle will
need to be relatively independent of the application that
it is in

 Centralized Event Processing
 Send events for multiple components to a single

listener
 The (single) listener will have to first determine from

which component the event came before determining
what to do about it

Decentralized Event Processing:
Example

import java.awt.*;

public class ActionExample1 extends CloseableFrame {
public static void main(String[] args) {
new ActionExample1();

}

public ActionExample1() {
super("Handling Events in Component");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
add(new SetSizeButton(300, 200));
add(new SetSizeButton(400, 300));
add(new SetSizeButton(500, 400));
setSize(400, 300);
setVisible(true);

}
}

21

Decentralized Event Processing:
Example (Continued)

import java.awt.*;
import java.awt.event.*;

public class SetSizeButton extends Button
implements ActionListener {

private int width, height;

public SetSizeButton(int width, int height) {
super("Resize to " + width + "x" + height);
this.width = width;
this.height = height;
addActionListener(this);

}
public void actionPerformed(ActionEvent event) {
Container parent = getParent();
parent.setSize(width, height);
parent.invalidate();
parent.validate();

}
}

Decentralized Event Processing:
Result

22

Centralized Event Processing,
Example

import java.awt.*;

import java.awt.event.*;

public class ActionExample2 extends CloseableFrame

implements ActionListener {

public static void main(String[] args) {

new ActionExample2();

}

private Button button1, button2, button3;

public ActionExample2() {

super("Handling Events in Other Object");

setLayout(new FlowLayout());

setFont(new Font("Serif", Font.BOLD, 18));

button1 = new Button("Resize to 300x200");

button1.addActionListener(this);
add(button1);

Centralized Event Processing:
Example (Continued)

...
setSize(400, 300);
setVisible(true);

}

public void actionPerformed(ActionEvent event) {
if (event.getSource() == button1) {

updateLayout(300, 200);
} else if (event.getSource() == button2) {

updateLayout(400, 300);
} else if (event.getSource() == button3) {

updateLayout(500, 400);
}

}

private void updateLayout(int width, int height) {
setSize(width, height);
invalidate();
validate();

}
}

23

Buttons

 Constructors
 Button()

Button(String buttonLabel)
 The button size (preferred size) is based on the height and

width of the label in the current font, plus some extra space
determined by the OS

 Useful Methods
 getLabel/setLabel

 Retrieves or sets the current label
 If the button is already displayed, setting the label does not

automatically reorganize its Container

 The containing window should be invalidated and
validated to force a fresh layout
someButton.setLabel("A New Label");
someButton.getParent().invalidate();
someButton.getParent().validate();

Buttons (Continued)
 Event Processing Methods

 addActionListener/removeActionListener
 Add/remove an ActionListener that processes
ActionEvents in actionPerformed

 processActionEvent
 Low-level event handling

 General Methods Inherited from Component
 getForeground/setForeground

 getBackground/setBackground
 getFont/setFont

24

Button: Example
public class Buttons extends Applet {

private Button button1, button2, button3;

public void init() {

button1 = new Button("Button One");

button2 = new Button("Button Two");

button3 = new Button("Button Three");

add(button1);

add(button2);

add(button3);

}

}

Handling Button Events
 Attach an ActionListener to the Button and

handle the event in actionPerformed
public class MyActionListener

implements ActionListener {

public void actionPerformed(ActionEvent event) {

...

}

}

public class SomeClassThatUsesButtons {

...

MyActionListener listener = new MyActionListener();

Button b1 = new Button("...");

b1.addActionListener(listener);

...

}

25

Checkboxes

 Constructors
 These three constructors apply to checkboxes that

operate independently of each other (i.e., not radio
buttons)

 Checkbox()
 Creates an initially unchecked checkbox with no label

 Checkbox(String checkboxLabel)
 Creates a checkbox (initially unchecked) with the specified

label; see setState for changing it

 Checkbox(String checkboxLabel, boolean state)

 Creates a checkbox with the specified label
 The initial state is determined by the boolean value provided

 A value of true means it is checked

Checkbox, Example
public class Checkboxes extends CloseableFrame {

public Checkboxes() {

super("Checkboxes");

setFont(new Font("SansSerif", Font.BOLD, 18));

setLayout(new GridLayout(0, 2));

Checkbox box;

for(int i=0; i<12; i++) {

box = new Checkbox("Checkbox " + i);

if (i%2 == 0) {

box.setState(true);

}

add(box);

}

pack();

setVisible(true);

}

}

26

Other Checkbox Methods
 getState/setState

 Retrieves or sets the state of the checkbox: checked (true) or
unchecked (false)

 getLabel/setLabel
 Retrieves or sets the label of the checkbox
 After changing the label invalidate and validate the window to

force a new layout
someCheckbox.setLabel("A New Label");
someCheckbox.getParent().invalidate();
someCheckbox.getParent().validate();

 addItemListener/removeItemListener
 Add or remove an ItemListener to process ItemEvents in
itemStateChanged

 processItemEvent(ItemEvent event)
 Low-level event handling

Handling Checkbox Events

 Attach an ItemListener through addItemListener and
process the ItemEvent in itemStateChanged

public void itemStateChanged(ItemEvent event){

...
}

 The ItemEvent class has a getItem method which returns the item
just selected or deselected

 The return value of getItem is an Object so you should cast it to a
String before using it

 Ignore the Event
 With checkboxes, it is relatively common to ignore the select/deselect

event when it occurs

 Instead, you look up the state (checked/unchecked) of the checkbox
later using the getState method of Checkbox when you are ready
to take some other sort of action

27

Checkbox Groups
(Radio Buttons)

 CheckboxGroup Constructors
 CheckboxGroup()

 Creates a non-graphical object used as a “tag” to group
checkboxes logically together

 Checkboxes with the same tag will look and act like radio
buttons

 Only one checkbox associated with a particular tag can be
selected at any given time

 Checkbox Constructors
 Checkbox(String label, CheckboxGroup group,

boolean state)
 Creates a radio button associated with the specified group,

with the given label and initial state
 If you specify an initial state of true for more than one

Checkbox in a group, the last one will be shown selected

CheckboxGroup: Example
import java.applet.Applet;
import java.awt.*;

public class CheckboxGroups extends Applet {
public void init() {
setLayout(new GridLayout(4, 2));
setBackground(Color.lightGray);
setFont(new Font("Serif", Font.BOLD, 16));
add(new Label("Flavor", Label.CENTER));
add(new Label("Toppings", Label.CENTER));
CheckboxGroup flavorGroup = new CheckboxGroup();
add(new Checkbox("Vanilla", flavorGroup, true));
add(new Checkbox("Colored Sprinkles"));
add(new Checkbox("Chocolate", flavorGroup, false));
add(new Checkbox("Cashews"));
add(new Checkbox("Strawberry", flavorGroup, false));
add(new Checkbox("Kiwi"));

}
}

28

CheckboxGroup, Result

By tagging Checkboxes with a CheckboxGroup, the Checkboxes
in the group function as radio buttons

Other Methods for Radio Buttons

 CheckboxGroup
 getSelectedCheckbox

 Returns the radio button (Checkbox) that is currently
selected or null if none is selected

 Checkbox
 In addition to the general methods described in

Checkboxes, Checkbox has the following two
methods specific to CheckboxGroup’s:

 getCheckboxGroup/setCheckboxGroup
 Determines or registers the group associated with the radio

button

 Note: Event-handling is the same as with Checkboxes

29

List Boxes
 Constructors

 List(int rows, boolean multiSelectable)
 Creates a listbox with the specified number of visible rows

(not items)

 Depending on the number of item in the list (addItem or add),
a scrollbar is automatically created

 The second argument determines if the List is multiselectable

 The preferred width is set to a platform-dependent value, and
is typically not directly related to the width of the widest entry

 List()
 Creates a single-selectable list box with a platform-

dependent number of rows and a platform-dependent width

 List(int rows)
 Creates a single-selectable list box with the specified number

of rows and a platform-dependent width

List Boxes: Example
import java.awt.*;
public class Lists extends CloseableFrame {

public Lists() {
super("Lists");
setLayout(new FlowLayout());
setBackground(Color.lightGray);
setFont(new Font("SansSerif", Font.BOLD, 18));
List list1 = new List(3, false);
list1.add("Vanilla");
list1.add("Chocolate");
list1.add("Strawberry");
add(list1);
List list2 = new List(3, true);
list2.add("Colored Sprinkles");
list2.add("Cashews");
list2.add("Kiwi");
add(list2);
pack();
setVisible(true);

}}

30

List Boxes: Result

A list can be single-selectable or multi-selectable

Other List Methods
 add

 Add an item at the end or specified position in the list box

 All items at that index or later get moved down

 isMultipleMode
 Determines if the list is multiple selectable (true) or single

selectable (false)

 remove/removeAll
 Remove an item or all items from the list

 getSelectedIndex
 For a single-selectable list, this returns the index of the selected

item
 Returns –1 if nothing is selected or if the list permits multiple

selections

 getSelectedIndexes
 Returns an array of the indexes of all selected items

 Works for single- or multi-selectable lists
 If no items are selected, a zero-length (but non-null) array is

returned

31

Other List Methods (Continued)

 getSelectedItem
 For a single-selectable list, this returns the label of the selected item

 Returns null if nothing is selected or if the list permits multiple

selections

 getSelectedItems
 Returns an array of all selected items

 Works for single- or multi-selectable lists

 If no items are selected, a zero-length (but non-null) array is
returned

 select
 Programmatically selects the item in the list

 If the list does not permit multiple selections, then the previously
selected item, if any, is also deselected

Handling List Events

 addItemListener/removeItemListener
 ItemEvents are generated whenever an item is

selected or deselected (single-click)
 Handle ItemEvents in itemStateChanged

 addActionListener/removeActionListener
 ActionEvents are generated whenever an item is

double-clicked or RETURN (ENTER) is pressed
while selected

 Handle ActionEvents in actionPerformed

32

Scrollbars and Sliders
 Constructors

 Scrollbar
 Creates a vertical scrollbar
 The “bubble” (or “thumb,” the part that actually moves) size

defaults to 10% of the trough length
 The internal min and max values are set to zero

 Scrollbar(int orientation)
 Similar to above; specify a horizontal (Scrollbar.HORIZONTAL)

or vertical (Scrollbar.VERTICAL) scrollbar

 Scrollbar(int orientation, int initialValue,
int bubbleSize, int min, int max)

 Creates a horizontal or vertical “slider” for interactively selecting
values

 Specify a customized bubble thickness and a specific internal
range of values

 Bubble thickness is in terms of the scrollbar’s range of values,
not in pixels, so if max minus min was 5, a bubble size of 1 would
specify 20% of the trough length

Scollbars: Example
public class Scrollbars extends Applet {
public void init() {
int i;
setLayout(new GridLayout(1, 2));
Panel left = new Panel(), right = new Panel();
left.setLayout(new GridLayout(10, 1));
for(i=5; i<55; i=i+5) {
left.add(new Scrollbar(Scrollbar.HORIZONTAL,

50, i, 0, 100));
}
right.setLayout(new GridLayout(1, 10));
for(i=5; i<55; i=i+5) {
right.add(new Scrollbar(Scrollbar.VERTICAL,

50, i, 0, 100));
}
add(left);
add(right);

}
}

33

Scrollbars: Result

Scrollbars with varying bubble sizes, but constant ranges
and initial values, shown on Windows 98

Handling Scrollbar Events
 AdjustmentListener

 Attach an AdjustmentListener through
addAdjustmentListener and process the
AdjustmentEvent in adjustmentValueChanged

public void adjustmentValueChanged

(AdjustmentEvent event) {

...

}

 Use ScrollPane
 If you are using a Scrollbar only to implement

scrolling, a ScrollPane is much simpler

 JSlider (Swing) is much better

34

Other GUI Controls

 Choice Lists (Combo Boxes)

 Textfields

Other GUI Controls (Continued)

 Text Areas

 Labels

35

Summary
 In the AWT, all windows and graphical components are

rectangular and opaque

 Canvas: drawing area or custom component

 Panel: grouping other components

 Frame: popup window

 Button: handle events with ActionListener

 Checkbox, radio button: handle events with ItemListener

 List box: handle single click with ItemListener,
double click with ActionListener

 To quickly determine the event handlers for a
component, simply look at the online API

 addXxxListener methods are at the top

Thank you for your attention!

1

Layout
Managers

Arranging Elements in Windows

Agenda
 How layout managers simplify interface

design

 Standard layout managers
 FlowLayout, BorderLayout, CardLayout,

GridLayout, GridBagLayout, BoxLayout

 Positioning components manually

 Strategies for using layout managers
effectively

 Using invisible components

2

Layout Managers
 Assigned to each Container

 Give sizes and positions to components in the window

 Helpful for windows whose size changes or that display on
multiple operating systems

 Relatively easy for simple layouts
 But, it is surprisingly hard to get complex layouts with a

single layout manager

 Controlling complex layouts
 Use nested containers (each with its own layout manager)

 Use invisible components and layout manager options

 Write your own layout manager

 Turn some layout managers off and arrange
some things manually

FlowLayout
 Default layout for Panel and Applet

 Behavior
 Resizes components to their preferred size

 Places components in rows left to right, top to bottom

 Rows are centered by default

 Constructors
 FlowLayout()

 Centers each row and keeps 5 pixels between entries in a row and
between rows

 FlowLayout(int alignment)
 Same 5 pixels spacing, but changes the alignment of the rows
 FlowLayout.LEFT, FlowLayout.RIGHT, FlowLayout.CENTER

 FlowLayout(int alignment, int hGap, int vGap)
 Specify the alignment as well as the horizontal and vertical spacing

between components (in pixels)

3

FlowLayout: Example
public class FlowTest extends Applet {

public void init() {

// setLayout(new FlowLayout()); [Default]

for(int i=1; i<6; i++) {

add(new Button("Button " + i));

}

}

}

Testing the FlowLayout
Manager

The components are arranged in the container
from left to right in the order in which they were
added. When one row becomes filled, a new
row is started.

ShowFlowLayout Run

4

BorderLayout
 Default layout for Frame and Dialog

 Behavior
 Divides the Container into five regions

 Each region is identified by a corresponding
BorderLayout constant

 NORTH, SOUTH, EAST, WEST, and CENTER

 NORTH and SOUTH respect the preferred height of the
component

 EAST and WEST respect the preferred width of the
component

 CENTER is given the remaining space

 Is allowing a maximum of five components too
restrictive? Why not?

BorderLayout (Continued)
 Constructors

 BorderLayout()
 Border layout with no gaps between components

 BorderLayout(int hGap, int vGap)
 Border layout with the specified empty pixels between

regions

 Adding Components
 add(component, BorderLayout.REGION)

 Always specify the region in which to add the
component
 CENTER is the default, but specify it explicitly to avoid

confusion with other layout managers

5

BorderLayout: Example
public class BorderTest extends Applet {
public void init() {
setLayout(new BorderLayout());
add(new Button("Button 1"), BorderLayout.NORTH);
add(new Button("Button 2"), BorderLayout.SOUTH);
add(new Button("Button 3"), BorderLayout.EAST);
add(new Button("Button 4"), BorderLayout.WEST);
add(new Button("Button 5"), BorderLayout.CENTER);

}
}

Testing the BorderLayout
Manager

The BorderLayout
manager divides the
window into five areas:
East, South, West, North,
and Center. Components
are added to a
BorderLayout by
using

ShowBorderLayout Run

add(Component,
constraint), where

constraint is

BorderLayout.East,
BorderLayout.South,
BorderLayout.West",
BorderLayout.North", or

BorderLayout.Center.

6

GridLayout
 Behavior

 Divides window into equal-sized rectangles based
upon the number of rows and columns specified

 Items placed into cells left-to-right, top-to-bottom,
based on the order added to the container

 Ignores the preferred size of the component; each
component is resized to fit into its grid cell

 Too few components results in blank cells

 Too many components results in extra columns

GridLayout (Continued)
 Constructors

 GridLayout()
 Creates a single row with one column allocated per

component

 GridLayout(int rows, int cols)
 Divides the window into the specified number of rows and

columns

 Either rows or cols (but not both) can be zero

 GridLayout(int rows, int cols,
int hGap, int vGap)

 Uses the specified gaps between cells

7

GridLayout, Example
public class GridTest extends Applet {
public void init() {
setLayout(new GridLayout(2,3)); // 2 rows, 3

cols
add(new Button("Button One"));
add(new Button("Button Two"));
add(new Button("Button Three"));
add(new Button("Button Four"));
add(new Button("Button Five"));
add(new Button("Button Six"));

}

}

Testing the GridLayout
Manager

The GridLayout manager arranges components
in a grid (matrix) formation with the number of rows
and columns defined by the constructor. The com-
ponents are placed in the grid from left to right start-
ing with the first row, then the second, and so on.

ShowGridLayout Run

8

CardLayout
 Behavior

 Stacks components on top of each other, displaying
the top one

 Associates a name with each component in window
Panel cardPanel;
CardLayout layout new CardLayout();
cardPanel.setLayout(layout);
...
cardPanel.add("Card 1", component1);
cardPanel.add("Card 2", component2);
...
layout.show(cardPanel, "Card 1");
layout.first(cardPanel);
layout.next(cardPanel);

CardLayout, Example

9

GridBagLayout

 Behavior
 Divides the window into grids, without requiring the

components to be the same size
 About three times more flexible than the other standard layout

managers, but nine times harder to use

 Each component managed by a grid bag layout is
associated with an instance of GridBagConstraints
 The GridBagConstraints specifies:

 How the component is laid out in the display area

 In which cell the component starts and ends

 How the component stretches when extra room is available

 Alignment in cells

GridBagLayout: Basic Steps
 Set the layout, saving a reference to it

GridBagLayout layout = new GridBagLayout();
setLayout(layout);

 Allocate a GridBagConstraints object
GridBagConstraints constraints =

new GridBagConstraints();

 Set up the GridBagConstraints for
component 1

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;
constraints.gridheight = height1;

 Add component 1 to the window, including
constraints

add(component1, constraints);

 Repeat the last two steps for each component

10

GridBagConstraints

 Copied when component added to window
 Thus, can reuse the GridBagConstraints

GridBagConstraints constraints =

new GridBagConstraints();

constraints.gridx = x1;

constraints.gridy = y1;

constraints.gridwidth = width1;

constraints.gridheight = height1;

add(component1, constraints);

constraints.gridx = x1;

constraints.gridy = y1;

add(component2, constraints);

GridBagConstraints Fields
 gridx, gridy

 Specifies the top-left corner of the component

 Upper left of grid is located at (gridx, gridy)=(0,0)
 Set to GridBagConstraints.RELATIVE to

auto-increment row/column

GridBagConstraints constraints =

new GridBagConstraints();

constraints.gridx =

GridBagConstraints.RELATIVE;

container.add(new Button("one"), constraints);

container.add(new Button("two"), constraints);

11

GridBagConstraints Fields
(Continued)

 gridwidth, gridheight
 Specifies the number of columns and rows the

Component occupies
constraints.gridwidth = 3;

 GridBagConstraints.REMAINDER lets the
component take up the remainder of the row/column

 weightx, weighty
 Specifies how much the cell will stretch in the x or y

direction if space is left over

constraints.weightx = 3.0;

 Constraint affects the cell, not the component (use fill)

 Use a value of 0.0 for no expansion in a direction

 Values are relative, not absolute

GridBagConstraints Fields
(Continued)

 fill
 Specifies what to do to an element that is smaller than the

cell size
constraints.fill = GridBagConstraints.VERTICAL;

 The size of row/column is determined by the widest/tallest
element in it

 Can be NONE, HORIZONTAL, VERTICAL, or BOTH

 anchor
 If the fill is set to GridBagConstraints.NONE, then the
anchor field determines where the component is placed

constraints.anchor =
GridBagConstraints.NORTHEAST;

 Can be NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, or SOUTHWEST

12

GridBagLayout: Example

GridBagLayout: Example
public GridBagTest() {

setLayout(new GridBagLayout());
textArea = new JTextArea(12, 40); // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");
GridBagConstraints c = new GridBagConstraints();
// Text Area.
c.gridx = 0;
c.gridy = 0;
c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 1.0;
c.fill = GridBagConstraints.BOTH;
c.insets = new Insets(2,2,2,2); //t,l,b,r
add(textArea, c);
...

13

GridBagLayout: Example
(Continued)

// Save As Button.
c.gridx = 0;
c.gridy = 1;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.VERTICAL;
add(bSaveAs,c);

// Filename Input (Textfield).
c.gridx = 1;
c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.BOTH;
add(fileField,c);
...

GridBagLayout: Example
(Continued)

// Exit Button.
c.gridx = 3;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.NONE;
add(bExit,c);

// Filler so Column 1 has nonzero width.
Component filler =
Box.createRigidArea(new Dimension(1,1));

c.gridx = 1;
c.weightx = 1.0;
add(filler,c);
...

}

14

GridBagLayout: Result

Without Box filler at (2,1)With Box filler at (2,1)

Disabling the Layout Manager

 Behavior
 If the layout is set to null, then components must be

sized and positioned by hand

 Positioning components
 component.setSize(width, height)

 component.setLocation(left, top)

 or

 component.setBounds(left, top,
width, height)

15

No Layout Manager: Example
setLayout(null);
Button b1 = new Button("Button 1");
Button b2 = new Button("Button 2");
...
b1.setBounds(0, 0, 150, 50);
b2.setBounds(150, 0, 75, 50);
...
add(b1);
add(b2);
...

Using Layout Managers
Effectively

 Use nested containers
 Rather than struggling to fit your design in a single

layout, try dividing the design into sections

 Let each section be a panel with its own layout
manager

 Turn off the layout manager for some containers

 Adjust the empty space around components
 Change the space allocated by the layout manager
 Override insets in the Container

 Use a Canvas or a Box as an invisible spacer

16

Nested Containers: Example

Nested Containers: Example

public NestedLayout() {

setLayout(new BorderLayout(2,2));

textArea = new JTextArea(12,40); // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");

add(textArea,BorderLayout.CENTER);

// Set up buttons and textfield in bottom panel
JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new GridLayout(2,1));

17

Nested Containers, Example
JPanel subPanel1 = new JPanel();
JPanel subPanel2 = new JPanel();
subPanel1.setLayout(new BorderLayout());
subPanel2.setLayout

(new FlowLayout(FlowLayout.RIGHT,2,2));

subPanel1.add(bSaveAs,BorderLayout.WEST);
subPanel1.add(fileField,BorderLayout.CENTER);
subPanel2.add(bOk);
subPanel2.add(bExit);

bottomPanel.add(subPanel1);
bottomPanel.add(subPanel2);

add(bottomPanel,BorderLayout.SOUTH);
}

Nested Containers: Result

18

Turning Off Layout Manager for
Some Containers: Example

 Suppose that you wanted to arrange a column of buttons (on
the left) that take exactly 40% of the width of the container
setLayout(null);
int width1 = getSize().width*4/10;,
int height = getSize().height;
Panel buttonPanel = new Panel();
buttonPanel.setBounds(0, 0, width1, height);
buttonPanel.setLayout(new GridLayout(6, 1));
buttonPanel.add(new Label("Buttons", Label.CENTER));
buttonPanel.add(new Button("Button One"));
...
buttonPanel.add(new Button("Button Five"));
add(buttonPanel);
Panel everythingElse = new Panel();
int width2 = getSize().width - width1,
everythingElse.setBounds(width1+1, 0, width2, height);

Turning Off Layout Manager for
Some Containers: Result

19

Adjusting Space Around
Components

 Change the space allocated by the layout
manager
 Most LayoutManagers accept a horizontal spacing

(hGap) and vertical spacing (vGap) argument

 For GridBagLayout, change the insets

 Use a Canvas or a Box as an invisible spacer
 For AWT layouts, use a Canvas that does not draw

or handle mouse events as an “empty” component
for spacing.

 For Swing layouts, add a Box as an invisible spacer
to improve positioning of components

Invisible Components in
Box Class

 Rigid areas
 Box.createRigidArea(Dimension dim)

 Creates a two-dimensional invisible Component with a fixed
width and height

Component spacer =

Box.createRigidArea(new Dimension(30, 40));

 Struts
 Box.createHorizontalStrut(int width)

 Box.createVerticalStrut(int width)
 Creates an invisible Component of fixed width and zero

height, and an invisible Component of fixed height and zero
width, respectively

20

Invisible Components in
Box Class (Continued)

 Glue
 Box.createHorizontalGlue()

 Box.createVerticalGlue()
 Create an invisible Component that can expand horizontally

or vertically, respectively, to fill all remaining space

 Box.createGlue()
 Creates a Component that can expand in both directions

 A Box object achieves the glue effect by expressing a
maximum size of Short.MAX_VALUE

 Only apply glue to layout managers that respect the
maximum size of a Component

Invisible Components: Example

21

BoxLayout
 Behavior

 Manager from Swing; available only in Java 2
 Arranges Components either in a horizontal row,
BoxLayout.X_AXIS, or in a vertical column,
BoxLayout.Y_AXIS

 Lays out the components in the order in which they were
added to the Container

 Resizing the container does not cause the components to
relocate

 Unlike the other standard layout managers, the BoxLayout
manager cannot be shared with more than one Container
BoxLayout layout =

new BoxLayout(container,BoxLayout.X_AXIS);

Component Arrangement for
BoxLayout

 Attempts to arrange the components with:
 Their preferred widths (vertical layout), or

 Their preferred heights (horizontal layout)

 Vertical Layout
 If the components are not all the same width,
BoxLayout attempts to expand all the
components to the width of the component with
the largest preferred width

 If expanding a component is not possible
(restricted maximum size), BoxLayout aligns that
component horizontally in the container, according
to the x alignment of the component

22

Component Arrangement for
BoxLayout (Continued)

 Horizontal Layout
 If the components are not all the same height,
BoxLayout attempts to expand all the components to
the height of the tallest component

 If expanding the height of a component is not
possible, BoxLayout aligns that component vertically
in the container, according to the y alignment of the
component.

Component Alignment for
BoxLayout

 Every lightweight Swing component can define
an alignment value from 0.0f to 1.0f
 0.0 represents positioning the component closest to the

axis origin in the container
 1.0 represents positioning the component farthest from

the axis origin in the container

 The Component class predefines five alignment values:
 LEFT_ALIGNMENT (0.0)

 CENTER_ALIGNMENT (0.5)

 RIGHT_ALIGNMENT (1.0)

 TOP_ALIGNMENT (0.0)

 BOTTOM_ALIGNMENT (1.0)

23

Component Alignment for
BoxLayout (Continued)

 Most Swing components have a default
x-axis alignment of center

 Exceptions include JButton, JComboBox, JLabel,
and JMenu, which have x-axis alignment of left

 Set the Component alignment

component.setAlignmentX(Component.Xxx_ALIGNMENT)

component.setAlignmentY(Component.Xxx_ALIGNMENT)

BoxLayout: Example

• All components have a 0.0
(left) alignment

• The label has a 0.0
alignment
• The buttons have a 1.0
(right) alignment

24

Summary
 Default layout managers

 Applet and Panel: FlowLayout
 Frame and Dialog: BorderLayout

 Layout managers respect the preferred size
of the component differently

 GridBagLayout is the most complicated but
most flexible manager
 Use GridBagConstraints to specify the layout of

each component

 Complex layouts can often be simplified
through nested containers

 In AWT use a Canvas as a spacer; in Swing
use a Box as a spacer

Thank you for your attention!

1

Swing
Components

Agenda
 New features

 Basic approach

 Summary of Swing components
 Starting points

 JApplet, JFrame

 Swing equivalent of AWT components

 JLabel, JButton, JPanel, JSlider

 New Swing components
 JColorChooser, JInternalFrame, JOptionPane,

JToolBar, JEditorPane

 Other simple components
 JCheckBox, JRadioButton, JTextField, JTextArea,

JFileChooser

2

New Features
 Many more built-in controls

 Image buttons, tabbed panes, sliders, toolbars, color
choosers, HTML text areas, lists, trees, and tables.

 Increased customization of components
 Border styles, text alignments, and basic drawing features.

Images can be added to almost any control.

 A pluggable “look and feel”
 Not limited to “native” look.

 Many miscellaneous small features
 Built-in double buffering, tool-tips, dockable toolbars,

keyboard accelerators, custom cursors, etc.

 Model-view-controller architecture
 Can change internal representation of trees, lists, tables.

Graphics Class Hierarchy
(Swing)

AWTEvent

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Component
in the javax.swing package

Lightweight

Heavyweight
Classes in the

java.awt package1

LayoutManager

*

3

JComponent

JButton

JMenuItem

JCheckBoxMenuItem

AbstractButton

JComponent

JMenu

.JRadioButtonMenuItem

.JToggleButton JCheckBox

JRadioButton

.JComboBox

.JInternalFrame .JLayeredPane

.JList .JMenuBar .JOptionPane

.JPopupMenu

.JProgressBar

.JPane

.JFileChooser.JScrollBar .JScrollPane

.JSeparator

.JSplitPane

.JSlider .JTabbedPane

.JTable

.JTableHeader

.JTextField.JTextComponent

.JEditorPane

.JTextArea

.JToolBar

.JToolTip

.JTree

.JRootPane

.JPanel

.JPasswordField

.JColorChooser

.JLabel

AWT (Abstract Window Toolkit)
AWTEvent

Font

FontMetrics

Component

Graphics

Object Color

Canvas

Button

TextComponent

Label

List

CheckBoxGroup

CheckBox

Choice

Container Panel Applet

Frame

Dialog FileDialog

Window

TextField

TextArea

MenuComponent MenuItem

MenuBar

Menu

Scrollbar

LayoutManager

4

Basic Components

Applet Dialog Frame

Panel Scroll panel

Split pane Tabbed pane Tool bar

Internal frame Layered pane

Root pane Buttons Combo box

Menu Slider Text fieldsList

5

Label Progress bar Tool tip

Color chooser File chooser

Table Text Tree

Swing vs. AWT Programming
 Naming convention

 All Swing component names begin with a capital J and
follow the format JXxx. E.g., JFrame, JPanel, JApplet,
JDialog, JButton. Many are just AWT names with a J.

 Lightweight components
 Most Swing components are lightweight: formed by

drawing in the underlying window.

 Use of paintComponent for drawing
 Custom drawing code is in paintComponent, not paint.

Double buffering turned on by default.

 New Look and Feel as default
 With Swing, you have to explicitly set the native look.

 Don't mix Swing and AWT in same window

6

Windows Look and Feel

Motif Look and Feel

7

Java Look and Feel

Setting Native Look and Feel
 Most applications should use native look, not

default “Java” look

 Changing is tedious, so use static method

public class WindowUtilities {

public static void setNativeLookAndFeel() {

try {

UIManager.setLookAndFeel(

UIManager.getSystemLookAndFeelClassName());

} catch(Exception e) {

System.out.println("Error setting native LAF: " + e);

}

}

...

8

Whirlwind Tour of Basic
Components

 Starting points
 JApplet, JFrame

 Swing equivalent of AWT components
 JLabel, JButton, JPanel, JSlider

 New Swing components
 JColorChooser, JInternalFrame, JOptionPane,

JToolBar, JEditorPane

 Other simple components
 JCheckBox, JRadioButton, JTextField, JTextArea,

JFileChooser

Starting Point 1: JApplet
 Content pane

 A JApplet contains a content pane in which to add
components. Changing other properties like the layout
manager, background color, etc., also applies to the content
pane. Access the content pane through getContentPane.

 Panels act as smaller containers for grouping user interface components.
It is recommended that you place the user interface components in panels
and place the panels in a frame. You can also place panels in a panel.

 Layout manager
 The default layout manager is BorderLayout (as with Frame

and JFrame), not FlowLayout (as with Applet). BorderLayout
is really layout manager of content pane.

 Look and feel
 The default look and feel is Java (Metal), so you have to

explicitly switch the look and feel if you want the native look.

9

JApplet: Example Code
import java.awt.*;

import javax.swing.*;

public class JAppletExample extends JApplet {

public void init() {

WindowUtilities.setNativeLookAndFeel();

Container content = getContentPane();

content.setBackground(Color.white);

content.setLayout(new FlowLayout());

content.add(new JButton("Button 1"));

content.add(new JButton("Button 2"));

content.add(new JButton("Button 3"));

}

}

JApplet: Example Output

10

Starting Point 2: JFrame
 Content pane

 JFrame uses content pane in same way as does JApplet.
 Frame is a window that is not contained inside another window. Frame is

the basis to contain other user interface components in Java graphical
applications. The Frame class can be used to create windows.

 Auto-close behavior
 JFrames close automatically when you click on the Close button

(unlike AWT Frames). However, closing the last JFrame does not
result in your program exiting the Java application. So, your “main”
JFrame still needs a WindowListener to call System.exit. Or,
alternatively, if using JDK 1.3 or later, you can call setDefault-
CloseOperation(EXIT_ON_CLOSE). This permits the JFrame to
close; however, you won’t be able to complete any house cleaning
as you might in the WindowListener.

 Look and feel
 The default look and feel is Java (Metal)

JFrames

Frame Pull-down Menus

User Interface
Components (UI)

Panel

Panel

Panel

UI

Panel

UI

Panel

UI

Applet

Panel

User Interface
Components

Panel

User Interface
Components

Panel

User Interface
Components

Panel

User Interface
Components

panel

Pull-down Menus

11

JFrame: Example Code
import java.awt.*;

import javax.swing.*;

public class JFrameExample {

public static void main(String[] args) {

WindowUtilities.setNativeLookAndFeel();

JFrame f = new JFrame("This is a test");

f.setSize(400, 150);

Container content = f.getContentPane();

content.setBackground(Color.white);

content.setLayout(new FlowLayout());

content.add(new JButton("Button 1"));

content.add(new JButton("Button 2"));

content.add(new JButton("Button 3"));

f.addWindowListener(new ExitListener());

f.setVisible(true);

}

}

JFrame Helper: ExitListener

import java.awt.*;

import java.awt.event.*;

public class ExitListener extends
WindowAdapter {

public void windowClosing(WindowEvent
event) {

System.exit(0);

}

}

12

JFrame: Example Output

JFrame: Another Example Code

Run

import javax.swing.*;
public class MyFrame
{
public static void main(String[] args)
{
JFrame frame = new JFrame("Test Frame");
frame.setSize(400, 300);
frame.setVisible(true);
// frame.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);

}
}

NOTE: You must have JDK 1.3 to run the slides.

13

Swing Equivalents of AWT
Components

 JLabel
 New features: HTML content images, borders

 JButton
 New features: icons, alignment, mnemonics

 JPanel
 New feature: borders

 JSlider
 New features: tick marks and labels

JLabel
 Main new feature: HTML content

 If text is "<html>...</html>", it gets rendered as HTML

 HTML labels only work in JDK 1.2.2 or later, or in
Swing 1.1.1 or later.

 In JDK 1.2 the label string must begin with <html>, not
<HTML>. It is case-insensitive in JDK 1.3 and 1.4.

 JLabel fonts are ignored if HTML is used. If you use
HTML, all font control must be performed by HTML.

 You must use <P>, not
, to force a line break.

 Other HTML support is spotty.
 Be sure to test each HTML construct you use. Permitting the

user to enter HTML text at runtime is asking for trouble.

 Other new features: images, borders

14

JLabel: Example Code
String labelText =

“<html>WHITE and " +

"GRAY Text</html>";

JLabel coloredLabel =

new JLabel(labelText, JLabel.CENTER);

...

labelText =

“<html>Bold and <I>Italic</I> Text</html>";

JLabel boldLabel =

new JLabel(labelText, JLabel.CENTER);

labelText =

“<html>The Applied Physics Laboratory is..." +

"of the Johns Hopkins University." +

"<P>" + ... "...</html>";

JLabel: Example Output

15

JButton
 Main new feature: icons

1. Create an ImageIcon by passing the ImageIcon
constructor a String representing a GIF or JPG file
(animated GIFs are supported!).
 From an applet, call getImage(getCodeBase()…) normally,

then pass resultant Image to ImageIcon.
2. Pass the ImageIcon to the JButton constructor.

 Alternatively, call setIcon. In fact, there are 7 possible
images (rollover images, images for when button is
depressed, etc.)

 Other features
 HTML content as with JLabel

 Alignment: location of image with respect to text

 Mnemonics: keyboard accelerators that let you use
Alt-someChar to trigger the button.

JButton: Example Code
import java.awt.*;

import javax.swing.*;

public class JButtons extends JFrame {

public static void main(String[] args) {

new JButtons();

}

public JButtons() {

super("Using JButton");

WindowUtilities.setNativeLookAndFeel();

addWindowListener(new ExitListener());

Container content = getContentPane();

content.setBackground(Color.white);

content.setLayout(new FlowLayout());

16

JButton button1 = new JButton("Java");

content.add(button1);

ImageIcon cup = new ImageIcon("images/cup.gif");

JButton button2 = new JButton(cup);

content.add(button2);

JButton button3 = new JButton("Java", cup);

content.add(button3);

JButton button4 = new JButton("Java", cup);

button4.setHorizontalTextPosition

(SwingConstants.LEFT);

content.add(button4);

pack();

setVisible(true);

}

}

JButton: Example Output

17

JPanel
 Main new feature: borders

 Create a Border object by calling
BorderFactory.createXxxBorder.

 Supply the Border object to the JPanel by means of
setBorder.

JPanel p = new JPanel();

p.setBorder(BorderFactory.createTitledBorder("Java"));

 Other features:
 Layout manager settings

 Can pass the layout manager to the JPanel constructor

 Setting preferred size
 There is no JCanvas. If you want JPanel to act like Canvas, call

setPreferredSize.

Standard Borders
 Static methods in BorderFactory

 createEmptyBorder(int top, int left, int bottom, int right)
 Creates an EmptyBorder object that simply adds space

(margins) around the component.

 createLineBorder(Color color)
 createLineBorder(Color color, int thickness)

 Creates a solid-color border

 createTitledBorder(String title)
 createTitledBorder(Border border, String title)

 The border is an etched line unless you explicitly provide a
border style in second constructor.

 createEtchedBorder()
 createEtchedBorder(Color highlight, Color shadow)

 Creates a etched line without the label

18

JPanel: Example Code
public class SixChoicePanel extends JPanel {

public SixChoicePanel(String title, String[] buttonLabels){
super(new GridLayout(3, 2));
setBackground(Color.lightGray);
setBorder(BorderFactory.createTitledBorder(title));
ButtonGroup group = new ButtonGroup();
JRadioButton option;
int halfLength = buttonLabels.length/2;
for(int i=0; i<halfLength; i++) {
option = new JRadioButton(buttonLabels[i]);
group.add(option);
add(option);
option = new RadioButton(buttonLabels[i+halfLength]);
group.add(option);
add(option);

}
}

}

JPanel: Example Output

 Left window uses createLineBorder

 Right window has three SixChoicePanels

19

JSlider
 Basic use

 public JSlider()

 public JSlider(int orientation)

 public JSlider(int min, int max)

 public JSlider(int min, int max, int initialValue)

 public JSlider(int orientation, int min, int max,
int initialValue)

 New features: tick marks and labels
 setMajorTickSpacing

 setMinorTickSpacing

 setPaintTicks

 setPaintLabels (icons allowed as labels)

JSlider: Example Code
JSlider slider1 = new JSlider();
slider1.setBorder(...);
content.add(slider1, BorderLayout.NORTH);
JSlider slider2 = new JSlider();
slider2.setBorder(...);
slider2.setMajorTickSpacing(20);
slider2.setMinorTickSpacing(5);
slider2.setPaintTicks(true);
content.add(slider2, BorderLayout.CENTER);
JSlider slider3 = new JSlider();
slider3.setBorder(...);
slider3.setMajorTickSpacing(20);
slider3.setMinorTickSpacing(5);
slider3.setPaintTicks(true);
slider3.setPaintLabels(true);
content.add(slider3, BorderLayout.SOUTH);

20

JSlider: Example Output
(Windows, Motif, Java LAF)

JColorChooser

 Open
 Call JColorChooser.showDialog

 First argument: parent component

Second argument: title string

 Third argument: initially-selected Color

 Return value
 Selected Color if "OK" chosen

 null if "Cancel" chosen

21

JColorChooser: Example Code
 Button that lets you change color of window

public void actionPerformed(ActionEvent e) {

Color bgColor

= JColorChooser.showDialog

(this,

"Choose Background Color",

getBackground());

if (bgColor != null)

getContentPane().setBackground(bgColor);

}

JColorChooser: Example Output

22

Internal Frames
 MDI: Multiple Document Interface

 Program has one large “desktop” pane that holds all other
windows. The other windows can be iconified (minimized)
and moved around within this desktop pane, but not moved
outside the pane. Furthermore, minimizing the desktop
pane hides all the contained windows as well.

 Examples: Microsoft PowerPoint, Corel Draw, Borland
JBuilder, and Allaire HomeSite

 Swing Support for MDI
 JDesktopPane

 Serves as a holder for the other windows.

 JInternalFrame
 Acts mostly like a JFrame, except that it is constrained to stay

inside the JDesktopPane.

Using JInternalFrame

 Main constructor
 public JInternalFrame(String title,

boolean resizable,
boolean closeable,
boolean maximizable,
boolean iconifiable)

 Other useful methods
 moveToFront

 moveToBack

 setSize (required!)

 setLocation (required!)

23

Internal Frames: Example Code
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class JInternalFrames extends JFrame {
public static void main(String[] args) {
new JInternalFrames();

}
public JInternalFrames() {
super("Multiple Document Interface");
WindowUtilities.setNativeLookAndFeel();
addWindowListener(new ExitListener());
Container content = getContentPane();
content.setBackground(Color.white);

JDesktopPane desktop = new JDesktopPane();
desktop.setBackground(Color.white);
content.add(desktop, BorderLayout.CENTER);
setSize(450, 400);
for(int i=0; i<5; i++) {
JInternalFrame frame
= new JInternalFrame(("Internal Frame " + i),

true, true, true, true);
frame.setLocation(i*50+10, i*50+10);
frame.setSize(200, 150);
frame.setBackground(Color.white);
frame.setVisible(true);
desktop.add(frame);
frame.moveToFront();

}
setVisible(true);

} }

24

Internal Frames: Example Output

JOptionPane
 Very rich class with many options for different

types of dialog boxes.

 Five main static methods
 JOptionPane.showMessageDialog

 Icon, message, OK button

 JOptionPane.showConfirmDialog
 Icon, message, and buttons:

OK, OK/Cancel, Yes/No, or Yes/No/Cancel

 JOptionPane.showInputDialog (2 versions)
 Icon, message, textfield or combo box, buttons

 JOptionPane.showOptionDialog
 Icon, message, array of buttons or other components

25

JOptionPane Message Dialogs
(Windows LAF)

JOptionPane Confirmation Dialogs
(Java LAF)

26

JToolBar
 Acts mostly like a JPanel for buttons

 Dockable: can be dragged and dropped

JEditorPane
 Acts somewhat like a text area

 Can display HTML and, if HyperLinkListener
attached, can follow links

27

Other Simple Swing Components
 JCheckBox

 Note uppercase B
(vs. Checkbox in AWT)

 JRadioButton
 Use a ButtonGroup to link radio buttons

 JTextField
 Just like AWT TextField except that it does not act as

a password field (use JPasswordField for that)

 JTextArea
 Place in JScrollPane if

you want scrolling

 JFileChooser

Summary
 Port simple AWT components to Swing by

adding J to front of class name

 Put custom drawing in paintComponent
 Call super.paintComponent at beginning unless you

turn off double buffering

 Java look and feel is default
 But you almost always want native look and feel

 Frames and applets use content pane
 Don't put anything directly in window

 Most components support borders & icons

 Many new components

28

End of Chapter

Thank you for your attention!

1

Drawing in
Java 2

Agenda

 Overview

 Drawing Shapes

 Paint Styles

 Transparency

 Using Local Fonts

 Stroke Styles

 Coordinate
Transformations

 Requesting
Drawing Accuracy

2

Java 1.1 vs Java 2 Drawing

Java 1.1
public void paint(Graphics g) {
// Set pen parameters
g.setColor(someColor);
g.setFont(someLimitedFont);
// Draw a shape
g.drawString(…);
g.drawLine(…)
g.drawRect(…); // outline
g.fillRect(…); // solid
g.drawPolygon(…); // outline
g.fillPolygon(…); // solid
g.drawOval(…); // outline
g.fillOval(…); // solid
…

}

Java 2
public void paintComponent(Graphics g) {
// Clear off-screen bitmap
super.paintComponent(g);
// Cast Graphics to Graphics2D
Graphics2D g2d = (Graphics2D)g;
// Set pen parameters
g2d.setPaint(fillColorOrPattern);
g2d.setStroke(penThicknessOrPattern);
g2d.setComposite(someAlphaComposite);
g2d.setFont(anyFont);
g2d.translate(…);
g2d.rotate(…);
g2d.scale(…);
g2d.shear(…);
g2d.setTransform(someAffineTransform);
// Create a Shape object
SomeShape s = new SomeShape(…);
// Draw shape
g2d.draw(s); // outline
g2d.fill(s); // solid

}

Java 1.1 Drawing on Panels

JPanel can be used to draw graphics
(including text) and enable user interaction.

To draw in a panel, you create a
new class that extends JPanel and
override the paintComponent method
to tell the panel how to draw
things. You can then display
strings, draw geometric shapes,
and view images on the panel.

3

The Color Class
Color c = new Color(r, g, b);
r, g, and b specify a color by its red, green, and blue components.

Example:

Color c = new Color(128, 100, 100);

You can use the following methods to set the component’s
background and foreground colors:

setBackground(Color c)

setForeground(Color c)
Example:

setBackground(Color.yellow);
setForeground(Color.red);

The Font Class
Font myFont = Font(name, style, size);

Example:

Font myFont = new Font("SansSerif ", Font.BOLD, 16);

Font myFont = new Font("Serif", Font.BOLD+Font.ITALIC, 12);

Seting Fonts:
public void paint(Graphics g)

{

Font myFont = new Font("Times", Font.BOLD, 16);

g.setFont(myFont);

g.drawString("Welcome to Java", 20, 40);

//set a new font

g.setFont(new Font("Courier", Font.BOLD+Font.ITALIC, 12));

g.drawString("Welcome to Java", 20, 70);

}

4

The Font Class: Example
 Objective: Display “Welcome to Java” in different fonts.

TestFontMetrics

Run

(0,0)

(120, 100)

x

 y

(120, 0)

(0, 100)

Drawing Geometric Figures

drawLine(x1, y1, x2, y2);

(x1 , y1)

(x2 , y2)

int[] x = {40, 70, 60, 45, 20};
int[] y = {20, 40, 80, 45, 60};
g.drawPolygon(x, y, x.length);
g.fillPolygon(x, y, x.length);

(x[0], y[0])

(x[1], y[1])

(x[2], y[2])

(x[3], y[3])

(x[4], y[4])

Lines: Polygons:

5

Drawing Geometric Figures

drawRect(x, y, w, h);

fillRect(x, y, w, h);

(x , y)

w

 h

drawRoundRect(x, y, w, h,
aw, ah);

fillRoundRect(x, y, w, h,
aw, ah);

(x , y)

w

 h

 ah

aw

Rectangles:

Drawing Geometric Figures

drawOval(x, y, w, h);

fillOval(x, y, w, h);

(x, y)

w

 h

drawArc(x, y, w, h,
angle1, angle2);

fillArc(x, y, w, h,
angle1, angle2);

(x, y)

w

 h
angle1

angle2

Ovals: Arcs:

6

Example: Drawing a Clock

 Objective: Use drawing and trigonometric methods
to draw a clock showing the specified hour, minute,
and second in a frame

DisplayClock RunDrawClock

From now till end we will
duscuss Java 2 Drawing !!!

Java 2 Drawing Process: Step 1
 Cast Graphics object to Graphics2D

public void paintComponent(Graphics g) {

super.paintComponent(g); // Typical Swing

Graphics2D g2d = (Graphics2D)g;

g2d.doSomeStuff(...);

...

}

 Note
 All methods that return Graphics in Java 1.1 return

Graphics2D in Java 2
 paint, paintComponent

 getGraphics

7

Java 2 Drawing Process: Step 2

 Set pen parameters
 g2d.setPaint(fillColorOrPattern);

 g2d.setStroke(penThicknessOrPattern);

 g2d.setComposite(someAlphaComposite);

 g2d.setFont(someFont);

 g2d.translate(...);

 g2d.rotate(...);

 g2d.scale(...);

 g2d.shear(...);

 g2d.setTransform(someAffineTransform);

Java 2 Drawing Process: Step 3

 Create a Shape object.
Rectangle2D.Double rect = ...;

Ellipse2D.Double ellipse = ...;

Polygon poly = ...;

GeneralPath path = ...;

// Satisfies Shape interface

SomeShapeYouDefined shape = ...;

 Note
 Most shapes are in the java.awt.geom package

 There is a corresponding Shape class for most of
the drawXxx methods of Graphics (see next slide)

8

Built-in Shape Classes
 Arc2D.Double, Arc2D.Float

 Area (a shape built by union, intersection, subtraction and xor
of other shapes)

 CubicCurve2D.Double, CubicCurve2D.Float

 Ellipse2D.Double, Ellipse2D.Float

 GeneralPath (a series of connected shapes), Polygon

 Line2D.Double, Line2D.Float

 QuadCurve2D.Double, QuadCurve2D.Float (a spline curve)

 Rectangle2D.Double, Rectangle2D.Float, Rectangle

 RoundRectangle2D.Double, RoundRectangle2D.Float
 New shapes are in java.awt.geom. Java 1.1 holdovers (Rectangle,

Polygon) are in java.awt. Several classes have similar versions that
store coordinates as either double precision numbers (Xxx.Double) or
single precision numbers (Xxx.Float). The idea is that single precision
coordinates might be slightly faster to manipulate on some platforms.

Java 2 Drawing Process: Step 4

 Draw an outlined or filled version of the Shape

 g2d.draw(someShape);

 g2d.fill(someShape);

 The legacy methods are still supported

 drawString still commonly used

 drawLine, drawRect, fillRect still somewhat
used

9

Drawing Shapes: Example Code
import javax.swing.*; // For JPanel, etc.
import java.awt.*; // For Graphics, etc.
import java.awt.geom.*; // For Ellipse2D, etc.
public class ShapeExample extends JPanel {

private Ellipse2D.Double circle =
new Ellipse2D.Double(10, 10, 350, 350);

private Rectangle2D.Double square =
new Rectangle2D.Double(10, 10, 350, 350);

public void paintComponent(Graphics g) {
clear(g); // ie super.paintComponent(g);
Graphics2D g2d = (Graphics2D)g;
g2d.fill(circle);
g2d.draw(square);

}
// Code to put JPanel in JFrame omitted.

}

Drawing Shapes: Example Output

10

Paint Styles in Java 2D
 Use setPaint and getPaint to change and retrieve the

Paint settings.
 Note that setPaint and getPaint supersede the setColor

and getColor methods that were used in Graphics (and
inherited in Graphics2D).

 When you fill a Shape, the current Paint attribute of
the Graphics2D object is used. Possible arguments
to setPaint are:
 A Color (solid color--Color implements Paint interface)

 A GradientPaint (gradually-changing color combination)

 A TexturePaint (tiled image)

 A new version of Paint that you write yourself.

Paint Classes: Details
 Color

 Has the same constants (Color.red, Color.yellow, etc.) as
the AWT version, plus some extra constructors.

 GradientPaint
 Constructors take two points, two colors, and optionally a

boolean flag that indicates that the color pattern should
cycle. Colors fade from one color to the other.

 TexturePaint
 Constructor takes a BufferedImage and a Rectangle2D,

maps the image to the rectangle, then tiles the rectangle.
 Creating a BufferedImage from a GIF or JPEG file is tedious. First load

an Image normally, get its size, create a BufferedImage that size with
BufferedImage.TYPE_INT_ARGB as the image type, and get the
BufferedImage's Graphics object via createGraphics. Then, draw the
Image into the BufferedImage using drawImage.

11

Gradient Fills: Example Code
public class GradientPaintExample extends ShapeExample {

private GradientPaint gradient =
new GradientPaint(0, 0, Color.red, 175, 175,

Color.yellow, true);
// true means repeat pattern

public void paintComponent(Graphics g) {
clear(g);
Graphics2D g2d = (Graphics2D)g;
drawGradientCircle(g2d);

}

protected void drawGradientCircle(Graphics2D g2d) {
g2d.setPaint(gradient);
g2d.fill(getCircle());
g2d.setPaint(Color.black);
g2d.draw(getCircle());

} ...

Gradient Fills: Example Output

12

Tiled Images as Fill Patterns
(TexturePaint)

 Create a TexturePaint object.
TexturePaint constructor takes:
 A BufferedImage (see following pages)

 Specifies what to draw

 A Rectangle2D
 Specifies where tiling starts

 Use the setPaint method of Graphics2D to
specify that this TexturePaint object be used.
 Applies to strings and outlines (i.e., draw opera-

tions), not just solid shapes (i.e., fill operations).

Creating a BufferedImage for
Custom Drawing

 Call the BufferedImage constructor with
 A width,

 A height, and

 A value of BufferedImage.TYPE_INT_RGB,

 Call createGraphics on the result to get a
Graphics2D that refers to image
 Use that Graphics2D object to draw onto the

BufferedImage

13

Custom BufferedImage:
Example Code

int width = 32; int height = 32;

BufferedImage bufferedImage =

new BufferedImage(width, height

BufferedImage.TYPE_INT_RGB);

Graphics2D g2dImg = bufferedImage.createGraphics();

g2dImg.draw(...); // Draws onto image

g2dImg.fill(...); // Draws onto image

TexturePaint texture =

new TexturePaint(bufferedImage,

new Rectangle(0, 0, width, height));

g2d.setPaint(texture);

g2d.draw(...); // Draws onto window

g2d.fill(...); // Draws onto window

Creating a BufferedImage from
an Image File

 Quick summary
 Load an Image from an image file via getImage

 Use MediaTracker to be sure it is done loading

 Create an empty BufferedImage using the Image width
and height

 Get the Graphics2D via createGraphics

 Draw the Image onto the BufferedImage

 This process has been wrapped up in the getBuf-
feredImage method of the ImageUtilities class
 Like all examples, code available at

www.corewebprogramming.com

14

BufferedImage from Image File:
Example Code

public class ImageUtilities {

public static BufferedImage getBufferedImage

(String imageFile, Component c) {

Image image = c.getToolkit().getImage(imageFile);

waitForImage(image, c); // Just uses MediaTracker

BufferedImage bufferedImage =

new BufferedImage(image.getWidth(c),

image.getHeight(c),

BufferedImage.TYPE_INT_RGB);

Graphics2D g2dImg = bufferedImage.createGraphics();

g2dImg.drawImage(image, 0, 0, c);

return(bufferedImage);

}

...

}

Tiled Images as Fill Patterns:
Example Code

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;
public class TiledImages extends JPanel {

private String dir = System.getProperty("user.dir");
private String imageFile1 = dir + "/images/marty.jpg";
private TexturePaint imagePaint1;
private Rectangle imageRect;
private String imageFile2 = dir +

"/images/bluedrop.gif";
private TexturePaint imagePaint2;
private int[] xPoints = { 30, 700, 400 };
private int[] yPoints = { 30, 30, 600 };
private Polygon imageTriangle =

new Polygon(xPoints, yPoints, 3);

15

public TiledImages() {

BufferedImage image =

ImageUtilities.getBufferedImage(imageFile1, this);

imageRect =

new Rectangle(235, 70,

image.getWidth(),
image.getHeight());

imagePaint1 =

new TexturePaint(image, imageRect);

image =

ImageUtilities.getBufferedImage(imageFile2, this);

imagePaint2 =

new TexturePaint(image,

new Rectangle(0, 0, 32, 32));

}

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

g2d.setPaint(imagePaint2);

g2d.fill(imageTriangle);

g2d.setPaint(Color.blue);

g2d.setStroke(new BasicStroke(5));

g2d.draw(imageTriangle);

g2d.setPaint(imagePaint1);

g2d.fill(imageRect);

g2d.setPaint(Color.black);

g2d.draw(imageRect);

}

...

}

16

Tiled Images as Fill Patterns:
Example Output

Transparent Drawing: Overview
 Idea

 Assign transparency (alpha) values to drawing
operations so that the underlying graphics partially
shows through when you draw shapes or images.

 Normal steps
 Create an AlphaComposite object

 Call AlphaComposite.getInstance with a mixing rule
designator and a transparency (or "alpha") value.

 There are 8 built-in mixing rules (see the AlphaComposite
API for details), but you only care about
AlphaComposite.SRC_OVER.

 Alpha values range from 0.0F (completely transparent) to
1.0F (completely opaque).

 Pass the AlphaComposite object to the setComposite
method of the Graphics2D

17

Transparent Drawing:
Example Code

public class TransparencyExample extends JPanel {

...

private AlphaComposite makeComposite(float alpha) {

int type = AlphaComposite.SRC_OVER;

return(AlphaComposite.getInstance(type, alpha));

}

private void drawSquares(Graphics2D g2d, float alpha) {

Composite originalComposite = g2d.getComposite();

g2d.setPaint(Color.blue);

g2d.fill(blueSquare);

g2d.setComposite(makeComposite(alpha));

g2d.setPaint(Color.red);

g2d.fill(redSquare);

g2d.setComposite(originalComposite);

}

...

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

for(int i=0; i<11; i++) {

drawSquares(g2d, i*0.1F); // 2nd arg is transparency

g2d.translate(deltaX, 0);

}

18

Using Logical
(Java-Standard) Fonts

 Logical font names: use same names
as in Java 1.1.

 Serif (aka TimesRoman)

 SansSerif (aka Helvetica -- results in Arial on
Windows)

 Monospaced (aka Courier)

 Dialog

 DialogInput

Using Local (System-Specific)
Fonts

 Local fonts: Must Lookup Fonts First
 Use the getAvailableFontFamilyNames or getAllFonts

methods of GraphicsEnvironment. E.g.:

GraphicsEnvironment env =

GraphicsEnvironment.getLocalGraphicsEnvironment();

then
env.getAvailableFontFamilyNames();

or
env.getAllFonts(); // Much slower than just getting
names!

 Safest Option:
 Supply list of preferred font names in order, loop down look-

ing for first match. Supply standard font name as backup.

19

Example 1: Printing Out All Local
Font Names

import java.awt.*;

public class ListFonts {

public static void main(String[] args) {

GraphicsEnvironment env =

GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontNames =

env.getAvailableFontFamilyNames();

System.out.println("Available Fonts:");

for(int i=0; i<fontNames.length; i++)

System.out.println(" " + fontNames[i]);

}

}

Example 2:
Drawing with Local Fonts

public class FontExample extends GradientPaintExample {
public FontExample() {
GraphicsEnvironment env =
GraphicsEnvironment.getLocalGraphicsEnvironment();

env.getAvailableFontFamilyNames();
setFont(new Font("Goudy Handtooled BT", Font.PLAIN, 100));

}
protected void drawBigString(Graphics2D g2d) {
g2d.setPaint(Color.black);
g2d.drawString("Java 2D", 25, 215);

}
public void paintComponent(Graphics g) {
clear(g);
Graphics2D g2d = (Graphics2D)g;
drawGradientCircle(g2d);
drawBigString(g2d);

} ...

20

Drawing with Local Fonts:
Example Output

Stroke Styles: Overview
 AWT

 drawXxx methods of Graphics resulted in solid, 1-
pixel wide lines.

 Predefined line join/cap styles for drawRect,
drawPolygon, etc.

 Java2D
 Pen thickness

 Dashing pattern

 Line join/cap styles

 Setting styles
 Create a BasicStroke object

 Use the setStroke method to tell the Graphics2D
object to use it

21

Stroke Attributes
 Normal use: Use setStroke to assign a BasicStroke.

BasicStroke constructors:
 BasicStroke()

 Creates a BasicStroke with a pen width of 1.0, the default cap style of
CAP_SQUARE, and the default join style of JOIN_MITER.

 BasicStroke(float penWidth)
 Uses the specified pen width and the default cap/join styles.

 BasicStroke(float penWidth, int capStyle, int joinStyle)
 Uses the specified pen width, cap style, and join style.

 BasicStroke(float penWidth, int capStyle, int joinStyle, float
miterLimit)
 Limits how far up the miter join can go (default is 10.0). Stay away

from this.

 BasicStroke(float penWidth, int capStyle, int joinStyle, float
miterLimit, float[] dashPattern, float dashOffset)
 Lets you make dashed lines by specifying an array of opaque (entries

at even array indices) and transparent (odd indices) segments. The
offset, often 0.0, specifies where to start in the dashing pattern.

Thick Lines: Example Code
import java.awt.*;

public class StrokeThicknessExample extends FontExample {

public void paintComponent(Graphics g) {

clear(g);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle(g2d);

drawBigString(g2d);

drawThickCircleOutline(g2d);

}

protected void drawThickCircleOutline(Graphics2D g2d) {

g2d.setPaint(Color.blue);

g2d.setStroke(new BasicStroke(8)); // 8-pixel wide pen

g2d.draw(getCircle());

}

...

22

Thick Lines: Example Output

Dashed Lines: Example Code
public class DashedStrokeExample extends FontExample {

public void paintComponent(Graphics g) {

clear(g);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle(g2d);

drawBigString(g2d);

drawDashedCircleOutline(g2d);

}

protected void drawDashedCircleOutline(Graphics2D g2d) {

g2d.setPaint(Color.blue);

// 30 pixel line, 10 pxl gap, 10 pxl line, 10 pxl gap

float[] dashPattern = { 30, 10, 10, 10 };

g2d.setStroke(new BasicStroke(8, BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER, 10, dashPattern, 0));

g2d.draw(getCircle());

}

...

23

Dashed Lines: Example Output

Join Styles

 JOIN_MITER
 Extend outside edges of lines until they meet

 This is the default

 JOIN_BEVEL
 Connect outside corners of outlines with straight

line

 JOIN_ROUND
 Round off corner with a circle that has diameter

equal to the pen width

24

Cap Styles
 CAP_SQUARE

 Make a square cap that extends past the end point
by half the pen width

 This is the default

 CAP_BUTT

 Cut off segment exactly at end point

Use this one for dashed lines.

 CAP_ROUND
 Make a circle centered on the end point. Use a

diameter equal to the pen width.

Cap and Join Styles:
Example Code

public class LineStyles extends JPanel {
private int[] caps =
{ BasicStroke.CAP_SQUARE, BasicStroke.CAP_BUTT,
BasicStroke.CAP_ROUND };

private int[] joins =
{ BasicStroke.JOIN_MITER, BasicStroke.JOIN_BEVEL,
BasicStroke.JOIN_ROUND };

public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2d = (Graphics2D)g;
g2d.setColor(Color.blue);
for(int i=0; i>caps.length; i++) {
BasicStroke stroke =
new BasicStroke(thickness, caps[i], joins[i]);

g2d.setStroke(stroke);
g2d.draw(path);
...

} ...

25

Cap and Join Styles:
Example Output

Coordinate Transformations
 Idea:

 Instead of computing new coordinates, move the
coordinate system itself

 Available Transformations
 Translate (move)

 Rotate (spin)

 Scale (stretch evenly)

 Shear (stretch more as points get further from origin)

 Custom. New point (x2, y2) derived from original point
(x1, y1) as follows:

[x2] [m00 m01 m02] [x1] [m00x1 + m01y1 + m02]

[y2] = [m10 m11 m12] [y1] = [m10x1 + m11y1 + m12]

[1] [0 0 1] [1] [1]

26

Translations and Rotations:
Example Code

public class RotationExample extends StrokeThicknessExample {

private Color[] colors = { Color.white, Color.black };

public void paintComponent(Graphics g) {

clear(g);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle(g2d);

drawThickCircleOutline(g2d);

// Move the origin to the center of the circle.

g2d.translate(185.0, 185.0);

for (int i=0; i<16; i++) {

// Rotate the coordinate system around current

// origin, which is at the center of the circle.

g2d.rotate(Math.PI/8.0);

g2d.setPaint(colors[i%2]);

g2d.drawString("Java", 0, 0);

} ...

Translations and Rotations:
Example Output

27

Shear Transformations

 Meaning of Shear

 X Shear
If you specify a non-zero x shear, then x values will
be more and more shifted to the right the farther they
are away from the y axis. For example, an x shear of
0.1 means that the x value will be shifted 10% of the
distance the point is away from the y axis.

 Y Shear
Points are shifted down in proportion to the distance
they are away from the x axis.

Shear: Example Code
public class ShearExample extends JPanel {

private static int gap=10, width=100;

private Rectangle rect = new Rectangle(gap, gap, 100, 100);

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

for (int i=0; i<5; i++) {

g2d.setPaint(Color.red);

g2d.fill(rect);

// Each new square gets 0.2 more x shear

g2d.shear(0.2, 0.0);

g2d.translate(2*gap + width, 0);

}

}

...

28

Shear: Example Output

Rendering Hints
 Default:

 Faster drawing, possibly less accuracy

 Rendering Hints:
 Let you request more accurate (but generally slower)

drawing. Eg:
RenderingHints renderHints =

new RenderingHints(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

renderHints.put(RenderingHints.KEY_RENDERING,

RenderingHints.VALUE_RENDER_QUALITY);

...

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

g2d.setRenderingHints(renderHints);

...

29

Summary
 General

 If you have Graphics, cast it to Graphics2D

 Create Shape objects, then call Graphics2D’s draw and fill
methods with shapes as args.

 Paint styles
 Use setPaint to specify a solid color (Color), a gradient fill

(GradientPaint), or tiled image (TexturePaint). TexturePaint
requires a BufferedImage, which you can create from an
image file by creating empty BufferedImage then drawing
image into it.

 Transparent drawing
 Use AlphaComposite for transparency. Create one via

AlphaComposite.getInstance with a type of
AlphaComposite.SRC_OVER.

Summary (Continued)
 Local fonts

 Before using them you must call getAllFonts or
getAvailableFontFamilyNames. Then supply name to Font
constructor and specify font via setFont.

 Stroke styles
 BasicStroke lets you set pen thickness, dashing pattern,

and line cap/join styles. Then call setStroke.

 Coordinate transformations
 Let you move the coordinate system rather than changing

what you draw. Simple transforms: call translate, rotate,
scale, and shear. More complex transforms: supply matrix
to AffineTransform constructor, then call setTransform.

 Rendering Hints
 Improve drawing quality or enable antialiasing

30

End of Chapter

Thank you for your attention!

1

Handling Mouse
and Keyboard

Events

Agenda
 General event-handling strategy

 Handling events with separate listeners

 Handling events by implementing interfaces

 Handling events with named inner classes

 Handling events with anonymous inner
classes

 The standard AWT listener types

 Subtleties with mouse events

 Examples

2

Event-Driven Programming

 Procedural programming is executed in
procedural order

 In event-driven programming, code is executed
upon activation of events

 An event can be defined as a type of signal to the program
that something has happened

 The event is generated by external user actions such as:
mouse movements, mouse button clicks, and keystrokes, or
by the operating system, such as a timer

Event Information
 id: A number that identifies the event.

 target: The source component upon which the event
occurred.

 arg: Additional information about the source
components.

 x, y coordinates: The mouse pointer location when
a mouse movement event occurred.

 clickCount: The number of consecutive clicks for the
mouse events. For other events, it is zero.

 when: The time stamp of the event.

 key: The key that was pressed or released.

3

Event Classes

AWTEvent EventObject

AdjustmentEvent

ComponentEvent

TextEvent

ItemEvent

ActionEvent

InputEvent

WindowEvent

MouseEvent

KeyEvent

ContainerEvent

FocusEvent

PaintEvent

ListSelectionEvent

General Strategy
 Determine what type of listener is of interest

 11 standard AWT listener types, described on later slide.
 ActionListener, AdjustmentListener, ComponentListener,

ContainerListener, FocusListener, ItemListener, KeyListener,
MouseListener, MouseMotionListener, TextListener,
WindowListener

 Define a class of that type
 Implement interface (KeyListener, MouseListener, etc.)

 Extend class (KeyAdapter, MouseAdapter, etc.)

 Register an object of your listener class with the
window
 w.addXxxListener(new MyListenerClass());

 E.g., addKeyListener, addMouseListener

4

Selected User Actions
Source Event Type

User Action Object Generated
Clicked on a button JButton ActionEvent

Changed text JTextComponent TextEvent

Double-clicked on a list item JList ActionEvent

Selected or deselected an item JList ItemEvent
with a single click

Selected or deselected an item JComboBox ItemEvent

Source Object

Trigger an event

Listener Object

Register a listener object

EventObject

Event Handler

Notify listenerGenerate
an event

User
action

Selected Event Handlers

Event Class Listener Interface Listener Methods (Handlers)
ActionEvent ActionListener actionPerformed(ActionEvent)
ItemEvent ItemListener itemStateChanged(ItemEvent)
WindowEvent WindowListener windowClosing(WindowEvent)

windowOpened(WindowEvent)
windowIconified(WindowEvent)
windowDeiconified(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEvent)

ContainerEvent ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

5

Example:
Handling Simple Action Events

 Objective: Display two buttons OK and Cancel in
the window. A message is displayed on the console
to indicate which button is clicked, when a button is
clicked.

TestActionEvent Run

Handling Window Events

TestWindowEvent Run

 Objective: Demonstrate handling the window
events. Any subclass of the Window class can
generate the following window events: window
opened, closing, closed, activated, deactivated,
iconified, and deiconified. This program creates
a frame, listens to the window events, and
displays a message to indicate the occurring
event.

6

Example: Multiple
Listeners for a Single

Source

TestMultipleListener Run

 Objective: This example modifies former
Example to add a new listener for each
button. The two buttons OK and Cancel
use the frame class as the listner. This
example creates a new listener class as
an additional listener for the action
events on the buttons. When a button is
clicked, both listeners respond to the
action event.

Handling Events in Applets with
a Separate Listener

 Listener does not need to call any methods of
the window to which it is attached

import java.applet.Applet;
import java.awt.*;

public class ClickReporter extends Applet {
public void init() {
setBackground(Color.yellow);
addMouseListener(new ClickListener());

}
}

7

import java.awt.event.*;

public class ClickListener extends MouseAdapter {
public void mousePressed(MouseEvent event) {

System.out.println("Mouse pressed at (" +
event.getX() + "," +
event.getY() + ").");

}
}

Generalizing Simple Case

 What if ClickListener wants to draw a circle
wherever mouse is clicked?

 Why can’t it just call getGraphics to get a
Graphics object with which to draw?

 General solution:
 Call event.getSource to obtain a reference to window

or GUI component from which event originated
 Cast result to type of interest
 Call methods on that reference

8

Handling Events with Separate
Listener: General Case

import java.applet.Applet;

import java.awt.*;
import java.awt.event.*;

public class CircleDrawer1 extends Applet {
public void init() {
setForeground(Color.blue);
addMouseListener(new CircleListener());

}
}
public class CircleListener extends MouseAdapter {

private int radius = 25;
public void mousePressed(MouseEvent event) {
Applet app = (Applet)event.getSource();
Graphics g = app.getGraphics();
g.fillOval(event.getX()-radius, event.getY()-radius,

2*radius, 2*radius);
}

}

Separate Listener: General Case
(Results)

TestMouseClick

Run

Implemented as
an application

TestMouseClick

Run

Implemented as
an applet

9

Case 2: Implementing a Listener
Interface

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class CircleDrawer2 extends Applet

implements MouseListener {
private int radius = 25;

public void init() {
setForeground(Color.blue);
addMouseListener(this);

}
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseClicked(MouseEvent event) {}
public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius, event.getY()-radius,

2*radius, 2*radius); }
}

Case 3: Named Inner Classes
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class CircleDrawer3 extends Applet {
public void init() {
setForeground(Color.blue);
addMouseListener(new CircleListener());

}
private class CircleListener extends MouseAdapter {
private int radius = 25;

public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius, event.getY()-radius,

2*radius, 2*radius);
}

}
}

10

Case 4: Anonymous Inner Classes
public class CircleDrawer4 extends Applet {

public void init() {
setForeground(Color.blue);
addMouseListener (new MouseAdapter() {

private int radius = 25;

public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius,

event.getY()-radius, 2*radius, 2*radius);
}

});
}

}

Event Handling Strategies:
Pros and Cons

 Separate Listener
 Advantages

 Can extend adapter and thus ignore unused methods

 Separate class easier to manage

 Disadvantage
 Need extra step to call methods in main window

 Main window that implements interface
 Advantage

 No extra steps needed to call methods in main window

 Disadvantage
 Must implement methods you might not care about

11

Event Handling Strategies:
Pros and Cons (Continued)

 Named inner class
 Advantages

 Can extend adapter and thus ignore unused methods

 No extra steps needed to call methods in main window

 Disadvantage
 A bit harder to understand

 Anonymous inner class
 Advantages

 Same as named inner classes

 Even shorter

 Disadvantage
 Much harder to understand

Standard AWT Event Listeners
(Summary)

Adapter Class
Listener (If Any) Registration Method

 ActionListener addActionListener
 AdjustmentListener addAdjustmentListener
 ComponentListener ComponentAdapter addComponentListener
 ContainerListener ContainerAdapter addContainerListener
 FocusListener FocusAdapter addFocusListener
 ItemListener addItemListener
 KeyListener KeyAdapter addKeyListener
 MouseListener MouseAdapter addMouseListener
 MouseMotionListener MouseMotionAdapter addMouseMotionListener

 TextListener addTextListener
 WindowListener WindowAdapter addWindowListener

12

Standard AWT Event Listeners
(Details)

 ActionListener
 Handles buttons and a few other actions

 actionPerformed(ActionEvent event)

 AdjustmentListener
 Applies to scrolling

 adjustmentValueChanged(AdjustmentEvent event)

 ComponentListener

 Handles moving/resizing/hiding GUI objects
 componentResized(ComponentEvent event)
 componentMoved (ComponentEvent event)
 componentShown(ComponentEvent event)
 componentHidden(ComponentEvent event)

(AWT Event Listeners Details Continued)
 ContainerListener

 Triggered when window adds/removes GUI controls
 componentAdded(ContainerEvent event)
 componentRemoved(ContainerEvent event)

 FocusListener
 Detects when controls get/lose keyboard focus

 focusGained(FocusEvent event)
 focusLost(FocusEvent event)

 ItemListener
 Handles selections in lists, checkboxes, etc.

 itemStateChanged(ItemEvent event)

 KeyListener (Detects keyboard events)
 keyPressed(KeyEvent event) -- any key pressed down
 keyReleased(KeyEvent event) -- any key released
 keyTyped(KeyEvent event) -- key for printable char released

13

 ItemListener
 Handles selections in lists, checkboxes, etc.

 itemStateChanged(ItemEvent event)

 KeyListener
 Detects keyboard events

 keyPressed(KeyEvent event) -- any key pressed down
 keyReleased(KeyEvent event) -- any key released
 keyTyped(KeyEvent event) -- key for printable char released

 MouseListener
 Applies to basic mouse events

 mouseEntered(MouseEvent event),
 mouseExited(MouseEvent event)
 mousePressed(MouseEvent event)
 mouseReleased(MouseEvent event)
 mouseClicked(MouseEvent event) -- Release without drag

 Applies on release if no movement since press

(AWT Event Listeners Details Continued)

 MouseMotionListener

 Handles mouse movement
 mouseMoved(MouseEvent event)
 mouseDragged(MouseEvent event)

 TextListener
 Applies to textfields and text areas

 textValueChanged(TextEvent event)

 WindowListener
 Handles high-level window events

 windowOpened, windowClosing, windowClosed,
windowIconified, windowDeiconified, windowActivated,
windowDeactivated
 windowClosing particularly useful

(AWT Event Listeners Details Continued)

14

Mouse Events: Details
 MouseListener and MouseMotionListener share

event types

 Location of clicks
 event.getX() and event.getY()

 Double clicks
 Determined by OS, not by programmer

 Call event.getClickCount()

 Distinguishing mouse buttons
 Call event.getModifiers() and compare to

MouseEvent.Button2_MASK for a middle click and
MouseEvent.Button3_MASK for right click.

 Can also trap Shift-click, Alt-click, etc.

Simple Example: Spelling-
Correcting Textfield

 KeyListener corrects spelling during typing
 ActionListener completes word on ENTER
 FocusListener gives subliminal hints

15

Example: Simple Whiteboard
import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

public class SimpleWhiteboard extends Applet {

protected int lastX=0, lastY=0;

public void init() {

setBackground(Color.white);

setForeground(Color.blue);

addMouseListener(new PositionRecorder());

addMouseMotionListener(new LineDrawer());

}

protected void record(int x, int y) {

lastX = x; lastY = y;

}

private class PositionRecorder extends MouseAdapter {
public void mouseEntered(MouseEvent event) {
requestFocus(); // Plan ahead for typing
record(event.getX(), event.getY());

}

public void mousePressed(MouseEvent event) {
record(event.getX(), event.getY());

}
}
...
private class LineDrawer extends MouseMotionAdapter {
public void mouseDragged(MouseEvent event) {
int x = event.getX();
int y = event.getY();
Graphics g = getGraphics();
g.drawLine(lastX, lastY, x, y);
record(x, y);

}
}

}

16

Simple Whiteboard (Results)

TestMouseClick

Run

Implemented as
an applet

Whiteboard: Adding Keyboard
Events

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

public class Whiteboard extends SimpleWhiteboard {

protected FontMetrics fm;

public void init() {

super.init();

Font font = new Font("Serif", Font.BOLD, 20);

setFont(font);

fm = getFontMetrics(font);

addKeyListener(new CharDrawer());

}

17

...

private class CharDrawer extends KeyAdapter {

// When user types a printable character,

// draw it and shift position rightwards.

public void keyTyped(KeyEvent event) {

String s = String.valueOf(event.getKeyChar());

getGraphics().drawString(s, lastX, lastY);

record(lastX + fm.stringWidth(s), lastY);

}

}

}

Whiteboard (Results)

18

Summary

 General strategy
 Determine what type of listener is of interest

 Check table of standard types

 Define a class of that type
 Extend adapter separately, implement interface, extend adapter

in named inner class, extend adapter in anonymous inner class

 Register an object of your listener class with the window
 Call addXxxListener

 Understanding listeners

 Methods give specific behavior.
 Arguments to methods are of type XxxEvent

 Methods in MouseEvent of particular interest

Thank you for your attention!

1

Exception

Agenda

 Exceptions and Exception Types

 Claiming Exceptions

 Throwing Exceptions

 Catching Exceptions

 Rethrowing Exceptions
 The finally Clause

 Cautions When Using Exceptions

 Creating Your Own Exception Classes
(Optional)

2

Error Handling: Exceptions

 In Java, the error-handling system is based on
exceptions
 Exceptions must be handed in a try/catch block

 When an exception occurs, process flow is immediately
transferred to the catch block

 Basic Form
try {

statement1;

statement2;

...

} catch(SomeException someVar) {

handleTheException(someVar);

}

Exceptions and Classes

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

3

Exception Hierarchy

 Simplified Diagram of Exception Hierarchy

Throwable

Error

IOException RuntimeException

Exception

…

Claiming, Throwing, and
Catching Exceptions

catch exception
claim exception

method1() {

try {

invoke method2

}

catch (Exception ex) {

Process exception;

}

}

method2() throws Exception {

if (an error occurs) {

throw new Exception();

}

}

throw exception

4

Throwable Types

 Error
 A non-recoverable problem that should not be caught

(OutOfMemoryError, StackOverflowError, …)

 Exception
 An abnormal condition that should be caught and

handled by the programmer

 RuntimeException
 Special case; does not have to be caught

 Usually the result of a poorly written program (integer
division by zero, array out-of-bounds, etc.)
 A RuntimeException is considered a bug

Thrown Exceptions

 If a potential exception is not handled in the
method, then the method must declare that the
exception can be thrown

public SomeType someMethod(...) throws SomeException {

// Unhandled potential exception

...

}

 Note: Multiple exception types (comma separated) can be
declared in the throws clause

 Explicitly generating an exception
throw new IOException("Blocked by firewall.");
throw new MalformedURLException("Invalid protocol");

5

Throwing Exceptions Example
public Rational divide(Rational r)

throws Exception
{
if (r.numer == 0)
{

throw new Exception("divisor
cannot be zero");

}

long n = numer*r.denom;
long d = denom*r.numer;
return new Rational(n,d);

}

TestRationalException RunRational

Catching Exceptions
 A single try can have more that one catch clause

 If multiple catch clauses are used, order them from the
most specific to the most general

 If no appropriate catch is found, the exception is handed
to any outer try blocks

 If no catch clause is found within the method, then the
exception is thrown by the method

try {
...

} catch (ExceptionType1 var1) {
// Do something

} catch (ExceptionType2 var2) {
// Do something else

}

6

Try-Catch, Example
...
BufferedReader in = null;
String lineIn;
try {
in = new BufferedReader(new FileReader("book.txt"));
while((lineIn = in.readLine()) != null) {
System.out.println(lineIn);

}
in.close();

} catch (FileNotFoundException fnfe) {
System.out.println("File not found.");

} catch (EOFException eofe) {
System.out.println("Unexpected End of File.");

} catch (IOException ioe) {
System.out.println("IOError reading input: " + ioe);
ioe.printStackTrace(); // Show stack dump

}

The finally Clause
 After the final catch clause, an optional
finally clause may be defined

 The finally clause is always executed, even if
the try or catch blocks are exited through a
break, continue, or return

try {
...

} catch (SomeException someVar) {
// Do something

} finally {
// Always executed

}

7

Example: Exceptions in GUI
Applications

 An error message appears on the console,
but the GUI application continues running

 Re-run the MenuDemo applet from former
Example and divide by 0 to see how a GUI
deals with unhandled exceptions.

MenuDemo Run

Cautions When Using
Exceptions

Exception handling separates error-handling
code from normal programming tasks, thus
making programs easier to read and to modify.

Be aware, however, that exception
handling usually requires more time
and resources because it requires
instantiating a new exception
object, rolling back the call
stack, and propagating the errors
to the calling methods.

8

Summary

 Loops, conditional statements, and array
access is the same as in C and C++

 String is a real class in Java

 Use equals, not ==, to compare strings

 You can allocate arrays in one step or in two
steps

 Vector or ArrayList is a useful data
structure
 Can hold an arbitrary number of elements

 Handle exceptions with try/catch blocks

Creating Own Exception Classes
class SimpleException extends Exception {}
public class SimpleExceptionDemo {

public void f() throws SimpleException {
System.out.println(

"Throwing SimpleExceptionfrom f()");
throw new SimpleException ();

}
public static void main(String[] args) {

SimpleExceptionDemo sed =
new SimpleExceptionDemo();

try {
sed.f();

} catch(SimpleException e) {
System.err.println("Caught it!");

}
}

}

9

Example (Optional): Creating Your
Own Exception Classes

 Objective: This program creates a Java applet for
handling account transactions. The applet displays the
account id and balance, and lets the user deposit to or
withdraw from the account. For each transaction, a
message is displayed to indicate the status of the
transaction: successful or failed. In case of failure, the
failure reason is reported.

Example, cont.

RunNegativeAmountException

AccountInsufficientFundException

AccountApplet

NegativeAmountException

-account
-transactionAmount
-transactionType

Exception

InsufficientAmountException

-account
-transactionAmount

Account

-id
-balance

+getId
+getBalance
+setBalance
+deposit
+withdraw

AccountApplet

JApplet ActionListener

10

Thank you for your attention!

1

Multithreaded
Programming

Agenda

 Why threads?

 Approaches for starting threads
 Separate class approach

 Callback approach

 Solving common thread problems

 Synchronizing access to shared resources

 Thread life cycle

 Stopping threads

2

Concurrent Programming
Using Java Threads

 Motivation
 Efficiency

 Downloading network data files

 Convenience
A clock icon

 Multi-client applications
 HTTP Server, SMTP Server

 Caution
 Significantly harder to debug and maintain

 Two Main Approaches:
 Make a self-contained subclass of Thread with the

behavior you want
 Implement the Runnable interface and put behavior in

the run method of that object

Threads Concept

Multiple
threads on
multiple
CPUs

Multiple
threads
sharing a
single CPU

Thread 3

Thread 2

Thread 1

Thread 3

Thread 2

Thread 1

3

Thread Mechanism 1:
Making a Thread Subclass

 Create a separate subclass of Thread
 No import statements needed: Thread is in java.lang

 Put the actions to be performed in the run
method of the subclass
 public void run() { … }

 Create an instance of your Thread subclass
 Or lots of instances if you want lots of threads

 Call that instance’s start method
 You put the code in run, but you call start!

Threads Mechanism 1:
Making a Thread Subclass

// Custom thread class

public class CustomThread extends Thread {
...
public CustomThread(...) {

...
}

// Override the run method in Thread

public void run() {
// Tell system how to run custom thread

...
}
...

}

// Client class

public class Client {
...
public someMethod() {

...
// Create a thread

CustomThread thread = new
CustomThread(...);

// Start a thread
thread.start();
...

}

subclass of Thread

run method

create an instance

instance’s start

4

Thread Mechanism 1:
Making a Thread Subclass

public class ThreadClass extends Thread {
public void run() {
// Thread behavior here

}
}
public class DriverClass extends SomeClass {
...
public void startAThread() {
// Create a Thread object
ThreadClass thread = new ThreadClass();
// Start it in a separate process
thread.start();

}
}

Thread Mechanism 1: Example
public class Counter extends Thread {
private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;

}
private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds));

}
catch(InterruptedException ie) {}

}
...

5

Example (Continued)
/** When run finishes, the thread exits. */
public void run() {
for(int i=0; i<loopLimit; i++) {
System.out.println("Counter " + currentNum

+ ": " + i);
pause(Math.random()); // Sleep for up to 1 second
}

}
}
public class CounterTest {
public static void main(String[] args) {
Counter c1 = new Counter(5);
Counter c2 = new Counter(5);
Counter c3 = new Counter(5);
c1.start();
c2.start();
c3.start();

}
}

Thread Mechanism 1: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 2: 1
Counter 1: 2
Counter 0: 1
Counter 0: 2
Counter 1: 3
Counter 2: 2
Counter 0: 3
Counter 1: 4
Counter 0: 4
Counter 2: 3
Counter 2: 4

6

Thread Mechanism 1: Example

TestThread Run

Objective: Create and run three threads:

1. The first thread prints the letter a 100 times.
2. The second thread prints the letter b 100 times.
3. The third thread prints the integers 1 through

100.

Thread Mechanism 2:
Implementing Runnable

 Put the actions to be performed in the run
method of your existing class

 Have class implement Runnable interface
 If your class already extends some other class (e.g.,

Applet), why can't it still extend Thread? Because
Java does not support multiple inheritance.

 Construct an instance of Thread passing in the
existing object (i.e., the Runnable)
 Thread t = new Thread(theRunnableObject);

 Call that Thread’s start method
 t.start();

7

Threads by Implementing the
Runnable Interface

// Custom thread class

public class CustomThread implements Runnable {
...
public CustomThread(...) {

...
}

// Implement the run method in Runnable

public void run() {
// Tell system how to run custom thread

...
}
...

}

// Client class
public class Client {

...
public someMethod() {

...
// Create an instance of CustomThread

CustomThread thread = new CustomThread(...);
// Create a thread

Thread thread = new Thread(customThread);
// Start a thread
thread.start();
...

}
}

Thread Mechanism 2:
Implementing Runnable (Cont.)

public class ThreadedClass extends AnyClass
implements Runnable {

public void run() {
// Thread behavior here
// If you want to access thread instance
// (e.g. to get private per-thread data), use
// Thread.currentThread().

}

public void startThread() {
Thread t = new Thread(this);
t.start(); // Calls back to run method in this

}
...

}

8

Thread Mechanism 2: Example
public class Counter2 implements Runnable {
private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter2(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;
Thread t = new Thread(this);
t.start();

}

private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds));
}
catch(InterruptedException ie) {}

}
...

Example (Continued)
public void run() {
for(int i=0; i<loopLimit; i++) {
System.out.println("Counter " + currentNum

+ ": " + i);
pause(Math.random()); // Sleep for up to 1 second

}
}

}
public class Counter2Test {

public static void main(String[] args) {
Counter2 c1 = new Counter2(5);
Counter2 c2 = new Counter2(5);
Counter2 c3 = new Counter2(5);

}
}

9

Thread Mechanism 2: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 1: 2
Counter 0: 1
Counter 1: 3
Counter 2: 1
Counter 0: 2
Counter 0: 3
Counter 1: 4
Counter 2: 2
Counter 2: 3
Counter 0: 4
Counter 2: 4

Thread Mechanism 2: Example

TestRunnable Run

Objective: Create and run three threads:

1. The first thread prints the letter a 100 times.
2. The second thread prints the letter b 100 times.
3. The third thread prints the integers 1 through

100.

10

Race Conditions: Example
public class BuggyCounterApplet extends Applet

implements Runnable{
private int totalNum = 0;
private int loopLimit = 5;
public void start() {
Thread t;
for(int i=0; i<3; i++) {t = new Thread(this); t.start();}

}
private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}
public void run() {
int currentNum = totalNum;
System.out.println("Setting currentNum to" + currentNum);
totalNum = totalNum + 1;
for(int i=0; i<loopLimit; i++) {
System.out.println("Counter " + currentNum + ": " + i);
pause(Math.random());

}
}

} What's wrong with this code?

Race Conditions: Result
 Usual Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Counter 1: 0
Setting currentNum to 2
Counter 2: 0
Counter 2: 1
Counter 1: 1
Counter 0: 1
Counter 2: 2
Counter 0: 2
Counter 1: 2
Counter 1: 3
Counter 0: 3
Counter 2: 3
Counter 1: 4
Counter 2: 4
Counter 0: 4

 Occasional Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Setting currentNum to 1
Counter 0: 1
Counter 1: 0
Counter 1: 0
Counter 0: 2
Counter 0: 3
Counter 1: 1
Counter 0: 4
Counter 1: 1
Counter 1: 2
Counter 1: 3
Counter 1: 2
Counter 1: 3
Counter 1: 4
Counter 1: 4

11

Race Conditions: Solution?

 Do things in a single step

public void run() {

int currentNum = totalNum++;

System.out.println("Setting currentNum to "

+ currentNum);

for(int i=0; i<loopLimit; i++) {

System.out.println("Counter "

+ currentNum + ": " + i);

pause(Math.random());

}

}

Arbitrating Contention for
Shared Resources

 Synchronizing a Section of Code
synchronized(someObject) {
code

}

 Normal interpretation
 Once a thread enters the code, no other thread can

enter until the first thread exits.

 Stronger interpretation
 Once a thread enters the code, no other thread can

enter any section of code that is synchronized using
the same “lock” tag

12

Synchronization Problem
Example

A shared resource may be corrupted if
it is accessed simultaneously by
multiple threads. For example, two
unsynchronized threads accessing the
same bank account causes conflict.

Step Balance Thread[i] Thread[j]
1 0 newBalance = b.getBalance() + 5;
2 0 newBalance = b.getBalance() + 2;
3 5 bank.setBalance(newBalance);
4 2 bank.setBalance(newBalance);

Arbitrating Contention for
Shared Resources

 Synchronizing an Entire Method
public synchronized void someMethod() {

body

}

 Note that this is equivalent to
public void someMethod() {

synchronized(this) {

body

}

}

13

Common Synchronization Bug
 What’s wrong with this class?

public class SomeThreadedClass extends Thread {
private static RandomClass someSharedObject;
...
public synchronized void doSomeOperation() {
accessSomeSharedObject();

}
...
public void run() {
while(someCondition) {
doSomeOperation(); // Accesses shared data
doSomeOtherOperation(); // No shared data

}
}

}

Synchronization Solution
 Solution 1: synchronize on the shared data

public void doSomeOperation() {
synchronized(someSharedObject) {
accessSomeSharedObject();

}
}

 Solution 2: synchronize on the class object
public void doSomeOperation() {
synchronized(SomeThreadedClass.class) {

accessSomeSharedObject();
}
}

 Note that if you synchronize a static method, the lock
is the corresponding Class object, not this

14

Synchronization Solution
(Continued)

 Solution 3: synchronize on arbitrary object

public class SomeThreadedClass extends
Thread {
private static Object lockObject
= new Object();

...
public void doSomeOperation() {
synchronized(lockObject) {
accessSomeSharedObject();

}
}
...

 Why doesn't this problem usually occur with Runnable?

Example

PiggyBankWithoutSync

Run

PiggyBank

-balance

+getBalance
+setBalance

1

100

PiggyBankWithoutSync

-PiggyBank bank
-Thread[] thread

+main

Object

char token

Object

AddAPennyThread

+run()

Thread

1

1

With
synchronize

PiggyBankWithSync

Run

Objective: create and
launch 100 threads,
each of which adds a
penny to a piggy bank.
Assume that the piggy
bank is initially empty.

15

Thread Lifecycle

new

ready

running

waiting

blocked

sleeping

start()

sleep()

Block on I/O

wait()

I/O completed

dead
run completes

yield()

times expires
or interrupted

notify()

dispatch

Useful Thread Constructors
 Thread()

 Default version you get when you call constructor of your
custom Thread subclass.

 Thread(Runnable target)
 Creates a thread, that, once started, will execute the run

method of the target

 Thread(ThreadGroup group, Runnable target)

 Creates a thread and places it in the specified thread
group

 A ThreadGroup is a collection of threads that can be
operated on as a set

 Thread(String name)
 Creates a thread with the given name

 Useful for debugging

16

Thread Priorities
 A thread’s default priority is the same as the

creating thread
 Thread API defines three thread priorities

 Thread.MAX_PRIORITY (typically 10)
 Thread.NORM_PRIORITY (typically 5)
 Thread.MIN_PRIORITY (typically 1)

 Problems
 A Java thread priority may map differently to the

thread priorities of the underlying OS
 Solaris has 232–1 priority levels;

Windows NT has only 7 user priority levels

 Starvation can occur for lower-priority threads if the
higher-priority threads never terminate, sleep, or wait
for I/O

Useful Thread Methods
 currentThread ()

 Returns a reference to the currently executing thread
 This is a static method that can be called by arbitrary

methods, not just from within a Thread object

 I.e., anyone can call Thread.currentThread

 Interrupt ()
 One of two outcomes:

 If the thread is executing join, sleep, or wait, an
InterruptedException is thrown

 Sets a flag, from which the interrupted thread can check
(isInterrupted)

 Interrupted ()
 Checks whether the currently executing thread has a

request for interruption (checks flag) and clears the flag

17

Useful Thread Methods
(Continued)

 isInterrupted()
 Simply checks whether the thread’s interrupt flag has

been set (does not modify the flag)
 Reset the flag by calling interrupted from within the run

method of the flagged thread

 Join()
 Joins to another thread by simply waiting (sleeps)

until the other thread has completed execution

 isDaemon()/setDaemon()
 Determines or set the thread to be a daemon

 A Java program will exit when the only active threads
remaining are daemon threads

Useful Thread Methods
(Continued)

 Start()
 Initializes the thread and then calls run

 If the thread was constructed by providing a
Runnable, then start calls the run method of that
Runnable

 Run()
 The method in which a created thread will execute

 Do not call run directly; call start on the thread object

 When run completes the thread enters a dead state
and cannot be restarted

18

Useful Thread Methods
(Continued)

 Sleep()
 Causes the currently executing thread to do a nonbusy

wait for at least the amount of time (milliseconds), unless
interrupted

 As a static method, may be called for nonthreaded
applications as well
 I.e., anyone can call Thread.sleep
 Note that sleep throws InterruptedException. Need try/catch

 Yield()
 Allows any other threads of the same or higher priority to

execute (moves itself to the end of the priority queue)
 If all waiting threads have a lower priority, then the yielding

thread remains on the CPU

Useful Thread Methods
(Continued)

 Wait()/waitForAll()
 Releases the lock for other threads and suspends

itself (placed in a wait queue associated with the lock)
 Thread can be restarted through notify or
notifyAll

 These methods must be synchronized on the lock
object of importance

 Notify()/notifyAll()
 Wakes up all threads waiting for the lock

 A notified doesn’t begin immediate execution, but is
placed in the runnable thread queue

19

Stopping a Thread
public class ThreadExample implements Runnable {

private boolean running;
public ThreadExample()

Thread thread = new Thread(this);
thread.start();

}
public void run(){
running = true;
while (running) {
...

}
doCleanup();

}

public void setRunning(boolean running) {
this.running = running;

}
}

Signaling with wait and notify
public class ConnectionPool implements Runnable {

...
public synchronized Connection getConnection() {
if (availableConnections.isEmpty()) {
try {
wait(); } catch(InterruptedException ie) {}

// Someone freed up a connection, so try again.
return(getConnection());

} else {
// Get available connection
...
return(connection)

}
}
public synchronized void free(Connection connection) {
busyConnections.removeElement(connection);
availableConnections.addElement(connection);
// Wake up threads that are waitingfor a connection
notifyAll();

}
...

}

20

Summary
 Achieve multithreaded behavior by

 Inheriting directly from Thread
(separate class approach)

 Implementing the Runnable interface
(callback approach)

 In either case, put your code in the run method.
Call start on the Thread object.

 Avoid race conditions by placing the shared
resource in a synchronized block

 You can’t restart a dead thread

 Stop threads by setting a flag that the thread's run
method checks

Creating Threads for Applets
In Example "Displaying a Clock" in P11

(Graphics), you drew a clock to show the
current time in an applet. The clock does not
tick after it is displayed. What can you do
to let the clock display a new current time
every second? The key to making the clock
tick is to repaint it every second with a new
current time. You can use the code given
below to override the start() method in
CurrentTimeApplet:

public void start() {
while (true) {
stillClock.repaint();
try {
Thread.sleep(1000);

}
catch(InterruptedException ex){}

}

What is wrong in this code?

As long as the while loop is
running, the browser cannot
serve any other event that
might be occurring.

21

Creating a Thread to run the while loop
public class MyApplet extends JApplet implements

Runnable {
private Thread timer = null;
public void init() {

timer = new Thread(this);
timer.start();

}
...
public void run() {

while (true){
repaint();
try { thread.sleep(1000);

waitForNotificationToResume();
}
catch (InterruptedException ex) { }

}
}

}

Creating a Thread to run Synhronization

private synchronized void
waitForNotificationToResume()
throws InterruptedException {

while (suspended)
wait();

}public synchronized void resume() {
if (suspended) {
suspended = false;
notify();

}
}

public synchronized void suspend() {
suspended = true;

}

Objective: Simulate a running
clock by using a separate
thread to repaint the clock.

ClockApplet

Run Applet Viewer

22

Controlling a Group of Clocks

ClockGroup RunClock

3
ClockGroup

-clockPanel1: ClockPanel
-clockPanel2: ClockPanel
-clockPanel3: ClockPanel
-jbtResumeAll: JButton
-jbtSuspendAll: JButton

+jbtResumeAll(): void
+jbtSuspendAll(): void
+actionPerformed(e: ActionEvent): void
+main(args: String[]): void
+init(): void

JApplet

ClockPanel

-jlblTitle: JLabel
-clock: Clock
jbtResume: JButton
-jbtSuspend: JButton

+setTitle(title: String): void
+resume(): void
+suspend(): void
+actionPerformed(e: ActionEvent): void

Thread

Clock

+run(): void
+suspend(): void
+resume(): void

StillClock

1

ActionListener Runnable

1 1

Thank you for your attention!

1

Multimedia

Agenda

 Audio Files

 Playing Audio

 Running Audio on a Separate Thread

 Displaying Images

 Displaying a Sequence of Images

 Using MediaTracker

2

Playing Audio

 play(URL url, String filename);

Plays the audio clip after it is given the URL and the file
name that is relative to the URL. Nothing happens if the
audio file cannot be found.

 play(getCodeBase(), "soundfile.au");

Plays the sound file soundfile.au, located in the
applet’s directory.

 play(getDocumentBase(),"soundfile.au");

Plays the sound file soundfile.au, located in the
HTML file’s directory.

 JDK can play several audio file formats, including
.wav and .au files.

Using Audio Clips

 public AudioClip getAudioClip(URL url);

 public AudioClip getAudioClip(URL url,
String name);

Either method creates an audio clip. Specify String
name to use a relative URL address.

 public abstract void play()

 public abstract void loop()

 public abstract void stop()

Use these methods to start the clip, play it
repeatedly, and stop the clip, respectively.

3

Example: Incorporating Sound
in Applets

 Objective: Display a running clock and play sound
files to announce the time at every minute.

ClockAppletWithAudio Run Applet Viewer

 Objective: Avoid the conflict between painting the
clock and announcing time in Example by running
the tasks on separate threads.

ClockAppletWithAudioOnSeparateThread

Run Applet Viewer

ClockAppletWithAudio

-clock: ClockWithAudio
-hourAudio: AudioClip[12]
-minuteAudio: AudioClip[60]
-amAudio: AudioClip
-pmAudio: AudioClip

+init(): void
+createClcok(): void
+announceTime(s: int, m: int, h: int): void
+start(): void
+stop(): void

CurrentTimeApplet

ClockWithAudio

-applet: ClockAppletWithAudio

+paintComponent(g: Graphics): void

Clock

1 1

Defined
In Example
15.5

Defined
In Example
14.1

4

Displaying Images
Two methods are available for displaying images:
 Use the getImage() method to retrieve image files and

create Image objects.

 Paint the images on the viewing area using the
drawImage() method.

 Objective: Display images in applets

DisplayImageApplet Run Applet Viewer

 Objective: Display images and playing audio in applets
and in applications.

ResourceLocatorDemo
Run as an Applet

Run as an Application

Using Image Animation

 Objective: Simulate a movie by displaying a
sequence of images in a control loop.

ImageAnimation Run Applet Viewer

Note: Images may take several seconds to load.

 Objective: Use the MediaTracker class to load all
the images before displaying them in a sequence.

ImageAnimationUsingMediaTracker

Run Applet Viewer

5

Thank you for your attention!

	P01 - Introduction
	P02 - Basic Syntax
	P03 - Data Structures
	P04 - OOP
	P05 - IO
	P06 - Applets
	P07 - Java Script
	P08 - AWT Components
	P09 - Layout Managers
	P10 - Swing Components
	P11 - Graphics
	P12 - Events
	P13 - Exceptions
	P14 - Multithread
	P15 - Multimedia

