
1

Java:
A Software
Revolution?

http://courses.coreservlets.com

Agenda
 Truths / Myths About Java

 Java is Web-Enabled?

 Java is Safe?

 Java is Cross-Platform?

 Java is Simple?

 Java is Powerful?

 Common Java Protocols and Packages

 The Future of Java

 Getting Started

 Questions and (Hopefully) Answers

2

Java is Web-Enabled?

 Truth: Web browsers can run Java “applets”
 The Web can be used for software delivery and

execution, not just document delivery and display

 No more installation or updates; just a bookmark

 Large, complex applets best suited for intranets.
Fits the APL model better than the WWW at large.

 Truth: Java’s network library is easy to use

 Ordinary mortals can do socket programming

 Standard distributed object protocol and DBMS API

Hubble Space Telescope Monitoring:
“NASA Goddard’s Most Successful SW Project Ever.”

3

Java is Web-Enabled?
 Myth: Java is only for the Web

 Java “applets” run in Web pages

 Java “applications” run stand-alone

 Current usage (roughly)
Client (applet): 5%

Desktop (application): 45%

Server (servlets/JSP/EJB): 50%

Tomahawk Strike Coordination
Planner (APL/PPSD)

4

Java is Safe?

Dilbert copyright United Media. Used with permission.

• JAVA: Just Another Virus Architecture?

Java is Safe?

 Truth: Restrictions on permissible operations can
be enforced

 No “raw” memory manipulation (directly or indirectly).
 Thus, it is easy to identify prohibited operations.

 Applets, by default, prohibited from:
 Reading from the local disk

 Writing to the local disk

 Executing local programs

 Opening network connections other than to HTTP server

 Discovering private info about user (username,
directories, OS patch level, applications installed, etc.).

5

Java is Safe?
 Myth: Applets cannot harm your computer

 Denial of service

 Browser misconfiguration

 Implementation bugs

 Myth: Java is too restricted to be useful
 Restrictions apply only to applets, not regular Java

programs

 Digital signatures support relaxed restrictions

 Myth: Applets with digital signatures are no more
or less safe than ActiveX
 Relaxed security in applets not “all or nothing” as in

ActiveX

 Truth: Java programs can compile to
machine-independent bytecode

 Truth: All major operating systems have
Java runtime environments

 Most bundle it (Solaris, MacOS, Windows XP, OS/2)

Java
Source Code

Java Bytecode

Compiler

(javac)

Java Bytecode

Execution

JIT Compiler
or Interpreter

Compile Time Run Time

Java is Cross-Platform?

6

Mars Rover Controller and
Simulator

Java is Cross-Platform?
 Myth: Safety and machine independence can be

achieved with no performance penalty
 Current systems are about 20% slower than C++

 Upcoming releases claim to lower or eliminate that gap

 I expect the gap to stay at 10% or more

 Commercial compilers are sometimes faster than free
ones

 Myth: Java is interpreted
 Early releases were interpreted

 Many major “Just in Time” (JIT) compilers

 HotSpot and “native” compilers even faster (IBM,
Symantec, TowerJ, etc.)

7

•Truth: Java has a portable graphics library

“Native look & feel” -- Java 1.1 UI controls adapt to OS

“Pluggable look & feel” -- Java 2 controls can change looks

•Myth: The graphics library has everything
most applications need.

AWT (Java 1.0 and 1.1) was weak. JFC/Swing (Java 2)
much more complete and powerful.

Java is Cross-Platform?

Dilbert copyright United Media. Used with permission.

Java is Cross-Platform?

 Truth: (Opinion) Native look and feel was the
right choice

8

Java Foundation Classes (JFC)
Improve Graphics Considerably
 More GUI Controls

 More customizable

 Pluggable
Look and Feel

 Native Fonts

 Richer
Drawing
Operations

Java is Cross-Platform?
 Myth: Write Once Run Anywhere

 Cross-platform code can be achieved, but you must
test on all platforms you will deliver on.
 Java applications can execute local code

 The graphics library behaves slightly differently on
different platforms

 The behavior of the thread scheduler is only loosely defined

 Myth: Java will kill Microsoft
 There is also no longer immediate danger of the

reverse (Microsoft killing Java)

 Microsoft wavered between trying to fight Java and
joining it and making money by dominating the
market. With .NET, they are back to fighting it again.

9

Sun Mantra:
“100% Pure Java”

Java is Simple?

 Truth: Java greatly simplifies several
language features
 Java has automatic memory management

 Does Windows and takes out the garbage

 No dangling pointers. No memory leaks.

 Java simplifies pointer handling
 No explicit reference/dereference operations

 No makefiles

 No header files

 C++ syntax streamlined

 C# is comparable to Java, at least as far as the
core language goes

10

Rapid Application Development
in Java

 Information Retrieval for multi-
gigabyte text corpus (APL RTDC)

 Geoplot for distributed
simulation (APL STD)

Java is Simple?
 Myth: Java programming is simple

 Programming is always hard
 Java is nothing like HTML; only a little bit like JavaScript

 Programmers typically push complexity envelope
 Multithreaded and network programming

11

Java is Powerful?
 Truth: Java has a rich set of standard libraries

 Networking

 Threads (lightweight processes)

 Distributed objects

 Database access

 Graphics: GUI controls and drawing

 Data structure library

 Arbitrary precision integral and fixed-point arithmetic

 Digital signatures

 Serialization (transmitting/reassembling data
structures)

 File and stream compression

MEL - Master Environmental
Library (DMSO)

12

Java is Powerful?

 Myth: Java will increase programmer
productivity for all applications by XXX%.

 Myth: Java will kill C++

 Myth: All software should be written in Java
 Unix utilities: C

 Small/medium Windows-only programs: Visual Basic

 String parsing: Perl

 High-performance, single-platform OO systems: C++

 Air traffic control, aircraft flight software: Ada

 Knowledge-based systems: Lisp/CLOS

 Java also a good alternative for many of these

Java and C++

Although Java will certainly not
kill off C++, Java and C++ do
compete for some of the same
territory.

Hmm, does The C++ Report
think that the way to keep your
C++ code robust is to port it to
Java?

13

Key Java Packages
and Protocols

 Core Technologies
 JDBC

 RMI (and Jini)

 JavaBeans

 Swing

 Java 2D

 Standard Extensions
 Servlets

(and JavaServer Pages)

 Enterprise Java Beans (and JNDI)

 Java 3D

Java Packages and Protocols:
JDBC (Java DataBase Connectivity)

 Standardizes mechanism for making connection to
database server
 Requires server-specific driver on client. No change to server.

 Standardizes mechanism for sending queries
 Either regular or parameterized queries (stored procedures)

 Standardizes data structure of query result
 Assumes relational data, so data structure is a table

 Does not standardize SQL syntax
 Queries are simply strings

 Server extensions and enhancements supported

14

Java Packages and Protocols:
Remote Method Invocation (RMI)
 Built-in Distributed Object Protocol

 RMI lets a developer access a Java object and manipulate it in
the normal manner. Behind the scenes, each function call really
goes over the network to a remote object.

 Arbitrary Java data structures can be sent over the network with
little or no special packaging, due to Java’s “serialization”
mechanism

 Similar to a simplified CORBA, but restricted to
Java-to-Java communication

 Jini
 RMI-based protocol for self-documenting services.

 Allows real “plug and play” -- no separate drivers

 Jury is out on eventual success. Security and industry
adoption are open questions.

Java Packages and Protocols:
JavaBeans

 JavaBeans is to Java as ActiveX is to Visual C++.

 Lets you package a Java program
as a software “component”

 Visual tools can modify/manipulate
it without knowing anything about
it in advance
 For example, you can drop a Bean into

Visual Café, IBM VisualAge for Java,
Inprise (Borland) JBuilder, Sybase PowerJ,
Metrowerks CodeWarrior, Sun JavaWorkshop, etc., and it is
automatically available from their tool palette for drag-and-
drop development

 Better security and portability than ActiveX

 More ActiveX components available

15

Java Packages and Protocols:
Swing

 Standard GUI-control (widget) library in Java 2

 Many more built-in controls

 Much more flexible and customizable

 Includes many small features aimed at
commercial applications
 Tooltips, tabbed panes, on-line

help, HTML support, dockable
toolbars, multi-document
interface, etc.

 Look and feel can be
changed at run time

Java Packages and Protocols:
Java 2D

 Standard drawing library in Java 2

 Many new drawing attributes
 Fill patterns and images

 Arbitrary fonts

 Pen thicknesses and dashing patterns

 Color mixing rules and transparency

 Coordinate transformations
 Floating-point coordinate system

 Mapping from memory coords to
screen or printer coords

 Affine transforms: translate, scale,
rotate, and shear

16

Java Packages and Protocols:
Java 3D

 Standard extension to Java
 Not part of “core” Java language like Java 2D

 Built on top of Direct3D or OpenGL,
depending on platform

 Scene-graph based model, not primarily immediate-
mode rendering

Java Packages and Protocols:
Servlets and JavaServer Pages (JSP)

 Servlets: Java’s answer to CGI
 Efficient: thread, not process, per request
 Convenient: HTTP headers, cookies, etc.
 Powerful: persistence, session tracking, etc.
 Secure: no buffer overflows or shell escapes

 Supported by virtually all Web servers:
 Native support: Netscape/iPlanet, IBM WebSphere, Oracle 8i/9i

and Oracle Application Server, BEA WebLogic, Silverstream,
Sapphire/Web, etc.

 Via add-on engine: Apache, Microsoft IIS and Personal
WebServer, Netscape FastTrack, O’Reilly WebSite, StarNine
WebSTAR for MacOS, etc.

 JavaServer Pages (JSP)
 Convenient and efficient way to combine servlets and HTML.

Portable alternative to ASP & ColdFusion.

17

Java Packages and Protocols:
Enterprise JavaBeans (EJB)

 EJBs are to server components
what regular JavaBeans are to
application components

 Standardizes access to
services like load balancing,
persistence, failover, etc.

 Builds on JavaBeans, CORBA, and RMI
“under the hood”

 Potentially accessible via non-Java programs

 Application Servers Supporting EJB
 BEA WebLogic, IBM WebSphere, Netscape/iPlanet, Oracle,

Progress SW Apptivity, NetDynamics, Sybase, Bluestone,
Saphire/Web etc.

The Future of Java

 Core language
 Java 2 (aka JDK 1.2-1.5) released for Windows in Dec ‘98.

Richer set of GUI controls, better drawing model, extensive data
structure library (“collections”), better audio support, standard
CORBA interface, better performance. Core language evolution
slowed.

 Standard extensions
 Servlets, JSP, Jini, JAXP, etc. Continue to evolve rapidly.

 Java on the server: current growth is here

 Java for small devices and embedded apps
 Java 2 Micro Edition (PDAs, cell phones, etc.), JavaCard

 Future of Real-Time Java is still unknown (www.rtj.org)

 Legal battles over?

18

The Future of Java:
Improved Performance

0

50

100

150

200

250

1.1.3 1.1.5 1.2B2 1.2B3 1.2B4

JHU/APL Information Retrieval Benchmark

The Future of Java:
More Growth

0

100.000.000

200.000.000

300.000.000

400.000.000

500.000.000

600.000.000

700.000.000

800.000.000

900.000.000

1.000.000.000

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0 0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.
96

5.
96

9.
96

1.
97

5.
97

Web Documents On-Line Java Programs On-Line

19

The Future of Java:
More Jobs

 Even in economic downturn, most companies that
do large amounts of software development have
shortages of good Java developers

 IBM has over 2,500 professionals involved
with Java product development

 Seen on a blackboard in the background of a video
clip at the JavaOne conference:

if (you.canRead(this))

you.canGet(new Job(!problem));

The Future of Java:
Java is Driving the Software Industry

20

Which Java Version Should
You Use?

 Applets
 Use JDK 1.1 if you want to support the WWW at large.
 Internet Explorer 4.0 and later and Netscape 4.06 and later support

JDK 1.1. Netscape 6/7 support JDK 1.3/1.4.
 Java Plug-In is required if you want to use Java 2 on a browser other

than Netscape 6 or 7. Mozilla Firefox depends on the Java plug-in.

 Applications
 For standard applications use JDK 1.4
Download: j2sdk-1_4_2_11-windows-i586-p.exe from http://java.sun.com/

 Common Approach
 Use JDK 1.4, but bookmark the JDK 1.1 API to check available

methods when writing applets for Web at large.
 For class, use JDK 1.4 and Firefox or IE 6

Getting Started: Web
Web Pages

 http://java.sun.com/
The Java Software web site, with the latest information on Java technology,
product information, news, and features.

 http://java.sun.com/docs
Java Platform Documentation provides access to white papers, the Java Tutorial
and other documents.

 http://java.sun.com/jdc
The Java Developer Connection web site. (Free registration required.) Additional
technical information, news, and features; user forums; support information, and
much more.

 http://java.sun.com/products/
Java Technology Products & API

 Create and run a Java program
 Create the file (use text editor, e.g. notepad)
 Compile it (use the program javac)
 Run it (use the program java)

21

Getting Started: Details
 Create the File

 Write and save a file (say Test.java) that defines public
class Test

 File and class names are case sensitive and must match exactly

 Compile the program
 Compile Test.java through

> javac Test.java

 This step creates a file called Test.class
 If you get a “deprecation” warning, this means you are

using a Java construct that has a newer alternative (ie it
still works but is not recommended)
 Use “javac -deprecation Test.java” for an explanation, then

look the newer construct up in the on-line API

Getting Started: Details
(Continued)

 Run the program
 For a stand-alone application, run it with

> java Test

 Note that the command is java, not javac, and that you refer
to Test, not Test.class

 For an applet that will run in a browser, run it by loading
the HTML page that refers to it (or use appletviewer)

22

Basic Hello World Application

 “Application” is Java lingo for a stand-alone Java
program
 Note that the class name and the filename must match

 A file can contain multiple classes, but only one can be declared
public, and that one’s name must match the filename

 File HelloWorld.java:
public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world.");

}

}

Basic Hello World Application

 Compiling:
javac HelloWorld.java

 Running:
java HelloWorld

 Output:
Hello, world.

23

Command Line Arguments

 File ShowArgs.java:
public class ShowArgs {
public static void main(String[] args) {
for(int i=0; i<args.length; i++) {
System.out.println("Arg " + i +

" is " + args[i]);
}

}
}

 Differences from C
 In Java, String is a real type

 Java arrays have an associated length
 The filename is not part of the command line arguments

Command Line Arguments,
Results

 Compiling and Running:

> javac ShowArgs.java

> java ShowArgs fee fie foe fum

Arg 0 is fee

Arg 1 is fie

Arg 2 is foe

Arg 3 is fum

24

Basic Hello WWW Applet

 File HelloWWW.java:
import java.applet.Applet;
import java.awt.*;

public class HelloWWW extends Applet {
public void init() {
setBackground(Color.gray);
setForeground(Color.white);
setFont(new Font("SansSerif", Font.BOLD, 30));

}

public void paint(Graphics g) {
g.drawString("Hello, World Wide Web.", 5, 35);

}
}

Basic Hello WWW Applet
 File HelloWWW.html:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">
<HTML>
<HEAD>

<TITLE>HelloWWW: Simple Applet Test.</TITLE>
</HEAD>

<BODY>
<H1>HelloWWW: Simple Applet Test.</H1>

<APPLET CODE="HelloWWW.class" WIDTH=400 HEIGHT=40>
Error! You must use a Java enabled browser.

</APPLET>

</BODY>
</HTML>

25

Basic Hello WWW Applet

 Compiling:
javac HelloWWW.java

 Running:
Load HelloWWW.html in a Java-enabled browser

Customizing Applets
import java.applet.Applet;
import java.awt.*;

public class Message extends Applet {
private int fontSize;
private String message;

public void init() {
setBackground(Color.black);
setForeground(Color.white);
fontSize = getSize().height - 10;
setFont(new Font("SansSerif", Font.BOLD, fontSize));
// Read heading message from PARAM entry in HTML.
message = getParameter("MESSAGE");

}

public void paint(Graphics g) {
if (message != null)
g.drawString(message, 5, fontSize+5);

}
}

26

Customizing Applets
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>The Message Applet</TITLE>
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>The <CODE>Message</CODE> Applet</H1>
<P>
<APPLET CODE="Message.class" WIDTH=325 HEIGHT=25>

<PARAM NAME="MESSAGE" VALUE="Tiny">
Sorry, these examples require Java

</APPLET>
<P>
<APPLET CODE="Message.class" WIDTH=325 HEIGHT=50>

<PARAM NAME="MESSAGE" VALUE="Small">
Sorry, these examples require Java

</APPLET>
...
</BODY>
</HTML>

Customizing Applets

27

Some Predefined Classes
javax.swing Class JButton

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.AbstractButton
javax.swing.JButton

Constructor Summary
JButton()
Creates a button with no set text or icon.

JButton(Action a)
Creates a button where properties are taken from
the Action supplied.

JButton(Icon icon)
Creates a button with an icon.

JButton(String text)
Creates a button with text.
…

Method Summary
protected void configurePropertiesFromAction (Action a)
Factory method which sets the AbstractButton's properties according to values from the Action instance.

AccessibleContext getAccessibleContext ()
Gets the AccessibleContext associated with this JButton.

String getUIClassID ()
Returns a string that specifies the name of the L&F class that renders this component.

Boolean isDefaultButton ()
Gets the value of the defaultButton property, which if true means that this button is the current default
button for its JRootPane.

protected String paramString ()
Returns a string representation of this JButton.
…

Some Predefined Classes
Class StrictMath

java.lang.Object
java.lang.StrictMath

Method Summary
…
static float abs (float a)
Returns the absolute value of a float value.

static double acos (double a)
Returns the arc cosine of an angle, in the range of 0.0 through pi.

static double asin (double a)
Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

static double atan (double a)
Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.
…

Field Summary

static double E
The double value that is closer than any other to e, the
base of the natural logarithms.

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

28

Useful list of Java IDEs
They are in NO specific order!

Eclipse
This is a very good and open source IDE. It is used a lot commercially and personally. It was made in Java so
it's cross-platform. It has a lot of support for additional plug-ins to extend your developing needs. What I love
about Eclipse is that it compiles your code as you type. It highlights compiling errors and mistakes like how MS
Word does for mis-spelled words.
Netbeans
This is a very good IDE also. It has a built-in GUI Builder for those you like that R.A.D. . It is used a lot
commercially too. It was made in Java so it's cross-platform like Eclipse.
BlueJ
This is an IDE developed towards first time Java developers. It teaches you a lot of programming concepts in
Java and has a nice UML tool.
JCreator
This is my first Java IDE I used. It is very good and very easy to use. This IDE was made in C++ unlike the ones
above, which were all made in Java. Only runs on Windows platform.

IntelliJ IDEA
IntelliJ IDEA is an intelligent Java IDE intensely focused on developer productivity that provides a robust
combination of enhanced development tools.
Borland JBuilder
This is a great commerial IDE for Java. It does have a price but some developers believe it's worth it. It also has
a built-in Java GUI Builder.
Dr. Java
Dr. Java is a lightweight development environment for writing Java programs. It is designed primarily for
students, providing an intuitive interface and the ability to interactively evaluate Java code. It also includes
powerful features for more advanced users.

Summary
 Java is a complete language, supporting both

standalone applications and Web development

 Java is compiled to bytecode and can be run on
any platform that supports a Java Virtual
Machine

 Java 2 Platform is available in a Standard
Edition, Enterprise Edition, or Micro Edition

 Most browsers support only JDK 1.1

 Compiling: use “javac”

 Executing standalone programs: use “java”

 Executing applets: load HTML file in browser

29

Thank you for your attention!

1

Basic Java
Syntax

Agenda
 Creating, compiling, and executing simple

Java programs

 Accessing arrays

 Looping

 Using if statements

 Comparing strings

 Building arrays
 One-step process

 Two-step process

 Using multidimensional arrays

 Manipulating data structures

 Handling errors

2

Getting Started
 Name of file must match name of class

 It is case sensitive, even on Windows

 Processing starts in main
 public static void main(String[] args)

 Routines usually called “methods,” not “functions.”

 Printing is done with System.out
 System.out.println, System.out.print

 Compile with “javac”
 Open DOS window; work from there

 Supply full case-sensitive file name (with file extension)

 Execute with “java”
 Supply base class name (no file extension)

Example

 File: HelloWorld.java
public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world.");

}

}

 Compiling
DOS> javac HelloWorld.java

 Executing
DOS> java HelloWorld

Hello, world.

3

More Basics
 Use + for string concatenation
 Arrays are accessed with []

 Array indices are zero-based
 The argument to main is an array of strings that

correspond to the command line arguments
 args[0] returns first command-line argument
 args[1] returns second command-line argument
 Etc.

 The length field gives the number of elements
in an array
 Thus, args.length gives the number of

command-line arguments
 Unlike in C/C++, the name of the program is not

inserted into the command-line arguments

Example
 File: ShowTwoArgs.java

public class ShowTwoArgs {

public static void main(String[] args) {

System.out.println("First arg: " + args[0]);

System.out.println("Second arg: " + args[1]);

}

}
 Compiling

DOS> javac ShowTwoArgs.java

 Executing
DOS> java ShowTwoArgs Hello World
First args Hello
Second arg: Class

DOS> java ShowTwoArgs
[Error message]

4

Looping Constructs
 while

while (continueTest) {

body;

}

 do
do {

body;

} while (continueTest);

 for
for(init; continueTest; updateOp) {

body;

}

Loops
public static void listNums1(int max) {
int i = 0;
while (i <= max) {
System.out.println("Number: " + i);
i++; // "++" means "add one"

}
}
public static void listNums2(int max) {
int i = 0;
do {
System.out.println("Number: " + i); i++;

} while (i <= max); // Don’t forget semicolon
}

public static void listNums3(int max) {
for(int i=0; i<max; i++) {
System.out.println("Number: " + i);

}
}

5

Aside: Defining Multiple Methods
in Single Class

public class LoopTest {

public static void main(String[] args) {

listNums1(5);

listNums2(6);

listNums3(7);

}

public static void listNums1(int max) {…}

public static void listNums2(int max) {…}

public static void listNums3(int max) {…}

}

Loop Example

 File ShowArgs.java:

public class ShowArgs {

public static void main(String[] args) {

for(int i=0; i<args.length; i++) {

System.out.println("Arg " + i +

" is " +

args[i]);

}

}

}

6

If Statements
Single Option
if (boolean-expression) {

statement;

}

Multiple Options
if (boolean-expression) {
statement1;

} else {
statement2;

}
 ==, !=

 Equality, inequality. In addition to comparing primitive types, ==
tests if two objects are identical (the same object), not just if they
appear equal (have the same fields).

 <, <=, >, >=
 Numeric less than, less than or equal to, greater than, greater

than or equal to.
 &&, ||

 Logical AND, OR.
 !

 Logical negation.

Strings
 String is a real class in Java, not an array of characters

as in C and C++.

 The String class has a shortcut method to create a new
object: just use double quotes
 This differs from normal objects, where you use the new

construct to build an object

 Use equals to compare string
public static void main(String[] args) {
String match = "Test";
if (args.length == 0) {
System.out.println("No args");

} else if (args[0] == match) {
System.out.println("Match");

} else { System.out.println("No match"); }
}

 Prints "No match" for all inputs

 Fix: if (args[0].equals(match))

7

Wrapper Classes

 Each primitive data type has a corresponding
object (wrapper class)

 The data is stored as an immutable field of the object

Primitive Corresponding
Data Type Object Class

 byte Byte
 short Short
 int Integer
 long Long
 float Float
 double Double
 char Character
 boolean Boolean

Wrapper Uses

 Defines useful constants for each data type
 For example,

Integer.MAX_VALUE
Float.NEGATIVE_INFINITY

 Convert between data types
 Use parseXxx method to convert a String to the

corresponding primitive data type
try {

String value = "3.14e6";
Double d = Double.parseDouble(value);

} catch (NumberFormatException nfe) {
System.out.println("Can't convert: " + value);

}

8

Wrappers: Converting Strings

Data Type Convert String using either …
 byte Byte.parseByte(string)

 new Byte(string).byteValue()
 short Short.parseShort(string)

 new Short(string).shortValue()
 int Integer.parseInteger(string)

 new Integer(string).intValue()
 long Long.parseLong(string)

 new Long(string).longValue()
 float Float.parseFloat(string)

 new Float(string).floatValue()
 double Double.parseDouble(string)

 new Double(string).doubleValue()

Reading from the keyboard
// import java.io.*;
public class MyInput {

/* Read a string from the keyboard */
public static String readString() {
BufferedReader br
= new BufferedReader(new InputStreamReader(System.in), 1);
// Declare and initialize the string
String string = " ";
// Get the string from the keyboard
try {
string = br.readLine();

}
catch (IOException ex) {
System.out.println(ex);

}
// Return the string obtained from the keyboard
return string;

}
/**Read an int value from the keyboard*/
public static int readInt() {
return Integer.parseInt(readString());

}
/**Read a double value from the keyboard*/
public static double readDouble() {
return Double.parseDouble(readString());

}
}

9

Building Arrays:
One-Step Process

 Declare and allocate array in one fell swoop
type[] var = { val1, val2, ... , valN };

 Examples:
int[] values = { 10, 100, 1000 };

Point[] points = { new Point(0, 0),

new Point(1, 2),

... };

Building Arrays:
Two-Step Process

 Step 1: allocate an array of references:
type[] var = new type[size];
 Eg:
int[] values = new int[7];
Point[] points = new Point[someArray.length];

 Step 2: populate the array
points[0] = new Point(...);
points[1] = new Point(...);
...
Points[6] = new Point(…);

 If you fail to populate an entry
 Default value is 0 for numeric arrays
 Default value is null for object arrays

10

Multidimensional Arrays
 Multidimensional arrays are implemented as

arrays of arrays

int[][] twoD = new int[64][32];

String[][] cats = { { "Caesar", "blue-point" },
{ "Heather", "seal-point" },
{ "Ted", "red-point" } };

 Note: the number of elements in each row (dimension) need
not be equal

int[][] irregular = { { 1 },
{ 2, 3, 4},
{ 5 },
{ 6, 7 } };

TriangleArray: Example
public class TriangleArray {

public static void main(String[] args) {

int[][] triangle = new int[10][];

for(int i=0; i<triangle.length; i++) {
triangle[i] = new int[i+1];

}

for (int i=0; i<triangle.length; i++) {
for(int j=0; j<triangle[i].length; j++) {

System.out.print(triangle[i][j]);
}
System.out.println();

}
}

}

11

TriangleArray: Result

> java TriangleArray

0

00

000

0000

00000

000000

0000000

00000000

000000000

0000000000

Passing Arrays to Methods
Java uses pass by value to pass parameters to a
method. There are important differences between
passing a value of variables of primitive data
types and passing arrays.

 For a parameter of a primitive type value, the
actual value is passed. Changing the value of the
local parameter inside the method does not affect
the value of the variable outside the method.

 For a parameter of an array type, the value of the
parameter contains a reference to an array; this
reference is passed to the method. Any changes
to the array that occur inside the method body
will affect the original array that was passed as
the argument.

12

Array: an Example
import java.io.*; // for I/O
class HighArray {

private double[] a; // ref to array a
private int nElems; // number of data items

//--
public HighArray(int max) { // constructor

a = new double[max]; // create the array
nElems = 0; // no items yet

}
//--
public boolean find(double searchKey) { // find value

int j;
for(j=0; j<nElems; j++) if(a[j] == searchKey) break;
if(j == nElems) // gone to end?

return false; // yes, can't find it
else

return true; // no, found it
}
//--
public void insert(double value) { // put element into array

a[nElems] = value; // insert it
nElems++; // increment size

}

Array: an Example (Cont.)
public boolean delete(double value){

int j;
for(j=0; j<nElems; j++) if(value == a[j]) break;
if(j==nElems) // can't find it

return false;
else { // found it

for(int k=j; k<nElems; k++) // move higher ones down
a[k] = a[k+1]; nElems--; // decrement size
return true;

}
}
//--
public void display() { // displays array contents

for(int j=0; j<nElems; j++)
System.out.print(a[j] + " "); // display it

System.out.println("");
}
//--
} // end class HighArray

The class user, the HighArrayApp class, need not worry about index numbers
or any other array details. Amazingly, the class user does not even need to
know what kind of data structure the HighArray class is using to store the data.
The structure is hidden behind the interface.

13

Array: an Example (Cont.)
class HighArrayApp {
public static void main(String[] args) {
int maxSize = 100; // array size
HighArray arr; // reference to array
arr = new HighArray(maxSize); // create the array
arr.insert(77); // insert 10 items
arr.insert(99); arr.insert(44); arr.insert(55);
arr.insert(22); arr.insert(88); arr.insert(11);
arr.insert(00); arr.insert(66); arr.insert(33);
arr.display(); // display items
int searchKey = 35; // search for item
if(arr.find(searchKey))

System.out.println("Found " + searchKey);
else

System.out.println("Can't find " + searchKey);
arr.delete(00); // delete 3 items
arr.delete(55);
arr.delete(99);
arr.display(); // display

} // end main()
} // end class HighArrayApp

Output: 77 99 44 55 22 88 11 0 66 33
Can't find 35
77 44 22 88 11 66 33

The process of separating the how
from the what—how an operation is
performed inside a class, as opposed
to what's visible to the class user—is
called abstraction. Abstraction is an
important aspect of software
engineering.

Recursion: an Example
import java.io.*; // for I/O
class AnagramApp {

static int size; static int count;
static char[] arrChar = new char[100];

public static void main(String[] args) throws IOException {
System.out.print("Enter a word: "); // get word
System.out.flush();
String input = getString();
size = input.length(); // find its size
count = 0;
for(int j=0; j<size; j++) arrChar[j] = input.charAt(j);
doAnagram(size); // anagram it

} // end main()
public static void doAnagram(int newSize) {

if(newSize == 1) return; // go no further
for(int j=0; j<newSize; j++) {

doAnagram(newSize-1); // anagram remaining
if(newSize==2) displayWord(); // display it
rotate(newSize); // rotate word

}
}
public static void rotate(int newSize){ // rotate left

int j; int position = size - newSize;
char temp = arrChar[position]; // save first letter
for(j=position+1; j<size; j++) // shift others left

arrChar[j-1] = arrChar[j];
arrChar[j-1] = temp; // put first on right

}

14

Recursion: an Example (Cont.)
public static void displayWord() {

if(count < 99) System.out.print(" ");
if(count < 9) System.out.print(" ");
System.out.print(++count + " ");
for(int j=0; j<size; j++) System.out.print(arrChar[j]);
System.out.print(" ");
System.out.flush();
if(count%6 == 0) System.out.println("");

}
public static String getString() throws IOException {

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}
} // end class AnagramApp

Enter a word: cats
1 cats 2 cast 3 ctsa 4 ctas 5 csat 6 csta
7 atsc 8 atcs 9 asct 10 astc 11 acts 12 acst
13 tsca 14 tsac 15 tcas 16 tcsa 17 tasc 18 tacs
19 scat 20 scta 21 satc 22 sact 23 stca 24 stac

Data Structures

 Java 1.0 introduced two synchronized data
structures in the java.util package
 Vector

 A strechable (resizeable) array of Objects

 Time to access an element is constant regardless of position

 Time to insert element is proportional to the size of the vector

 In Java 2 (eg JDK 1.2 and later), use ArrayList

 Hashtable
 Stores key-value pairs as Objects

 Neither the keys or values can be null

 Time to access/insert is constant

 In Java 2, use HashMap

15

Useful Vector Methods

 addElement/insertElementAt/setElementAt
 Add elements to the vector

 removeElement/removeElementAt
 Removes an element from the vector

 firstElement/lastElement
 Returns a reference to the first and last element, respectively

(without removing)

 elementAt
 Returns the element at the specified index

 indexOf
 Returns the index of an element that equals the object specified

 contains
 Determines if the vector contains an object

Useful Vector Methods

 elements
 Returns an Enumeration of objects in the vector

Enumeration elements = vector.elements();
while(elements.hasMoreElements()) {
System.out.println(elements.nextElement());

}

 size
 The number of elements in the vector

 capacity
 The number of elements the vector can hold before

becoming resized

16

Useful Hashtable Methods

 put/get
 Stores or retrieves a value in the hashtable

 remove/clear
 Removes a particular entry or all entries from the hashtable

 containsKey/contains
 Determines if the hashtable contains a particular key or element

 keys/elements
 Returns an enumeration of all keys or elements, respectively

 size
 Returns the number of elements in the hashtable

 rehash
 Increases the capacity of the hashtable and reorganizes it

Collections Framework

 Additional data structures added by Java 2
Platform

Collection

Set

SortedSet

List

ArrayList
LinkedList
Vector†

HashSet

TreeSet

Map

SortedMap

HashMap
Hashtable†

TreeMap

Interface Concrete class †Synchronized Access

17

Collection Interfaces

 Collection
 Abstract class for holding groups of objects

 Set
 Group of objects containing no duplicates

 SortedSet
 Set of objects (no duplicates) stored in ascending order
 Order is determined by a Comparator

 List
 Physically (versus logically) ordered sequence of objects

 Map
 Stores objects (unordered) identified by unique keys

 SortedMap
 Objects stored in ascending order based on their key value

Collections Class

 Use to create synchronized data structures
List list = Collection.synchronizedList(new ArrayList());

Map map = Collections.synchronizedMap(new HashMap());

 Provides useful (static) utility methods
 sort

 Sorts (ascending) the elements in the list
 max, min

 Returns the maximum or minimum element in the collection
 reverse

 Reverses the order of the elements in the list
 shuffle

 Randomly permutes the order of the elements

18

Summary

 Loops, conditional statements, and array
access is the same as in C and C++

 String is a real class in Java

 Use equals, not ==, to compare strings

 You can allocate arrays in one step or in two
steps

 Vector or ArrayList is a useful data
structure
 Can hold an arbitrary number of elements

 Handle exceptions with try/catch blocks

Thank you for your attention!

1

Java Data
Structures

Agenda

 The limitations of arrays

 Java Collection Framework hierarchy

 Use the Iterator interface to traverse a
collection

 Set interface, HashSet, and TreeSet

 List interface, ArrayList, and LinkedList

 Vector and Stack

 Map, HashMap, and TreeMap

 Collections and Arrays classes

2

Limitations of arrays

 Once an array is created, its size
cannot be altered.

 Array provides inadequate support
for inserting, deleting, sorting, and
searching operations.

Collections Framework
 Additional data structures added by Java 2 Platform.

Supports two types of collections, named collections
and maps.

Collection

Set

SortedSet

List

ArrayList
LinkedList
Vector†

HashSet

TreeSet

Map

SortedMap

HashMap
Hashtable†

TreeMap

Interface Concrete class †Synchronized Access

Arrays

3

The Collection Interface
 Collection

 Abstract class for holding
groups of objects

 Set
 Group of objects containing no

duplicates
 SortedSet

 Set of objects (no duplicates)
stored in ascending order

 Order is determined by a
Comparator

 List
 Physically (versus logically)

ordered sequence of objects
 Map

 Stores objects (unordered)
identified by unique keys

 SortedMap
 Objects stored in ascending

order based on their key value
 Neither duplicate or null keys

are permitted

Collection

+add(element: Object): boolean
+addAll(collection: Collection): boolean
+clear(): void
+contains(elment: Object): boolean
+containsAll(collection: Collection):boolean
+equals(object: Object): boolean
+hashcode(): int
+iterator(): Iterator
+remove(element: Object): boolean
+removeAll(collection: Collection): boolean
+retainAll(collection: Collection): boolean
+size(): int
+toArray(): Object[]
+toArray(array: Object[]): Object[]

Collections Class
 Use to create synchronized data structures

List list = Collection.synchronizedList(new ArrayList());

Map map = Collections.synchronizedMap(new HashMap());

 Provides useful (static) utility methods
 sort

 Sorts (ascending) the elements in the list
 max, min

 Returns the maximum or minimum element in the collection
 reverse

 Reverses the order of the elements in the list
 shuffle

 Randomly permutes the order of the elements

4

Using the Collections Class

This example demonstrates using the methods
in the Collections class. The example creates a
list, sorts it, and searches for an element. The
example wraps the list into a synchronized and
read-only list.

RunTestCollections

The HashSet Class
The HashSet class is a concrete class that implements
Set. It can be used to store duplicate-free elements.

This example creates a hash set filled with strings, and
uses an iterator to traverse the elements in the list.
import java.util.*;
public class TestHashSet {
public static void main(String[] args) {

// Create a hash set
Set set = new HashSet();
set.add("Red"); set.add("Yellow"); set.add("White");
set.add("Green"); set.add("Orange"); set.add("Gray");
set.add("Black"); set.add("Red");
System.out.println(set);
// Obtain an iterator for the hash set
Iterator iterator = set.iterator();
// Display the elements in the hash set
while (iterator.hasNext()) System.out.print(iterator.next() + " ");

}
}

TestHashSet

Run

5

Useful Hashtable Methods
 put/get

 Stores or retrieves a value in the hashtable

 remove/clear
 Removes a particular entry or all entries from the hashtable

 containsKey/contains
 Determines if the hashtable contains a particular key or

element

 keys/elements
 Returns an enumeration of all keys or elements,

respectively

 size
 Returns the number of elements in the hashtable

 rehash
 Increases the capacity of the hashtable and reorganizes it

The Set Interface
The Set interface extends the Collection interface. It does not
introduce new methods or constants, but it stipulates that an
instance of Set contains no duplicate elements. The concrete
classes that implement Set must ensure that no duplicate
elements can be added to the set. That is no two elements e1
and e2 can be in the set such that e1.equals(e2) is true.

SortedSet is a subinterface of Set, which guarantees that the
elements in the set are sorted. TreeSet is a concrete class that
implements the SortedSet interface. You can use an iterator to
traverse the elements in the sorted order. The elements can be
sorted in two ways.
1. One way is to use the Comparable interface.
2. The other way is to specify a comparator for the elements in the set
if the class for the elements does not implement the Comparable
interface, or you don’t want to use the compareTo method in the class
that implements the Comparable interface. This approach is referred to
as order by comparator.

6

Using TreeSet to Sort Elements
in a Set

This example creates a hash set filled with strings, and
then creates a tree set for the same strings. The strings
are sorted in the tree set using the compareTo method in
the Comparable interface.

The example also creates a tree set of geometric objects.
The geometric objects are sorted using the compare
method in the Comparator interface.

GeometricObjectComparator Run

TestTreeSet

The List Interface
A set stores non-duplicate elements. To allow duplicate
elements to be stored in a collection, you need to use a
list. A list can not only store duplicate elements, but can
also allow the user to specify where the element is stored.
The user can access the element by index.

The ArrayList class and the LinkedList class are concrete
implementations of the List interface. Which of the two classes
you use depends on your specific needs.
If you need to support random access through an index without
inserting or removing elements from any place other than the end,
ArrayList offers the most efficient collection.
If, however, your application requires the insertion or deletion of
elements from any place in the list, you should choose LinkedList.

A list can grow or shrink dynamically. An array is fixed
once it is created. If your application does not require
insertion or deletion of elements, the most efficient data
structure is the array.

7

The List Interface

List

+add(index: int, element: Object) : boolean
+addAll(index: int, collection: Collection) : boolean
+get(index: int) : Object
+indexOf(element: Object) : int
+lastIndexOf(element: Object) : int
+listIterator() : ListIterator
+listIterator(startIndex: int) : ListIterator
+remove(index: int) : int
+set(index: int, element: Object) : Object
+subList(fromIndex: int, toIndex: int) : List

Collection

The List Iterator

ListIterator

+add(element: Object) : void
+hasPrevious() : boolean
+nextIndex() : int
+previousIndex() : int
+previous() : Object
+previousIndex() : int
+set(element: Object) : void

Iterator

8

Using ArrayList and LinkedList

This example creates an array list filled with numbers,
and inserts new elements into the specified location in
the list. The example also creates a linked list from the
array list, inserts and removes the elements from the
list. Finally, the example traverses the list forward and
backward.

RunTestList

The Vector and Stack Classes

The Java Collections Framework was introduced with
Java 2. Several data structures were supported prior
to Java 2. Among them are the Vector class and the
Stack class. These classes were redesigned to fit into
the Java Collections Framework, but their old-style
methods are retained for compatibility. This section
introduces the Vector class and the Stack class.

In Java 2, Vector is the same as ArrayList, except that Vector
contains the synchronized methods for accessing and modifying
the vector.

9

The Vector Class

Vector

+addElement(element: Object) : void
+capacity() : void
+copyInto(anArray: Object[]) : void
+elementAt(index: int) : Object
+elements() : Enumeration
+ensureCapacity() : void
+firstElement() : int
+insertElementAt(index: int) : void
+lastElement() : Object
+removeAllElements() : void
+removeElement(element: Object) : void
+removeElementAt(index: int) : void
+setElementAt(element: Object, index: int) : void
+setSize(newSize: int) : void
+trimToSize() : void

List  addElement/insertElementAt/setElementAt
Add elements to the vector

 removeElement/removeElementAt
Removes an element from the vector

 firstElement/lastElement
Returns a reference to the first and last element,
respectively (without removing)

 elementAt
Returns the element at the specified index

 indexOf
Returns the index of an element that equals the
object specified

 contains
Determines if the vector contains an object

 elements
Returns an Enumeration of objects in the vector

Enumeration elements = vector.elements();
while(elements.hasMoreElements()) {
System.out.println(elements.nextElement());
}

 size
The number of elements in the vector

 capacity
The number of elements the vector can hold
before becoming resized

The Stack Class

The Stack class represents
a last-in-first-out stack of
objects. The elements are
accessed only from the top
of the stack. You can
retrieve, insert, or remove
an element from the top of
the stack.

Stack

+empty() : boolean
+peek() : Object
+pop() : Object
+push(element: Object) : void
+search(element: Object) : int

Vector

10

Using Vector and Stack

The program reads student scores from
the keyboard, stores the scores in the
vector, finds the best scores, and then
assigns grades for all the students. A
negative score signals the end of the
input.

RunAssignGradeUsingVector

The Map Interface

The Map interface maps keys
to the elements. The keys are
like indexes. In List, the
indexes are integer. In Map,
the keys can be any objects.

The HashMap and TreeMap
classes are two concrete
implementations of the Map
interface. The HashMap class
is efficient for locating a value,
inserting a mapping, and
deleting a mapping. The
TreeMap class, implementing
SortedMap, is efficient for
traversing the keys in a sorted
order.

Map

+clear() : void
+containsKey(key: Object) : boolean
+containsValue(value: Object) : boolean
+entrySet() : Set
+get(key: Object) : Object
+isEmpty() : boolean
+keySet() : Set
+put(key: Object, value: Object) : Object
+putAll(m: Map) : void
+remove(key: Object) : Object
+size() : int
+values() : Collection

11

Using HashMap and TreeMap

This example creates a hash map that maps
borrowers to mortgages. The program first
creates a hash map with the borrower’s name as
its key and mortgage as its value. The program
then creates a tree map from the hash map, and
displays the mappings in ascending order of the
keys.

RunTestMap

The Arrays
Class

Arrays

+asList(a: Object[]) : List
+binarySearch(a: byte[],key: byte) : int
+binarySearch(a: char[], key: char) : int
+binarySearch(a: double[], key: double) : int
+binarySearch(a,: float[] key: float) : int
+binarySearch(a: int[], key: int) : int
+binarySearch(a: long[], key: long) : int
+binarySearch(a: Object[], key: Object) : int
+binarySearch(a: Object[], key: Object, c: Comparator) : int
+binarySearch(a: short[], key: short) : int
+equals(a: boolean[], a2: boolean[]) : boolean
+equals(a: byte[], a2: byte[]) : boolean
+equals(a: char[], a2: char[]) : boolean
+equals(a: double[], a2: double[]) : boolean
+equals(a: float[], a2: float[]) : boolean
+equals(a: int[], a2: int[]) : boolean
+equals(a: long[], a2: long[]) : boolean
+equals(a: Object[], a2: Object[]) : boolean
+equals(a: short[], a2: short[]) : boolean
+fill(a: boolean[], val: boolean) : void
+fill(a: boolean[], fromIndex: int, toIndex: int, val: boolean) : void

Overloaded fill method for char, byte, short, int, long, float, double,
and Object.

+sort(a: byte[]) : void
+sort(a: byte[], fromIndex: int, toIndex: int) : void

Overloaded sort method for char, short, int, long, float, double, and
Object.

The Arrays class
contains various static
methods for sorting
and searching arrays,
for comparing arrays,
and for filling array
elements. It also
contains a method for
converting an array to
a list.

12

Using the Arrays Class

This example demonstrates using the methods in
the Arrays class. The example creates an array of
int values, fills part of the array with 50, sorts it,
searches for an element, and compares the array
with another array.

RunTestArrays

Summary

Collection

Set

SortedSet

List

ArrayList
LinkedList
Vector†
(obsolete)

HashSet

TreeSet

Map

SortedMap

HashMap
Hashtable†

TreeMap

Interface Concrete class †Synchronized Access

Arrays

13

Thank you for your attention!

1

Object-Oriented
Programming

Agenda

 Similarities and differences between
Java and C++

 Object-oriented nomenclature and
conventions

 Instance variables (fields)

 Methods (member functions)

 Constructors

2

Object-Oriented Programming in
Java

 Similarities with C++
 User-defined classes can be used the same way as built-in

types.

 Basic syntax

 Differences from C++
 Methods (member functions) are the only function type

 Object is the topmost ancestor for all classes

 All methods use the run-time, not compile-time, types (i.e.
all Java methods are like C++ virtual functions)

 The types of all objects are known at run-time

 All objects are allocated on the heap (always safe to return
objects from methods)

 Single inheritance only

Object-Oriented Nomenclature

 “Class” means a category of things
 A class name can be used in Java as the type of a field

or local variable or as the return type of a function
(method)

 “Object” means a particular item that belongs to a
class
 Also called an “instance”

 For example, consider the following line:

String s1 = "Hello";
 Here, String is the class, and the variable s1 and the

value "Hello" are objects (or “instances of the String
class”)

3

Example 1: Instance Variables
class Ship1 {

public double x, y, speed, direction;
public String name;

}

public class Test1 {
public static void main(String[] args) {
Ship1 s1 = new Ship1();
s1.x = 0.0;
s1.y = 0.0;
s1.speed = 1.0;
s1.direction = 0.0; // East
s1.name = "Ship1";
Ship1 s2 = new Ship1();
s2.x = 0.0;
s2.y = 0.0;
s2.speed = 2.0;
s2.direction = 135.0; // Northwest
s2.name = "Ship2";

s1.x = s1.x + s1.speed
* Math.cos(s1.direction * Math.PI / 180.0);

s1.y = s1.y + s1.speed
* Math.sin(s1.direction * Math.PI / 180.0);

s2.x = s2.x + s2.speed
* Math.cos(s2.direction * Math.PI / 180.0);

s2.y = s2.y + s2.speed
* Math.sin(s2.direction * Math.PI / 180.0);

System.out.println(s1.name + " is at ("
+ s1.x + "," + s1.y + ").");

System.out.println(s2.name + " is at ("
+ s2.x + "," + s2.y + ").");

}
}

Output:

Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Compiling and Running:

javac Test1.java
java Test1

4

Example 1: Major Points

 Java naming convention

 Format of class definitions

 Creating classes with “new”

 Accessing fields with
“variableName.fieldName”

Java Naming Conventions

 Leading uppercase letter in class name

public class MyClass {

...

}

 Leading lowercase letter in field, local variable, and
method (function) names

 myField, myVar, myMethod

5

First Look at Java Classes
 The general form of a simple class is

modifier class Classname {

modifier data-type field1;
modifier data-type field2;
...
modifier data-type fieldN;

modifier Return-Type methodName1(parameters) {
//statements

}
...
modifier Return-Type methodName2(parameters) {
//statements

}
}

Objects and References
 Once a class is defined, you can easily declare a

variable (object reference) of the class
Ship s1, s2;
Point start;
Color blue;

 Object references are initially null
 The null value is a distinct type in Java and should not be

considered equal to zero

 A primitive data type cannot be cast to an object (use
wrapper classes)

 The new operator is required to explicitly create the
object that is referenced

ClassName variableName = new ClassName();

6

Accessing Instance Variables

 Use a dot between the variable name and the field
name, as follows: variableName.fieldName

 For example, Java has a built-in class called Point that
has x and y fields

Point p = new Point(2, 3); // Build a Point object
int xSquared = p.x * p.x; // xSquared is 4
int xPlusY = p.x + p.y; // xPlusY is 5
p.x = 7;
xSquared = p.x * p.x; // Now xSquared is 49

 One major exception applies to the “access fields
through varName.fieldName” rule
 Methods can access fields of current object without

varName
 This will be explained when methods (functions) are

discussed

Example 2: Methods
class Ship2 {
public double x=0.0, y=0.0, speed=1.0,
direction=0.0;
public String name = "UnnamedShip";

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}
public void move() {
double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}
public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}

7

Methods (Continued)
public class Test2 {
public static void main(String[] args) {
Ship2 s1 = new Ship2();
s1.name = "Ship1";
Ship2 s2 = new Ship2();
s2.direction = 135.0; // Northwest
s2.speed = 2.0;
s2.name = "Ship2";
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}
 Compiling and Running:

javac Test2.java
java Test2

Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Example 2: Major Points

 Format of method definitions

 Methods that access local fields

 Calling methods

 Static methods

 Default values for fields

 public/private distinction

8

Defining Methods
(Functions Inside Classes)

 Basic method declaration:
public ReturnType methodName(type1 arg1,

type2 arg2, ...)
{
...
return(something of ReturnType);

}

 Exception to this format: if you declare the return type as
void

 This special syntax that means “this method isn’t going to
return a value – it is just going to do some side effect like
printing on the screen”

 In such a case you do not need (in fact, are not permitted),
a return statement that includes a value to be returned

Examples of Defining Methods
 Here are two examples:

 The first squares an integer
 The second returns the faster of two Ship objects,

assuming that a class called Ship has been defined that
has a field named speed

// Example function call:
// int val = square(7);
public int square(int x) {
return(x*x);

}
// Example function call:
// Ship faster = fasterShip(someShip, someOtherShip);
public Ship fasterShip(Ship ship1, Ship ship2) {
if (ship1.speed > ship2.speed) {

return(ship1);
} else {

return(ship2);
}

}

9

Exception to the “Field Access
with Dots” Rule

 You normally access a field through
variableName.fieldName

but an exception is when a method of a class wants to
access fields of that same class
 In that case, omit the variable name and the dot
 For example, a move method within the Ship class might

do:
public void move() {
x = x + speed * Math.cos(direction);
...

}
 Here, x, speed, and direction are all fields within the class that

the move method belongs to, so move can refer to the fields directly

 As we’ll see later, you still can use the
variableName.fieldName approach, and Java invents
a variable called this that can be used for that purpose

Calling Methods
 The term “method” means “function associated with an

object” (I.e., “member function”)
 The usual way that you call a method is by doing the

following:

variableName.methodName(argumentsToMethod);

 For example, the built-in String class has a method
called toUpperCase that returns an uppercase variation
of a String
 This method doesn’t take any arguments, so you just put

empty parentheses after the function (method) name.
String s1 = "Hello";

String s2 = s1.toUpperCase(); // s2 is now "HELLO"

10

Calling Methods (Continued)
 There are two exceptions to requiring a variable name

for a method call
 Calling a method defined inside the current class definition
 Functions (methods) that are declared “static”

 Calling a method that is defined inside the current class
 You don’t need the variable name and the dot
 For example, a Ship class might define a method called
degreeesToRadians, then, within another function in the
same class definition, do this:

double angle = degreesToRadians(direction);

 No variable name and dot is required in front of
degreesToRadians since it is defined in the same class as
the method that is calling it

Static Methods
 Static functions typically do not need to access any fields

within their class and are almost like global functions in
other languages

 You can call a static method through the class name
ClassName.functionName(arguments);

 For example, the Math class has a static method called
cos that expects a double precision number as an
argument
 So you can call Math.cos(3.5) without ever having any

object (instance) of the Math class

 Note on the main method
 Since the system calls main without first creating an

object, static methods are the only type of methods that
main can call directly (i.e. without building an object and
calling the method of that object)

11

Method Visibility
 public/private distinction

 A declaration of private means that “outside” methods
can’t call it -- only methods within the same class can
 Thus, for example, the main method of the Test2 class

could not have done
double x = s1.degreesToRadians(2.2);

 Attempting to do so would have resulted in an error at
compile time

 Only say public for methods that you want to
guarantee your class will make available to users

 You are free to change or eliminate private methods
without telling users of your class about

Declaring Variables in Methods
 When you declare a local variable inside of a method,

the normal declaration syntax looks like:

Type varName = value;

 The value part can be:
 A constant,

 Another variable,

 A function (method) call,

 A “constructor” invocation (a special type of function
prefaced by new that builds an object),

 Some special syntax that builds an object without
explicitly calling a constructor (e.g., strings)

12

Declaring Variables in Methods:
Examples

int x = 3;

int y = x;

// Special syntax for building a String object

String s1 = "Hello";

// Building an object the normal way

String s2 = new String("Goodbye");

String s3 = s2;

String s4 = s3.toUpperCase(); // Result: s4 is "GOODBYE"

// Assume you defined a findFastestShip method that

// returns a Ship

Ship ship1 = new Ship();

Ship ship2 = ship1;

Ship ship3 = findFastestShip();

Example 3: Constructors
class Ship3 {

public double x, y, speed, direction;

public String name;

public Ship3(double x, double y,

double speed, double direction,

String name) {

this.x = x; // "this" differentiates instance vars

this.y = y; // from local vars.

this.speed = speed;

this.direction = direction;

this.name = name;

}

private double degreesToRadians(double degrees) {

return(degrees * Math.PI / 180.0);

}

...

13

Constructors (Continued)
public void move() {

double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}
public void printLocation() {

System.out.println(name + " is at ("
+ x + "," + y + ").");

}
}
public class Test3 {

public static void main(String[] args) {
Ship3 s1 = new Ship3(0.0, 0.0, 1.0, 0.0, "Ship1");
Ship3 s2 = new Ship3(0.0, 0.0, 2.0, 135.0, "Ship2");
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}

Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Example 3: Major Points

 Format of constructor definitions

 The “this” reference

 Destructors (not!)

14

Constructors
 Constructors are special functions called when a class is

created with new
 Constructors are especially useful for supplying values of

fields
 Constructors are declared through:

public ClassName(args) {
...

}
 Notice that the constructor name must exactly match the

class name
 Constructors have no return type (not even void), unlike a

regular method
 Java automatically provides a zero-argument constructor if

and only if the class doesn’t define it’s own constructor
 That’s why you could say

Ship1 s1 = new Ship1();
in the first example, even though a constructor was never defined

The this Variable
 The this object reference can be used inside any non-

static method to refer to the current object
 The common uses of the this reference are:

1. To pass a reference to the current object as a parameter to other
methods

someMethod(this);

2. To resolve name conflicts
Using this permits the use of instance variables in methods that have

local variables with the same name

 Note that it is only necessary to say this.fieldName
when you have a local variable and a class field with
the same name; otherwise just use fieldName with no
this

15

Destructors

This Page Intentionally Left Blank

After the assignment of objects, e.g. c1 = c2, c1 points to the same
object referenced by c2. The object previously referenced by c1 is no
longer useful. This object is known as garbage. Garbage is automatically
collected by JVM.

TIP: If you know that an object is no longer needed, you can explicitly
assign null to a reference variable for the object. The Java VM will
automatically collect the space if the object is not referenced by any
variable.

Summary
 Class names should start with upper case; method names

with lower case
 Methods must define a return type or void if no result is

returned

 Access fields via objectName.fieldName

 Access methods via objectName.methodName(args)

 If a method accepts no arguments, the arg-list in the method
declaration is empty instead of void as in C

 Static methods do not require an instance of the class; they
can be accessed through the class name

 The this reference refers to the current object

 Class constructors do not declare a return type

 Java performs its own memory management and requires no
destructors

16

Agenda

 Overloading

 Designing “real” classes

 Inheritance

 Advanced topics
 Abstract classes

 Interfaces

 Understanding polymorphism

 Setting a CLASSPATH and using packages

 Visibility modifiers

 Creating on-line documentation using JavaDoc

Example 4: Overloading
class Ship4 {

public double x=0.0, y=0.0, speed=1.0,
direction=0.0;
public String name;
public Ship4(double x, double y,

double speed, double direction,
String name) {

this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;
this.name = name;

}
public Ship4(String name) {

this.name = name;
}
private double degreesToRadians(double degrees) {

return(degrees * Math.PI / 180.0);
}
...

17

Overloading (Continued)
...

public void move() {

move(1);

}

public void move(int steps) {

double angle = degreesToRadians(direction);

x = x + (double)steps * speed * Math.cos(angle);

y = y + (double)steps * speed * Math.sin(angle);

}

public void printLocation() {

System.out.println(name + " is at ("

+ x + "," + y + ").");

}

}

Overloading: Testing and Results
public class Test4 {

public static void main(String[] args) {

Ship4 s1 = new Ship4("Ship1");

Ship4 s2 = new Ship4(0.0, 0.0, 2.0, 135.0,
"Ship2");

s1.move();

s2.move(3);

s1.printLocation();

s2.printLocation();

}

}

 Output:
Ship1 is at (1,0).

Ship2 is at (-4.24264,4.24264).

18

Overloading: Major Points
 Idea

 Allows you to define more than one function or
constructor with the same name
 Overloaded functions or constructors must differ in the

number or types of their arguments (or both), so that Java
can always tell which one you mean

 Simple examples:
 Here are two square methods that differ only in the

type of the argument; they would both be permitted
inside the same class definition.

// square(4) is 16
public int square(int x) { return(x*x); }
// square("four") is "four four"
public String square(String s) {
return(s + " " + s);

}

Example: OOP Design and Usage
/** Ship example to demonstrate OOP in Java. */

public class Ship {

private double x=0.0, y=0.0, speed=1.0,
direction=0.0;

private String name;

…

/** Get current X location. */

public double getX() {

return(x);

}

/** Set current X location. */

public void setX(double x) {

this.x = x;

}

19

Example: Inheritance
public class Speedboat extends Ship {

private String color = "red";

public Speedboat(String name) {
super(name);
setSpeed(20);

}
public Speedboat(double x, double y,

double speed, double direction,
String name, String color) {

super(x, y, speed, direction, name);
setColor(color);

}
public void printLocation() {

System.out.print(getColor().toUpperCase() + " ");
super.printLocation();

}
...

}

Inheritance Example: Testing
public class SpeedboatTest {

public static void main(String[] args) {

Speedboat s1 = new Speedboat("Speedboat1");

Speedboat s2 = new Speedboat(0.0, 0.0, 2.0,
135.0, "Speedboat2", "blue");

Ship s3 = new Ship(0.0, 0.0, 2.0, 135.0, "Ship1");

s1.move();

s2.move();

s3.move();

s1.printLocation();

s2.printLocation();

s3.printLocation();

}

}

20

Inheritance Example: Result
 Compiling and Running:

javac SpeedboatTest.java

 The above calls javac on Speedboat.java and Ship.java
automatically

java SpeedboatTest

 Output
RED Speedboat1 is at (20,0).

BLUE Speedboat2 is at (-1.41421,1.41421).

Ship1 is at (-1.41421,1.41421).

Example: Major Points

 Format for defining subclasses

 Using inherited methods

 Using super(…) for inherited constructors
 Only when the zero-arg constructor is not OK

 Using super.someMethod(…) for inherited
methods
 Only when there is a name conflict

21

Inheritance
 Syntax for defining subclasses

public class NewClass extends OldClass {

...

}

 Nomenclature:
 The existing class is called the superclass, base class or parent class

 The new class is called the subclass, derived class or child class

 Effect of inheritance
 Subclasses automatically have all public fields and methods of the

parent class

 You don’t need any special syntax to access the inherited fields and
methods; you use the exact same syntax as with locally defined fields
or methods.

 You can also add in fields or methods not available in the superclass

 Java doesn’t support multiple inheritance

Inherited constructors and
super(...)

 When you instantiate an object of a subclass, the system
will automatically call the superclass constructor first
 By default, the zero-argument superclass constructor is called

unless a different constructor is specified

 Access the constructor in the superclass through
super(args)

 If super(…) is used in a subclass constructor, then super(…)
must be the first statement in the constructor

 Constructor life-cycle
 Each constructor has three phases:

1. Invoke the constructor of the superclass

2. Initialize all instance variables based on their initialization
statements

3. Execute the body of the constructor

22

Overridden methods and
super.method(...)

 When a class defines a method using the same name,
return type, and arguments as a method in the superclass,
then the class overrides the method in the superclass
 Only non-static methods can be overridden

 If there is a locally defined method and an inherited method
that have the same name and take the same arguments,
you can use the following to refer to the inherited method

super.methodName(...)

 Successive use of super (super.super.methodName) will not
access overridden methods higher up in the hierarchy; super can
only be used to invoke overridden methods from within the class
that does the overriding

Advanced OOP Topics

 Abstract classes

 Interfaces

 Polymorphism details

 CLASSPATH

 Packages

 Visibility other than public or private

 JavaDoc details

23

Abstract Classes
 Idea

 Abstract classes permit declaration of classes that define only
part of an implementation, leaving the subclasses to provide the
details

 A class is considered abstract if at least one
method in the class has no implementation
 An abstract method has no implementation (known in C++ as a

pure virtual function)

 Any class with an abstract method must be declared abstract

 If the subclass overrides all the abstract methods in the
superclass, than an object of the subclass can be instantiated

 An abstract class can contain instance variables
and methods that are fully implemented
 Any subclass can override a concrete method inherited from the

superclass and declare the method abstract

Abstract Classes (Continued)
 An abstract class cannot be instantiated, however

references to an abstract class can be declared

public abstract ThreeDShape {
public abstract void drawShape(Graphics g);
public abstract void resize(double scale);

}

ThreeDShape s1;
ThreeDShape[] arrayOfShapes
= new ThreeDShape[20];

 Classes from which objects can be instantiated are
called concrete classes

24

Interfaces

 Idea
 Interfaces define a Java type consisting purely

of constants and abstract methods

 An interface does not implement any of the
methods, but imposes a design structure on
any class that uses the interface

 A class that implements an interface must
either provide definitions for all methods or
declare itself abstract

Interfaces (Continued)
 Modifiers

 All methods in an interface are implicitly abstract and the
keyword abstract is not required in a method declaration

 Data fields in an interface are implicitly static final
(constants)

 All data fields and methods in an interface are implicitly
public

public interface Interface1 {
DataType CONSTANT1 = value1;
DataType CONSTANT2 = value2;

ReturnType1 method1(ArgType1 arg);
ReturnType2 method2(ArgType2 arg);

}

25

Interfaces (Continued)
 Extending Interfaces

 Interfaces can extend other interfaces, which brings rise to sub-
interfaces and super-interfaces

 Unlike classes, however, an interface can extend more than one
interface at a time

public interface Displayable extends Drawable, Printable
{
// Additonal constants and abstract methods
...

}

 Implementing Multiple Interfaces
 Interfaces provide a form of multiple inheritance because a class

can implement more than one interface at a time
public class Circle extends TwoDShape

implements Drawable, Printable {

...

}

Polymorphism

 “Polymorphic” literally means “of multiple shapes” and
in the context of object-oriented programming,
polymorphic means “having multiple behavior”

 A polymorphic method results in different actions
depending on the object being referenced
 Also known as late binding or run-time binding

 In practice, polymorphism is used in conjunction with
reference arrays to loop through a collection of
objects and to access each object's polymorphic
method

26

Polymorphism: Example
public class PolymorphismTest {

public static void main(String[] args) {

Ship[] ships = new Ship[3];

ships[0] = new Ship(0.0, 0.0, 2.0, 135.0, "Ship1");

ships[1] = new Speedboat("Speedboat1");

ships[2] = new Speedboat(0.0, 0.0, 2.0, 135.0,

"Speedboat2", "blue");

for(int i=0; i<ships.length ; i++) {

ships[i].move();

ships[i].printLocation();

}

}

}

Output
RED Speedboat1 is at (20,0).
BLUE Speedboat2 is at (-1.41421,1.41421).
Ship1 is at (-1.41421,1.41421).

CLASSPATH
 The CLASSPATH environment variable defines a

list of directories in which to look for classes
 Default = current directory and system libraries

 Best practice is to not set this when first learning Java!

 Setting the CLASSPATH
set CLASSPATH = .;C:\java;D:\cwp\echoserver.jar

setenv CLASSPATH .:~/java:/home/cwp/classes/

 The period indicates the current working directory

 Supplying a CLASSPATH
javac –classpath .;D:\cwp WebClient.java

java –classpath .;D:\cwp WebClient

27

Creating Packages
 A package lets you group classes in subdirectories to

avoid accidental name conflicts
 To create a package:

1. Create a subdirectory with the same name as the desired
package and place the source files in that directory

2. Add a package statement to each file

package packagename;

3. Files in the main directory that want to use the package
should include

import packagename.*;

 The package statement must be the first statement in
the file

 If a package statement is omitted from a file, then the
code is part of the default package that has no name

Package Directories
 The package hierarchy reflects the file system

directory structure

 The root of any package must be accessible through
a Java system default directory or through the
CLASSPATH environment variable

Package java.math

28

Visibility Modifiers

 public
 This modifier indicates that the variable or method can be

accessed anywhere an instance of the class is accessible
 A class may also be designated public, which means that any

other class can use the class definition

 The name of a public class must match the filename, thus a file
can have only one public class

 private
 A private variable or method is only accessible from methods

within the same class

 Declaring a class variable private "hides" the data within the
class, making the data available outside the class only through
method calls

Visibility Modifiers, cont.
 protected

 Protected variables or methods can only be accessed by
methods within the class, within classes in the same
package, and within subclasses

 Protected variables or methods are inherited by
subclasses of the same or different package

 [default]
 A variable or method has default visibility if a modifier is

omitted
 Default visibility indicates that the variable or method can

be accessed by methods within the class, and within
classes in the same package

 Default variables are inherited only by subclasses in the
same package

29

Protected Visibility: Example

 Cake, ChocolateCake, and Pie inherit a calories field

 However, if the code in the Cake class had a reference to
object of type Pie, the protected calories field of the Pie
object could not be accessed in the Cake class
 Protected fields of a class are not accessible outside its branch of the

class hierarchy (unless the complete tree hierarchy is in the same
package)

Default Visibility: Example

 Even through inheritance, the fat data field cannot cross the
package boundary
 Thus, the fat data field is accessible through any Dessert, Pie, and

Cake object within any code in the Dessert package

 However, the ChocolateCake class does not have a fat data field, nor
can the fat data field of a Dessert, Cake, or Pie object be accessed
from code in the ChocolateCake class

30

Visibility Summary
 Modifiers

Data Fields and Methods public protected default private

Accessible from same class? yes yes yes yes

Accessible to classes (nonsubclass) yes yes yes no
from the same package?

Accessible to subclass from the yes yes yes no
same package?

Accessible to classes (nonsubclass) yes no no no
from different package?

Accessible to subclasses from yes no no no
different package?

Inherited by subclass in the yes yes yes no
same package?

Inherited by subclass in different yes yes no no
package?

Other Modifiers

 final
 For a class, indicates that it cannot be subclassed
 For a method or variable, cannot be changed at runtime or

overridden in subclasses

 synchronized
 Sets a lock on a section of code or method
 Only one thread can access the same synchronized code at

any given time

 transient
 Variables are not stored in serialized objects sent over the

network or stored to disk
 native

 Indicates that the method is implement using C or C++

31

Comments and JavaDoc
 Java supports 3 types of comments

 // Comment to end of line.

 /* Block comment containing multiple lines.
Nesting of comments in not permitted. */

 /** A JavaDoc comment placed before class
definition and nonprivate methods.
Text may contain (most) HTML tags,
hyperlinks, and JavaDoc tags. */

 JavaDoc
 Used to generate on-line documentation

javadoc Foo.java Bar.java

 JavaDoc 1.4 Home Page
 http://java.sun.com/j2se/1.4/docs/tooldocs/javadoc/

Useful JavaDoc Tags
 @author

 Specifies the author of the document
 Must use javadoc –author ... to generate in output

/** Description of some class ...
*
* @author
* Larry Brown
*/

 @version
 Version number of the document
 Must use javadoc –version ... to generate in output

 @param
 Documents a method argument

 @return
 Documents the return type of a method

32

Useful JavaDoc Command-line
Arguments

 -author
 Includes author information (omitted by default)

 -version
 Includes version number (omitted by default)

 -noindex
 Tells javadoc not to generate a complete index

 -notree
 Tells javadoc not to generate the tree.html class hierarchy

 -link, -linkoffline
 Tells javadoc where to look to resolve links to other packages

-link http://java.sun.com/j2se/1.3/docs/api
-linkoffline http://java.sun.com/j2se/1.3/docs/api

c:\jdk1.3\docs\api

JavaDoc, Example
/** Ship example to demonstrate OOP in Java.
*
* @author
* Larry Brown
* @version 2.0
*/

public class Ship {
private double x=0.0, y=0.0, speed=1.0, direction=0.0;
private String name;

/** Build a ship with specified parameters. */

public Ship(double x, double y, double speed,
double direction, String name) {

setX(x);
setY(y);
setSpeed(speed);
setDirection(direction);
setName(name);

}
...

> javadoc -linkoffline http://java.sun.com/j2se/1.3/docs/api

c:\jdk1.3\docs\api -author -version -noindex -notree Ship.java

33

JavaDoc: Result

Java API and Core Java classes

 java.lang
Contains core Java classes, such as numeric classes,
strings, and objects. This package is implicitly imported to
every Java program.

 java.awt
Contains classes for graphics.

 java.io
Contains classes for input and output
streams and files.

 java.applet
Contains classes for supporting applets.

34

 java.util
Contains many utilities, such as date.

 java.net
Contains classes for supporting network communications.

 java.awt.image
Contains classes for managing bitmap images.

 java.awt.peer
Platform-specific GUI implementation.

 Others:

java.sql
java.rmi

Java API and Core Java classes,

Summary
 Overloaded methods/constructors, except for the

argument list, have identical signatures
 Use extends to create a new class that inherits

from a superclass
 Java does not support multiple inheritance

 An inherited method in a subclass can be
overridden to provide custom behavior
 The original method in the parent class is accessible

through super.methodName(...)

 Interfaces contain only abstract methods and
constants
 A class can implement more than one interface

35

Summary (Continued)
 With polymorphism, binding of a method to an object is

determined at run-time
 The CLASSPATH defines in which directories to look for

classes

 Packages help avoid namespace collisions
 The package statement must be first statement in the source file

before any other statements

 The four visibility types are: public, private, protected,
and default (no modifier)
 Protected members can only cross package boundaries through

inheritance

 Default members are only inherited by classes in the same
package

Thank you for your attention!

1

Java
Input/Output

Agenda
 Handling files and directories through the

File class

 Understanding which streams to use for
character-based or byte-based streams

 Character File input and output

 Formatting output

 Reading data from the console

 Binary File input and output

 Random Access Files

2

File Class
 A File object can refer to either a file or a directory

File file1 = new File("data.txt");
File file1 = new File("C:\java");

 To obtain the path to the current working directory use

System.getProperty("user.dir");

 To obtain the file or path separator use
System.getProperty("file.separator");
System.getProperty("path.separator");

or

File.separator()
File.pathSeparator()

Useful File Methods
 isFile/isDirectory

 canRead/canWrite

 length
 or 0 if nonexistant

 list
 If the File object is a directory, returns a String

array of all the files and directories contained in the
directory; otherwise, null

 mkdir
 Creates a new subdirectory

 delete
 Deletes the directory and returns true if successful

 toURL
 Converts the file path to a URL object

3

Directory Listing, Example
import java.io.*;

public class DirListing {

public static void main(String[] args) {

File dir = new File(System.getProperty("user.dir"));

if(dir.isDirectory()) {

System.out.println("Directory of " + dir);

String[] listing = dir.list();

for(int i=0; i<listing.length; i++) {

System.out.println("\t" + listing[i]);

}

}

}

}

Number of lines in the file
import java.io.*;

public class LineCounts {
public static void main(String[] args) {

if (args.length == 0) {
System.out.println("Usage: java LineCounts <file-names>");
return;

}
for (int i = 0; i < args.length; i++) {

System.out.print(args[i] + ": ");
countLines(args[i]);

}
} // end main()
static void countLines(String fileName) {

BufferedReader in; // A stream for reading from the file.
int lineCount = 0; // Number of lines in the file.
try {

in = new BufferedReader(new FileReader(fileName));
} catch (Exception e) {

System.out.println("Error. Can't open file."); return;
}
try {
while (in.readLine() != null) { lineCount++; }

} catch (Exception e) {
System.out.println("Error. Problem in reading file.");
return; }

System.out.println(lineCount);
}

} // end class LineCounts

4

DirectoryListing, Result
> java DirListing

Directory of C:\java\

DirListing.class

DirListing.java

test

TryCatchExample.class

TryCatchExample.java

XslTransformer.class

XslTransformer.java

Streams
 A stream is an abstraction of the continuous one-way

flow of data.

Program

Output Stream

File

Input Stream

5

Input/Output
 The java.io package provides over 60

input/output classes (streams)
 Streams are either byte-oriented or character-

oriented
 The InputStream/OutputStream class is the root of

all byte stream classes, and the Reader/Writer class is
the root of all character stream classes. The subclasses
of InputStream/OutputStream are analogous to the
subclasses of Reader/Writer

 Use DataStreams for byte-oriented I/O
 Use Readers and Writers for character-based I/O

 Character I/O uses an encoding scheme

 Note: An IOException may occur during any I/O operation

Input/Output
 The data streams (DataInputStream and

DataOutputStream) read and write Java primitive
types in a machine-independent fashion, which
enables you to write a data file in one machine and
read it on another machine that has a different
operating system or file structure.

 Java introduces buffered streams that speed up
input and output by reducing the number of reads
and writes. In the case of input, a bunch of data is
read all at once instead of one byte at a time. In the
case of output, data are first cached into a buffer,
then written all together to the file.

 Using buffered streams is highly recommended.

6

Character File Output
Desired … Methods Construction

Character
FileOuput

FileWriter
write(int char)
write(byte[] buffer)
write(String str)

File file = new File("filename");

FileWriter fout = new FileWriter(file); or

FileWriter fout = new FileWriter("filename");

Buffered
CharacterFile
Output

BufferedWriter
write(int char)
write(char[] buffer)
write(String str)
newLine()

File file = new File("filename");

FileWriter fout = new FileWriter(file);

BufferedWriter bout = new BufferedWriter(fout); or

BufferedWriter bout = new BufferedWriter(
new FileWriter(new File("filename")));

Character Output

PrintWriter
write(int char)
write(char[] buffer)
writer(String str)
writer(String str)
writer(String str)
print(…)
println(…)

FileWriter fout = new FileWriter("filename");

PrintWriter pout = new PrintWriter(fout); or

PrintWriter pout = new PrintWriter(
new FileWriter("filename")); or

PrintWriter pout = new PrintWriter(
new BufferedWriter(
new FileWriter("filename")));

PrintWriter
The data output stream outputs a binary representation
of data, so you cannot view its contents as text. In Java,
you can use print streams to output data into files.
These files can be viewed as text.

The PrintStream and PrintWriter classes provide
this functionality.

Some methods:
void print(String s)
void println(String s)
void print(int i)
void println(int i)
void print(float f)
void println(float f)
void print(double d)
void println(double d)
. . .

7

^itawe matrica od in.dat i nejzino zapi{uvawe vo out.dat.

import java.io.*;
public class Mio {

public static void main(String[] args) {
int i, j, m, n;
double[][] a = new double[100][100];
try {

// file input and output streams
FileReader frs = new FileReader("in.dat");
FileWriter fws = new FileWriter("out.dat");

// Create a stream tokenizer
StreamTokenizer in = new StreamTokenizer(frs);
PrintWriter out = new PrintWriter(fws);

// First two tokens are m and n
in.nextToken(); m=(int)in.nval;
in.nextToken(); n=(int)in.nval;
for(i = 1; i <= m; i++) for(j = 1; j <= n; j++)

{in.nextToken(); a[i][j]=in.nval; }
out.println(m + " " + n);
for(i=1; i <= m; i++) { for(j=1; j<= n; j++)

out.print(a[i][j] + " ");
out.println(); }

frs.close(); fws.close();
}catch (IOException ex) {

System.out.println(ex.getMessage());
}

}
}

FileWriter
 Constructors

 FileWriter(String filename)/FileWriter(File
file)
 Creates a output stream using the default encoding

 FileWriter(String filename, boolean append)
 Creates a new output stream or appends to the existing output

stream (append = true)
 Useful Methods

 write(String str)/write(char[] buffer)
 Writes string or array of chars to the file

 write(int char)
 Writes a character (int) to the file

 flush
 Writes any buffered characters to the file

 close
 Closes the file stream after performing a flush

 getEncoding
 Returns the character encoding used by the file stream

8

CharacterFileOutput, Example
import java.io.*;

public class CharacterFileOutput {
public static void main(String[] args) {

FileWriter out = null;

try {
out = new FileWriter("book.txt");
System.out.println("Encoding: " + out.getEncoding());
out.write("Core Web Programming");
out.close();
out = null;

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();
try {

if (out != null) {
out.close();

}
} catch(IOException ioe2) { }

}
}

}

CharacterFileOutput, Result
> java CharacterFileOutput

Encoding: Cp1252

> type book.txt

Core Web Programming

 Note: Cp1252 is Windows Western Europe / Latin-1
 To change the system default encoding use

System.setProperty("file.encoding", "encoding");

 To specify the encoding when creating the output steam, use an
OutputStreamWriter

OutputStreamWriter out =

new OutputStreamWriter(

new FileOutputStream("book.txt", "8859_1"));

9

Formatting Output
 Use DecimalFormat to control spacing and

formatting
 Java has no printf method

 Approach
1. Create a DecimalFormat object describing the

formatting

DecimalFormat formatter =
new DecimalFormat("#,###.##");

2. Then use the format method to convert values
into formatted strings

formatter.format(24.99);

Formatting Characters

Symbol Meaning
0 Placeholder for a digit.
Placeholder for a digit.

 If the digit is leading or trailing zer, then don't display.
. Location of decimal point.
, Display comma at this location
- Minus sing
E Scientific notation.

 Indicates the location to separate the mattissa from the exponent.
% Multipy the value by 100 and display as a percent.

10

NumFormat, Example
import java.text.*;

public class NumFormat {

public static void main (String[] args) {

DecimalFormat science = new
DecimalFormat("0.000E0");

DecimalFormat plain = new DecimalFormat("0.0000");

for(double d=100.0; d<140.0; d*=1.10) {

System.out.println("Scientific: " +
science.format(d) + " and Plain: " +

plain.format(d));

}

}

}

NumFormat, Result
> java NumFormat

Scientific: 1.000E2 and Plain: 100.0000

Scientific: 1.100E2 and Plain: 110.0000

Scientific: 1.210E2 and Plain: 121.0000

Scientific: 1.331E2 and Plain: 133.1000

11

Character File Input

Desired … Methods Construction

Character File Input

FileReader
read()
read(char[] buffer)
write(byte[] buffer)
write(String str)

File file = new File("filename");

FileReader fin = new FileReader(file); or

FileReader fin = new FileReader("filename");

Buffered
CharacterFile Input

BufferedReader
read()
read(char[] buffer)
readLine()

File file = new File("filename");

FileReader fin = new FileReader(file);

BufferedReader bin = new BufferedReader(fin); or

BufferedReader bin = new BufferedReader(
new FileReader(

new File("filename")));

FileReader
 Constructors

 FileReader(String filename)/FileReader(File file)

 Creates a input stream using the default encoding

 Useful Methods
 read/read(char[] buffer)

 Reads a single character or array of characters

 Returns –1 if the end of the steam is reached

 reset
 Moves to beginning of stream (file)

 skip
 Advances the number of characters

 Note: Wrap a BufferedReader around the FileReader
to read full lines of text using readLine

12

CharacterFileInput, Example
import java.io.*;

public class CharacterFileInput {
public static void main(String[] args) {

File file = new File("book.txt");
FileReader in = null;

if(file.exists()) {
try {

in = new FileReader(file);
System.out.println("Encoding: " + in.getEncoding());
char[] buffer = new char[(int)file.length()];
in.read(buffer);
System.out.println(buffer);
in.close();

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();
...

}
}

}
}

CharacterFileInput, Result
> java CharacterFileInput

Encoding: Cp1252

Core Web Programming

 Alternatively, could read file one line at a time:

BufferedReader in =

new BufferedReader(new FileReader(file));

String lineIn;

while ((lineIn = in.readLine()) != null) {

System.out.println(lineIn);

}

13

Console Input
 To read input from the console, a stream must be

associated with the standard input, System.in
import java.io.*;

public class IOInput{
public static void main(String[] args) {

BufferedReader keyboard;
String line;
try {

System.out.print("Enter value: ");
System.out.flush();
keyboard = new BufferedReader(

new InputStreamReader(System.in));
line = in.readLine();

} catch(IOException e) {
System.out.println("Error reading input!"); }

}
}

}

Displaying a File in a Text Area

 Objective: View a file in a text area. The user enters a
filename in a text field and clicks the View button; the
file is then displayed in a text area.

ViewFile

Run

14

Binary File Input and Output
 Handle byte-based I/O using a

DataInputStream or DataOutputStream

 The readFully method blocks until all bytes are read
or an EOF occurs

 Values are written in big-endian fashion regardless of
computer platform

DataType DataInputStream DataOutputStream

 byte readByte writeByte
 short readShort writeShort
 int readInt writeInt
 long readLong writeLong
 float readFloat writeFloat
 double readDouble writeDouble
 boolean readBoolean writeBoolean
 char readChar writeChar
 String readUTF readUTF
 byte[] readFully

UCS Transformation Format –
UTF-8

 UTF encoding represents a 2-byte Unicode
character in 1-3 bytes
 Benefit of backward compatibility with existing ASCII

data (one-byte over two-byte Unicode)

 Disadvantage of different byte sizes for character
representation

UTF Encoding
 Bit Pattern Representation

 0xxxxxxx ASCII (0x0000 - 0x007F)
 10xxxxxx Second or third byte
 110xxxxx First byte in a 2-byte sequence (0x0080 - 0x07FF)
 1110xxxx First byte in a 3-byte sequence (0x0800 - 0xFFFF)

15

Binary File Output
Desired … Methods Construction

Binary File
Output
bytes

FileOutputStream
write(byte)
write(byte[] buffer)

File file = new File("filename");

FileOutputStream fout = new FileOutputStream(file); or

FileOutputStream fout = new FileOutputStream("filename");

Binary File
Output

byte
short
int
long
float
double
char
boolean

DataOutputStream
writeByte(byte)
writeShort(short)
writeInt(int)
writeLong(long)
writeFloat(float)
writeDouble(double)
writechar(char)
writeBoolean(boolean)
writeUTF(string)
writeBytes(string)
writeChars(string)

File file = new File("filename");

FileOutputStream fout = new FileOutputStream(file);

DataOutputStream dout = new DataOutputStream(fout); or

DataOutputStream dout = new DataOutputStream(
new FileOutputStream(new File("filename")));

Buffered
Binary

File Output

BufferedOutput
Stream

File file = new File("filename");
FileOutputStream fout = new FileOutputStream(file);
DataOutputStream dout = new DataOutputStream(fout);
BufferedOutputStream bout = new BufferedOutputStream(dout);
or
BufferedOutputStream dout = new BufferedOutputStream (
new DataOutputStream (new FileOutputStream (new

File("filename"))));

BinaryFileOutput, Example
import java.io.*;

public class BinaryFileOutput {

public static void main(String[] args) {
int[] primes = { 1, 2, 3, 4, 5, 11, 17, 19 };
DataOutputStream out = null;

try {
out = new DataOutputStream(

new FileOutputStream("primes.dat"));

for(int i=0; i<primes.length; i++) {
out.writeInt(primes[i]);

}
out.close();

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();

}
}

}

16

Binary File Input
Desired … Methods Construction

Binary File
Input
bytes

FileInputStream
read()
read(byte[] buffer)

File file = new File("filename");

FileInputStream fin = new FileInputStream(file); or

FileInputStream fin = new FileInputStream("filename");

Binary File
Input

byte
short
int
long
float
double
char
boolean

DataOutputStream
readByte()
readShort()
readInt()
readLong()
readFloat()
readDouble()
readchar()
readBoolean()
readUTF()
readFully(byte[] buffer)

File file = new File("filename");

FileInputStream fin = new FileInputStream(file);

DataInputStream din = new DataInputStream(fin); or

DataInputStream din = new DataInputStream(
new FileInputStream(new File("filename")));

Buffered
Binary

File Input

BufferedInput
Stream

File file = new File("filename");
FileInputStream fin = new FileInputStream(file);
DataInputStream din = new DataInputStream(fin);
BufferedInputStream bin = new BufferedInputStream(din);
or
BufferedInputStream din = new BufferedInputStream (

new DataInputStream (
new FileInputStream (

new File("filename"))));

BinaryFileInput, Example
import java.io.*;

public class BinaryFileInput {
public static void main(String[] args) {

DataInputStream in = null;
File file = new File("primes.dat");
try {

in = new DataInputStream(
new FileInputStream(file));

int prime;
long size = file.length()/4; // 4 bytes per int
for(long i=0; i<size; i++) {

prime = in.readInt();
System.out.println(prime);

}
in.close();

} catch(IOException ioe) {
System.out.println("IO problem: " + ioe);
ioe.printStackTrace();

}
}

}

17

Using Data Streams

TestDataStream

Run

DataInputStream dis

program
mytemp.dat

mytemp.dat

DataOutputStream dos

FileInputStream

FileOutputStream

Random Access Files

 Java provides the RandomAccessFile class to allow
a file to be read and updated at the same time.

 The RandomAccessFile class extends Object and
implements DataInput and DataOutput interfaces.

 Many methods in RandomAccessFile are the same
as those in DataInputStream and
DataOutputStream. For example, readInt(),
readLong(), writeDouble(), readLine(),
writeInt(), and writeLong() can be used in data
input stream or data output stream as well as in
RandomAccessFile streams.

18

RandomAccessFile Methods
 void seek(long pos) throws IOException;

Sets the offset from the beginning of RandomAccessFile
stream to where the next read or write occurs.

 long getFilePointer() IOException;
Returns the current offset, in bytes, from the beginning of the
file to where the next read or write occurs.

 long length()IOException
Returns the length of the file.

 final void writeChar(int v) throws IOException
Writes a character to the file as a two-byte Unicode, with the
high byte written first.

 final void writeChars(String s)
throws IOException

Writes a string to the file as a sequence of characters.

RandomAccessFile:
Constructor

RandomAccessFile raf = new RandomAccessFile(
"test.dat", "rw"); //allows read and write

RandomAccessFile raf = new RandomAccessFile(
"test.dat", "r"); //read only

// 6. Reading/writing random access files
RandomAccessFile rf = new RandomAccessFile("rtest.dat", "rw");

for (int i = 0; i < 10; i++) rf.writeDouble(i*1.414);
rf.close();
rf = new RandomAccessFile("rtest.dat", "rw");
rf.seek(5*8);
rf.writeDouble(47.0001);
rf.close();
rf = new RandomAccessFile("rtest.dat", "r");
for (int i = 0; i < 10; i++)

System.out.println("Value " + i + ": " + rf.readDouble());
rf.close();

19

Example: Using Random
Access Files

 Objective: Create a program that registers
students and displays student information.

Run

TestRandomAccessFile

Summary

 A File can refer to either a file or a directory

 Use Readers and Writers for character-based I/O
 A BufferedReader is required for readLine
 Java provides no printf; use DecimalFormat for formatted

output

 Use DataStreams for byte-based I/O
 Chain a FileOutputStream to a DataOutputStream for binary

file output

 Chain a FileInputStream to a DataInputStream for binary file
input

 Use RandomAccessFile class for random
access to a file

20

Thank you for your attention!

1

Applets and
Basic Graphics

Agenda

 Applet restrictions

 Basic applet and HTML template

 The applet life-cycle

 Customizing applets through HTML parameters

 Methods available for graphical operations

 Loading and drawing images

 Controlling image loading

 Java Plug-In and HTML converter

2

Security Restrictions:
Applets Cannot…

 Read from the local (client) disk
 Applets cannot read arbitrary files

 They can, however, instruct the browser to display pages that
are generally accessible on the Web, which might include
some local files

 Write to the local (client) disk
 The browser may choose to cache certain files, including some

loaded by applets, but this choice is not under direct control of
the applet

 Open network connections other than to the
server from which the applet was loaded
 This restriction prevents applets from browsing behind network

firewalls

Applets Cannot…
 Link to client-side C code or call programs

installed on the browser machine
 Ordinary Java applications can invoke locally installed programs

(with the exec method of the Runtime class) as well as link to local
C/C++ modules (“native” methods)

 These actions are prohibited in applets because there is no way to
determine whether the operations these local programs perform
are safe

 Discover private information about the user
 Applets should not be able to discover the username of the person

running them or specific system information such as current users,
directory names or listings, system software, and so forth

 However, applets can determine the name of the host they are on;
this information is already reported to the HTTP server that
delivered the applet

3

Applet Template
import java.applet.Applet;

import java.awt.*;

public class AppletTemplate extends Applet {

// Variable declarations.

public void init() {

// Variable initializations, image loading, etc.

}

public void paint(Graphics g) {

// Drawing operations.

}

}

 Browsers cache applets: in Netscape, use Shift-RELOAD to force loading
of new applet. In IE, use Control-RELOAD

 Can use appletviewer for initial testing

Applet HTML Template
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

<HTML>

<HEAD>

<TITLE>A Template for Loading Applets</TITLE>

</HEAD>

<BODY>

<H1>A Template for Loading Applets</H1>

<P>

<APPLET CODE="AppletTemplate.class" WIDTH=120 HEIGHT=60>

Error! You must use a Java-enabled browser.

</APPLET>

</BODY>

</HTML>

4

Applet Example
import java.applet.Applet;
import java.awt.*;

/** An applet that draws an image. */

public class JavaJump extends Applet {
private Image jumpingJava; // Instance var declarations here

public void init() { // Initializations here
setBackground(Color.white);
setFont(new Font("SansSerif", Font.BOLD, 18));
jumpingJava = getImage(getDocumentBase(),

"images/Jumping-Java.gif");
add(new Label("Great Jumping Java!"));
System.out.println("Yow! I'm jiving with Java.");

}

public void paint(Graphics g) { // Drawing here
g.drawImage(jumpingJava, 0, 50, this);

}
}

Applet Example: Result
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

<HTML>

<HEAD>

<TITLE>Jumping Java</TITLE>

</HEAD>

<BODY BGCOLOR="BLACK" TEXT="WHITE">

<H1>Jumping Java</H1>

<P>

<APPLET CODE="JavaJump.class"

WIDTH=250

HEIGHT=335>

Sorry, this example requires Java.

</APPLET>

</BODY>

</HTML>

5

Debugging Applets:
The Java Console

 Standard output (from System.out.println) is sent
to the Java Console
 Navigator: open from Window menu

 Communicator: open from Communicator … Tools

 IE 4: open from View menu (enable from Tools …
Internet Options … Advanced screen)

 IE 5/6 with Java plugin: go to Control Panel, click on
Java Plugin, and
select
"Show Console"
option.

Browser Calling Applet
Methods

start

leave the page

stop

init

return to the page

after init

exit

reload enters web page

6

Applications vs. Applets
 Similarities

 Since they both are subclasses of the
Container class, all the user interface
components, layout managers, and event-
handling features are the same for both
classes.

 Differences
 Applications are invoked by the Java
interpreter, and applets are invoked by the
Web browser.

 Applets have security restrictions

 Web browser creates graphical environment for
applets, GUI applications are placed in a
frame.

 You can always convert an applet into an application.

 You can convert an application to an applet as long as

The Applet Life Cycle
public class MyApplet extends Applet
{
public void init()
{ ... }
public void start()
{ ... }
public void paint(Graphics g)
{ ... }
public void stop()
{ ... }
public void destroy()
{ ... }
//your other methods

}

7

The Applet Life Cycle
 public void init()

 Called when applet is first loaded into the browser.
 Not called each time the applet is executed

 Common functions implemented in this method include creating threads,
loading images, setting up user-interface components, and getting
parameters from the <applet> tag in the HTML page.

 public void start()
 Called immediately after init initially
 Reinvoked each time user returns to page after having left it

 Also called to start animation threads and whenever the applet becomes
active again after a period of inactivity (for example, when the user returns
to the page containing the applet after surfing other Web pages).

 public void paint(Graphics g)
 Called by the browser after init and start and this method is where

user-level drawing is placed
 Reinvoked whenever the browser redraws the screen (typically when part

of the screen has been obscured and then reexposed)

The Applet Life Cycle
 public void stop()

 Called when the user leaves the page

 Used to stop animation threads
 When the user leaves the page, any threads the applet has started—but

not completed—will continue to run.

 public void destroy()
 Called when applet is killed by the browser
 Usually, you will not need to override this method unless you need to

release specific resources, such as threads that the applet created.

 Note nonstandard behavior in IE
 In some versions of Internet Explorer, unlike in Netscape, init is

called each time the user returns to the same page, and destroy
is called whenever the user leaves the page containing the
applet. I.e., applet is started over each time (incorrect behavior!).

8

Using Applets

 Objective: Compute mortgages. The applet
enables the user to enter the annual interest
rate, the number of years, and the loan
amount. Click the Compute Mortgage button,
and the applet displays the monthly payment
and the total payment.

MortgageApplet

Run Applet

Useful Applet Methods
 getCodeBase, getDocumentBase

 The URL of the:
Applet file - getCodeBase

HTML file - getDocumentBase

 getParameter
 Retrieves the value from the associated HTML PARAM

element

 getSize
 Returns the Dimension (width, height) of the applet

 getGraphics
 Retrieves the current Graphics object for the applet

 The Graphics object does not persist across paint
invocations

9

Useful Applet Methods
(Continued)

 showDocument (AppletContext method)

getAppletContext().showDocument(...)

 Asks the browser to retrieve and a display a Web page
 Can direct page to a named FRAME cell

 showStatus
 Displays a string in the status line at the bottom of the

browser

 getCursor, setCursor
 Defines the Cursor for the mouse, for example,
CROSSHAIR_CURSOR, HAND_CURSOR, WAIT_CURSOR

Useful Applet Methods
(Continued)

 getAudioClip, play
 Retrieves an audio file from a remote location and plays it

 JDK 1.1 supports .au only. Java 2 also supports MIDI, .aiff
and .wav

 getBackground, setBackground
 Gets/sets the background color of the applet
 SystemColor class provides access to desktop colors

 getForeground, setForeground
 Gets/sets foreground color of applet (default color of

drawing operations)

10

HTML APPLET Element
<APPLET CODE="..." WIDTH=xxx HEIGHT=xxx ...>

...

</APPLET>

 Required Attributes

 CODE
 Designates the filename of the Java class file to load

 Filename interpreted with respect to directory of current
HTML page (default) unless CODEBASE is supplied

 WIDTH and HEIGHT
 Specifies area the applet will occupy

 Values can be given in pixels or as a percentage of the
browser window (width only). Percentages fail in
appletviewer.

HTML APPLET Element
(Continued)

 Other Attributes

 ALIGN, HSPACE, and VSPACE
 Controls position and border spacing. Exactly the same as with

the IMG element

 ARCHIVE
 Designates JAR file (zip file with .jar extension) containing all

classes and images used by applet

 Save considerable time when downloading multiple class files

 NAME
 Names the applet for interapplet and JavaScript communication

 MAYSCRIPT (nonstandard)
 Permits JavaScript to control the applet

11

Setting Applet Parameters
<H1>Customizable HelloWWW Applet</H1>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>

<PARAM NAME="BACKGROUND" VALUE="LIGHT">

Error! You must use a Java-enabled browser.

</APPLET>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>

<PARAM NAME="BACKGROUND" VALUE="DARK">

Error! You must use a Java-enabled browser.

</APPLET>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>

Error! You must use a Java-enabled browser.

</APPLET>

Reading Applet Parameters
 Use getParameter(name) to retrieve the value of the

PARAM element

 The name argument is case sensitive
public void init() {
Color background = Color.gray;
Color foreground = Color.darkGray;
String backgroundType = getParameter("BACKGROUND");
if (backgroundType != null) {
if (backgroundType.equalsIgnoreCase("LIGHT")) {
background = Color.white;
foreground = Color.black;

} else if (backgroundType.equalsIgnoreCase("DARK")) {
background = Color.black;
foreground = Color.white;

}
}
...

}

12

Reading Applet Parameters: Result

Useful Graphics Methods
 drawString(string, left, bottom)

 Draws a string in the current font and color with the bottom
left corner of the string at the specified location

 One of the few methods where the y coordinate refers to
the bottom of shape, not the top. But y values are still with
respect to the top left corner of the applet window

 drawRect(left, top, width, height)
 Draws the outline of a rectangle (1-pixel border) in the

current color

 fillRect(left, top, width, height)
 Draws a solid rectangle in the current color

 drawLine(x1, y1, x2, y2)
 Draws a 1-pixel-thick line from (x1, y1) to (x2, y2)

13

Useful Graphics Methods
(Continued)

 drawOval, fillOval
 Draws an outlined and solid oval, where the arguments

describe a rectangle that bounds the oval

 drawPolygon, fillPolygon
 Draws an outlined and solid polygon whose points are

defined by arrays or a Polygon (a class that stores a
series of points)

 By default, polygon is closed; to make an open polygon
use the drawPolyline method

 drawImage
 Draws an image

 Images can be in JPEG or GIF (including GIF89A) format

Drawing Color

 setColor, getColor
 Specifies the foreground color prior to drawing operation

 By default, the graphics object receives the foreground
color of the window

 AWT has 16 predefined colors (Color.red,
Color.blue, etc.) or create your own color:
new Color(r, g, b)

 Changing the color of the Graphics object affects only
the drawing that explicitly uses that Graphics object

 To make permanent changes, call the applet’s
setForeground method.

14

Graphics Font
 setFont, getFont

 Specifies the font to be used for drawing text

 Determine the size of a character through
FontMetrics (in Java 2 use LineMetrics)

 Setting the font for the Graphics object does not
persist to subsequent invocations of paint

 Set the font of the window (I.e., call the applet’s
setFont method) for permanent changes to the font

 In JDK 1.1, only 5 fonts are available: Serif (aka
TimesRoman), SansSerif (aka Helvetica),
Monospaced (aka Courier), Dialog, and
DialogInput

Graphic Drawing Modes
 setXORMode

 Specifies a color to XOR with the color of underlying pixel
before drawing the new pixel

 Drawing something twice in a row will restore the original
condition

 setPaintMode
 Set drawing mode back to normal (versus XOR)

 Subsequent drawing will use the normal foreground color

 Remember that the Graphics object is reset to the default
each time. So, no need to call g.setPaintMode() in paint
unless you do non-XOR drawing after your XOR drawing

15

Graphics Behavior

 Browser calls repaint method to request
redrawing of applet
 Called when applet first drawn or applet is hidden by

another window and then reexposed

repaint()

update(Graphics g)

paint(Graphics g)

“sets flag”

Clears screen, calls paint

Drawing Images
 Register the Image (from init)

Image image = getImage(getCodeBase(), "file");

Image image = getImage (url);

 Loading is done in a separate thread
 If URL is absolute, then try/catch block is required

 Draw the image (from paint)

g.drawImage(image, x, y, window);

g.drawImage(image, x, y, w, h, window);

 May draw partial image or nothing at all
 Use the applet (this) for the window argument

16

Loading Applet Image from
Relative URL

import java.applet.Applet;

import java.awt.*;

/** An applet that loads an image from a relative URL. */

public class JavaMan1 extends Applet {

private Image javaMan;

public void init() {

javaMan = getImage(getCodeBase(),

"images/Java-Man.gif");

}

public void paint(Graphics g) {

g.drawImage(javaMan, 0, 0, this);

}

}

Image Loading Result

17

Loading Applet Image from
Absolute URL

import java.applet.Applet;
import java.awt.*;
import java.net.*;
...
private Image javaMan;
public void init() {
try {
URL imageFile =
new URL("http://www.corewebprogramming.com"

+ "/images/Java-Man.gif");
javaMan = getImage(imageFile);

} catch(MalformedURLException mue) {
showStatus("Bogus image URL.");
System.out.println("Bogus URL");

}
}

Loading Images in Applications
import java.awt.*;
import javax.swing.*;

class JavaMan3 extends JPanel {
private Image javaMan;

public JavaMan3() {
String imageFile = System.getProperty("user.dir")

+ "/images/Java-Man.gif";
javaMan = getToolkit().getImage(imageFile);
setBackground(Color.white);

}

public void paintComponent(Graphics g) {
super.paintComponent(g);
g.drawImage(javaMan, 0, 0, this);

}
...

18

...

public void paintComponent(Graphics g) {

super.paintComponent(g);

g.drawImage(javaMan, 0, 0, this);

}

public static void main(String[] args) {

JPanel panel = new JavaMan3();

WindowUtilities.setNativeLookAndFeel();

WindowUtilities.openInJFrame(panel, 380, 390);

}

}

 See Swing chapter for WindowUtilities

Loading Images in Applications

19

Controlling Image Loading
 Use prepareImage to start loading image

prepareImage(image, window)

prepareImage(image, width, height, window)

 Starts loading image immediately (on separate thread),
instead of when needed by drawImage

 Particularly useful if the images will not be drawn until the
user initiates some action such as clicking on a button or
choosing a menu option

 Since the applet thread immediately continues execution
after the call to prepareImage, the image may not be
completely loaded before paint is reached

Controlling Image Loading,
Case I: No prepareImage

 Image is not loaded over network until after Display
Image is pressed. 30.4 seconds.

20

Controlling Image Loading,
Case 2: With prepareImage

 Image loaded over network immediately. 0.05 seconds
after pressing button.

Controlling Image Loading:
MediaTracker

 Registering images with a MediaTracker to control image loading

MediaTracker tracker = new MediaTracker(this);

tracker.addImage(image1, 0);

tracker.addImage(image2, 1);

try {

tracker.waitForAll();

} catch(InterruptedException ie) {}

if (tracker.isErrorAny()) {

System.out.println("Error while loading image");

}

 Applet thread will block until all images are loaded

 Each image is loaded in parallel on a separate thread

21

Useful MediaTracker Methods
 addImage

 Register a normal or scaled image with a given ID

 checkAll, checkID
 Checks whether all or a particular registered image is done

loading

 isErrorAny, isErrorID
 Indicates if any or a particular image encountered an error

while loading

 waitForAll, waitForID
 Start loading all images or a particular image
 Method does not return (blocks) until image is loaded

 See TrackerUtil in book for simplified usage of
MediaTracker

Loading Images,
Case I: No MediaTracker

 Image size is wrong, since the image won’t be
done loading, and –1 will be returned

public void init() {

image = getImage(getDocumentBase(), imageName);

imageWidth = image.getWidth(this);

imageHeight = image.getHeight(this);

}

public void paint(Graphics g) {

g.drawImage(image, 0, 0, this);

g.drawRect(0, 0, imageWidth, imageHeight);

}

22

Loading Images,
Case 2: With MediaTracker

 Image is loaded before determining size
public void init() {

image = getImage(getDocumentBase(), imageName);

MediaTracker tracker = new MediaTracker(this);

tracker.addImage(image, 0);

try { tracker.waitForAll();

} catch(InterruptedException ie) {}

...

imageWidth = image.getWidth(this);

imageHeight = image.getHeight(this);

}

public void paint(Graphics g) {

g.drawImage(image, 0, 0, this);

g.drawRect(0, 0, imageWidth, imageHeight);

}

Loading Images: Results

Case 1 Case 2

23

Java Plug-In
 Internet Explorer and Netscape 4 only support

JDK 1.1

 Plugin provides support for the latest JDK
 http://java.sun.com/products/plugin/

 Java 2 Plug-In > 5 Mbytes

 Installing JDK 1.4 or 1.5 installs plugin automatically

 Older browsers require modification of APPLET
element to support OBJECT element (IE) or
EMBED element (Netscape)
 Use HTML Converter to perform the modification

 Not necessary with IE 5/6 or Netscape 6/7

Java Plug-In HTML Converter

24

Java Plug-In HTML Converter

 “Navigator for Windows Only” conversion

<EMBED type="application/x-java-applet;version=1.3"

CODE = "HelloWWW.class" CODEBASE = "applets"

WIDTH = 400 HEIGHT = 40

BACKGROUND = "LIGHT"

scriptable=false

pluginspage="http://java.sun.com/products/plugin/1.3/

plugin-install.html"

>

<NOEMBED>

Error! You must use a Java-enabled browser.

</NOEMBED>

</EMBED>

Java Plug-In HTML Converter
 “Internet Explorer for Windows and Solaris” conversion

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93"

WIDTH = 400 HEIGHT = 40

codebase="http://java.sun.com/products/plugin/1.3/

jinstall-13-win32.cab#Version=1,3,0,0"

>

<PARAM NAME = CODE VALUE = "HelloWWW.class" >

<PARAM NAME = CODEBASE VALUE = "applets" >

<PARAM NAME="type"

VALUE="application/x-java-applet;version=1.3">

<PARAM NAME="scriptable" VALUE="false">

<PARAM NAME = "BACKGROUND" VALUE ="LIGHT">

Error! You must use a Java-enabled browser.

</OBJECT>

25

Summary
 Applet operations are restricted

 Applet cannot read/write local files, call local programs, or
connect to any host other than the one from which it was
loaded

 The init method
 Called only when applet loaded, not each time executed

 This is where you use getParameter to read PARAM data

 The paint method
 Called each time applet is displayed

 Coordinates in drawing operations are wrt top-left corner

 Drawing images
 getImage(getCodeBase(), "imageFile") to “load”

 drawImage(image, x, y, this) to draw

End of Chapter

Thank you for your attention!

1

Java Scripts

Adding Dynamic Content
to Web Pages

Agenda
 Generating HTML Dynamically

 Monitoring User Events

 Basic JavaScript Syntax

 Applications
 Using JavaScript to customize Web pages

 Using JavaScript to make pages more dynamic

 Using JavaScript to validate CGI forms

 Using JavaScript to manipulate HTTP cookies

 Using JavaScript to interact with and control frames

 Controlling applets and calling Java from JavaScript

 Accessing JavaScript from Java

2

JavaScript

JavaScript

Is a programming/scripting
language

Enhances interactivity
and web page
functionality

Is embedded in HTML
documents or stored as
a.js file on the server

Runs on the client
(browser) side

Is an object-oriented
language

Easy to learn
Even for nonprogrammers

JavaScript? Jscript? Java?

JavaScript
Netscape created interpreted
language; started with
Netscape v2.0

Jscript
MS created interpreted language;
started with IE v3.0
Similar to JavaScript

Java
Created by Sun
Compile, object-oriented, platform independent programming language
Used to create Java applets (programs for web browsers)

Both versions have some
inconsistencies and

differences

3

Why Use JavaScript?

To change the web page after
it has been rendered with
button rollovers, dialog boxes,
popup windows, and status
bar text

Validate form input before
form data is sent to a script on
a server; search a small
database

Lots of scripts publicly available;
Easy to use

Code is interpreted not
compiled; don’t need to
declare variables

Increase server
efficiency since the
client processes the
script

Offers good functionality when
ISP doesn’t support CGI

Basic Structures

Objects
Organize information into containers:
window, location, history, document,
form

Properties Data related to objects:
document.bgColor; form.action

Methods Activities you can do with objects:
form.submit; window.open;
document.write

Events Actions that are triggered by a user:
onMouseOver; onSubmit; onClick;

JavaScript is case-sensitive!!!

4

Objects
Base object is a window. Smaller objects are inside the window

Location – current web document URL, protocol, path, and port

History – records all sites a web browser has visited in a session;
also has built in functions used to change contents of current
window

Document – all details of web page; headings, links, anchors, forms,
etc;
functions used to programmatically alter contents of text boxes,
radio buttons, and other form elements

Form – information about forms including ACTION and METHOD and
form elements

Container Objects

Window

Document

Form

5

Properties

Each object has a set of unique properties and methods

location.hostname -- contains the host and domain name or IP address

document.title -- reflects the content on <title> element

document.bgColor – reflects the background colour

form.action -- reflects the server URL

Syntax: Object.Property
Properties are variables that hold values associated with an object

Methods

() are used to pass the argument; multiple arguments are separated by
commas; even when no argument is passed the () are included

document.write(“Hello world”);
document.writeln(“ <h1>COMP4064: Web Technologies</h1>”);
location.toString()
window.alert(“string”) where “string” is a text message
window.open(URL, name)

Syntax: Object.Method()

Methods are programming commands that when called or executed
directly effect an object

6

Generating HTML Dynamically
 Idea

 Script is interpreted as page is loaded, and uses
document.write or document.writeln to
insert HTML at the location the script occurs

 Template
...
<BODY>
Regular HTML

<SCRIPT TYPE="text/javascript">
<!--
Build HTML Here
// -->
</SCRIPT>

More Regular HTML
</BODY>

A Simple Script
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>

<TITLE>First JavaScript Page</TITLE>
</HEAD>

<BODY>
<H1>First JavaScript Page</H1>

<SCRIPT TYPE="text/javascript">
<!--
document.write("<HR>");
document.write("Hello World Wide Web");
document.write("<HR>");
// -->
</SCRIPT>

</BODY>
</HTML>

7

Simple Script, Result

Script Locations

Text files with no HTML code

Stored on the server

Called from SRC
<script language=“javascript”
src=“myscript.js”>
</script>

Statements are read in order
First in the HEAD and then in
the body

You can combine JavaScript
source code with embedded
code

External .js Source File Embedded JavaScript

8

Script Locations: HEAD

<head>
<script language=“javascript”>
<!- -
alert(“Welcome to my web space!”);

//- ->
</script>
</head>

Scripts are embedded in the HEAD or BODY

Statement using the
Alert MethodComments hide the script from older

browsers; // for single line comments

/* */ for multiple line comments

Script Locations: BODY

<head>
<script type=“text/javascript”>
<!- -
function printDate() {document.write(“The date today is: “ +
Date());}
//- ->

</script>

Identify the function

Apply a method to write a literal
and the date taken from the function

9

Extracting Document Info with
JavaScript, Example

<HTML>
<HEAD>

<TITLE>Extracting Document Info with JavaScript</TITLE>
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>Extracting Document Info with JavaScript</H1>
<HR>

<SCRIPT TYPE="text/javascript">
<!--

function referringPage() {
if (document.referrer.length == 0) {
return("<I>none</I>");

} else {
return(document.referrer);

}
}

Extracting Document Info with
JavaScript, Example, cont.

...
document.writeln

("Document Info:\n" +
"\n" +
" URL: " + document.location + "\n" +
" Modification Date: " + "\n" +

document.lastModified + "\n" +
" Title: " + document.title + "\n" +
" Referring page: " + referringPage() +
"\n" +
"");

document.writeln
("Browser Info:" + "\n" +
"" + "\n" +
" Name: " + navigator.appName + "\n" +
" Version: " + navigator.appVersion + "\n"
+
"");

// -->
</SCRIPT>

<HR>
</BODY>
</HTML>

10

Extracting Document Info with
JavaScript, Result

Extracting Document Info with
JavaScript, Result

11

Multi-Browser Compatibility
1. Use Language Attribute
<SCRIPT LANGUAGE="JavaScript">
<!--
languageVersion = "1.0";
// -->
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript1.1">
<!--
languageVersion = "1.1";
// -->
</SCRIPT>

...

<SCRIPT LANGUAGE="JavaScript1.5">
<!--
languageVersion = "1.5";
// -->
</SCRIPT>

Note: Don’t include that attribute TYPE="text/javascript"

2. Use Vendor/Version Info
 navigator.appName

 navigator.appVersion

User Events, Example

<HTML>
<HEAD>
<TITLE>Simple JavaScript Button</TITLE>

<SCRIPT TYPE="text/javascript">
<!--
function dontClick() {
alert("I told you not to click!");

}
// -->
</SCRIPT>
</HEAD>

<BODY BGCOLOR="WHITE">
<H1>Simple JavaScript Button</H1>

<FORM>
<INPUT TYPE="BUTTON"

VALUE="Don't Click Me"
onClick="dontClick()">

</FORM>
</BODY>
</HTML>

Various onXxx Attributes: onClick, onLoad, onMouseOver, onFocus etc.

12

User Events, Result

Variables
JavaScript is loosely typed – don’t need to specify data types when
you declare variables. A value is only checked for proper type when
it is operated upon.

var varName=value;

keyword
varName is valid
variable name

value is variable’s initial value

varName can contain letters, numbers, and underscore but can’t
begin with a number

var x = 5; // int
x = 5.5; // float
x = "five point five"; // String

Variables declared inside a function are LOCAL to that function

13

JavaScript: Symbolic Date
<SCRIPT language=JavaScript>
<!--

var days = new Array(8);
days[1] = "Sunday";
days[2] = "Monday";
days[3] = "Tuesday";
days[4] = "Wednesday";
days[5] = "Thursday";
days[6] = "Friday";
days[7] = "Saturday";
var months = new

Array(13);
months[1] = "Jan";
months[2] = "Feb";
months[3] = "Mar";
months[4] = "Apr";
months[5] = "May";
months[6] = "Jun";

months[7] = "Jul";
months[8] = "Aug";
months[9] = "Sep";
months[10] = "Oct";
months[11] = "Nov";
months[12] = "Dec";
var dateObj = new

Date(document.lastModified)
var wday = days[dateObj.getDay()+1]
var lmonth =
months[dateObj.getMonth() + 1]
var date = dateObj.getDate()
if (date < 10) date = "0" + date
var fyear = dateObj.getYear()
document.write(wday + ", " + date +
"-" + lmonth + "-" + fyear)
-->
</SCRIPT>

Output: Monday, 17-Jul-2006

JavaScript Syntax: Function
Declarations

1. Declaration Syntax
 Functions are declared using the function reserved word
 The return value is not declared, nor are the types of the

arguments

 Examples:

function square(x) {
return(x * x);

}

function factorial(n) {
if (n <= 0) {
return(1);

} else {
return(n * factorial(n - 1));

}
}

14

JavaScript Syntax: Function
Declarations, cont.

2. First Class Functions
Functions can be passed and assigned to variables

Example

var fun = Math.sin;

alert("sin(pi/2)=" + fun(Math.PI/2));

JavaScript Syntax: Objects and
Classes

1. Fields Can Be Added On-the-Fly
 Adding a new property (field) is a simple matter of

assigning a value to one

 If the field doesn’t already exist when you try to
assign to it, JavaScript will create it automatically.

 For instance:

var test = new Object();

test.field1 = "Value 1"; // Create field1 property

test.field2 = 7; // Create field2 property

15

JavaScript Syntax: Objects and
Classes, cont.

2. You Can Use Literal Notation
 You can create objects using a shorthand “literal”

notation of the form

{ field1:val1, field2:val2, ... , fieldN:valN }

 For example, the following gives equivalent values
to object1 and object2

var object1 = new Object();

object1.x = 3;

object1.y = 4;

object1.z = 5;

object2 = { x:3, y:4, z:5 };

JavaScript Syntax: Objects and
Classes, cont.

3. The "for/in" Statement Iterates Over Properties
 JavaScript, unlike Java or C++, has a construct that

lets you easily retrieve all of the fields of an object

 The basic format is as follows:

for(fieldName in object) {

doSomethingWith(fieldName);

}

 Also, given a field name, you can access the field
via object["field"] as well as via
object.field

16

Field Iteration, Example
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">
<HTML>
<HEAD>

<TITLE>For/In Loops</TITLE>

<SCRIPT TYPE="text/javascript">
<!--

function makeObjectTable(name, object) {
document.writeln("<H2>" + name + "</H2>");
document.writeln("<TABLE BORDER=1>\n" +

" <TR><TH>Field<TH>Value");
for(field in object) {
document.writeln (" <TR><TD>" + field +

"<TD>" + object[field]);
}
document.writeln("</TABLE>");

}
// -->
</SCRIPT>

Field Iteration, Example
...
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>For/In Loops</H1>

<SCRIPT TYPE="text/javascript">
<!--

var test = new Object();
test.field1 = "Field One";
test.field2 = "Field Two";
test.field3 = "Field Three";
makeObjectTable("test", test);

// -->
</SCRIPT>

</BODY>
</HTML>

17

Field Iteration, Result

The for/in statement
iterates over object
properties

JavaScript Syntax: Objects and
Classes

4. A “Constructor” is Just a Function that Assigns to “this”
• JavaScript does not have an exact equivalent to Java’s class

definition

• The closest you get is when you define a function that assigns
values to properties in the this reference

• Calling this function using new binds this to a new Object

• For example, following is a simple constructor for a Ship class

function Ship(x, y, speed, direction) {
this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;

}

18

Constructor, Example
var ship1 = new Ship(0, 0, 1, 90);
makeObjectTable("ship1", ship1);

JavaScript Syntax: Objects and
Classes, cont.

5. Methods Are Function-Valued Properties
 No special syntax for defining methods of objects
 Instead, you simply assign a function to a property

19

Class Methods

 Consider a version of the Ship class that includes a move method

function degreesToRadians(degrees) {
return(degrees * Math.PI / 180.0);

}
function move() {

var angle = degreesToRadians(this.direction);
this.x = this.x + this.speed * Math.cos(angle);
this.y = this.y + this.speed * Math.sin(angle);

}
function Ship(x, y, speed, direction) {

this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;
this.move = move;

}

5. Methods Are Function-Valued Properties
 No special syntax for defining methods of objects
 Instead, you simply assign a function to a property

Class Methods, Result
var ship1 = new Ship(0, 0, 1, 90);

makeObjectTable("ship1 (originally)", ship1);

ship1.move();

makeObjectTable("ship1 (after move)", ship1);

20

JavaScript Syntax: Objects and
Classes, cont.

5. Arrays
 For the most part, you can use arrays in JavaScript a lot like

Java arrays.
 Here are a few examples:
var squares = new Array(5);
for(var i=0; i<squares.length; i++) {

vals[i] = i * i;
}
// Or, in one fell swoop:
var squares = new Array(0, 1, 4, 9, 16);
var array1 = new Array("fee", "fie", "fo", "fum");
// Literal Array notation for creating an array.
var array2 = ["fee", "fie", "fo", "fum"];

 Behind the scenes, however, JavaScript simply represents
arrays as objects with numbered fields
 You can access named fields using either object.field or

object["field"], but numbered fields only via
object[fieldNumber]

Array, Example
var arrayObj = new Object();
arrayObj[0] = "Index zero";
arrayObj[10] = "Index ten";
arrayObj.field1 = "Field One";
arrayObj["field2"] = "Field Two";

makeObjectTable("arrayObj",
arrayObj);

21

Application: Adjusting to the
Browser Window Size

 Netscape 4.0 introduced the
window.innerWidth and
window.innerHeight properties
 Lets you determine the usable size of the current

browser window

Determining Browser Size,
Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Strawberries</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function image(url, width, height) {
return('<IMG SRC="' + url + '"' + ' WIDTH=' + width +

' HEIGHT=' + height + '>');
}
function strawberry1(width) {
return(image("Strawberry1.gif", width,
Math.round(width*1.323)));

}
function strawberry2(width) {
return(image("Strawberry2.gif", width,
Math.round(width*1.155)));

}
// -->
</SCRIPT>
</HEAD>

22

Determining Browser Size,
Example, cont.

...
<SCRIPT TYPE="text/javascript">
<!--
var imageWidth = window.innerWidth/4;
var fontSize = Math.min(7,Math.round(window.innerWidth/100));

document.writeln
('<TABLE>\n' +
' <TR><TD>' + strawberry1(imageWidth) + '\n' +
' <TH>\n' +
' "Doubtless God <I>could</I> have made\n' +
' a better berry, but doubtless He\n' +
' never did."\n' +
' <TD>' + strawberry2(imageWidth) + '\n' +
'</TABLE>');

// -->
</SCRIPT>
<HR>

Strawberries are my favorite garden crop; a fresh ...
</BODY>
</HTML>

Determining Browser Size,
Results

23

Application: Using JavaScript to
Make Pages Dynamic

 Modifying Images Dynamically
 The document.images property contains an

array of Image objects corresponding to each
IMG element in the current document

 To display a new image, simply set the SRC
property of an existing image to a string
representing a different image file

Modifying Images, Example
 The following function changes the first image in a

document

function changeImage() {
document.images[0].src = "images/new-image.gif";

}

 Referring to images by name is easier:

<IMG SRC="cool-image.jpg" NAME="cool"
WIDTH=75 HEIGHT=25>

function improveImage() {
document.images["cool"].src = "way-cool.jpg";

}

24

Modifying Images: A Clickable
Image Button, Example

<SCRIPT TYPE="text/javascript">

<!--

imageFiles = new Array("images/Button1-Up.gif",

"images/Button1-Down.gif",

"images/Button2-Up.gif",

"images/Button2-Down.gif");

imageObjects = new Array(imageFiles.length);

for(var i=0; i<imageFiles.length; i++) {

imageObjects[i] = new Image(150, 25);

imageObjects[i].src = imageFiles[i];

}

function setImage(name, image) {

document.images[name].src = image;

}

Modifying Images: A Clickable
Image Button, Example

function clickButton(name, grayImage) {
var origImage = document.images[name].src;
setImage(name, grayImage);
var resetString =

"setImage('" + name + "', '" + origImage + "')";
setTimeout(resetString, 100);

}
// -->
</SCRIPT>

</HEAD>
...
<A HREF="location1.html"

onClick="clickButton('Button1', 'images/Button1-Down.gif')">
<IMG SRC="images/Button1-Up.gif" NAME="Button1"

WIDTH=150 HEIGHT=25>

<A HREF="location2.html"
onClick="clickButton('Button2', 'images/Button2-Down.gif')">

<IMG SRC="images/Button2-Up.gif" NAME="Button2"
WIDTH=150 HEIGHT=25>

...

25

Highlighting Images Under the
Mouse, Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">

<HTML>

<HEAD>

<TITLE>High Peaks Navigation Bar</TITLE>

<SCRIPT TYPE="text/javascript">

<!—

// Given "Foo", returns "images/Foo.gif".

function regularImageFile(imageName) {

return("images/" + imageName + ".gif");

}

// Given "Bar", returns "images/Bar-Negative.gif".

function negativeImageFile(imageName) {

return("images/" + imageName + "-Negative.gif");

}

Highlighting Images Under the
Mouse, Example, cont.

// Cache image at specified index. E.g., given index 0,
// take imageNames[0] to get "Home". Then preload
// images/Home.gif and images/Home-Negative.gif.

function cacheImages(index) {
regularImageObjects[index] = new Image(150, 25);
regularImageObjects[index].src =
regularImageFile(imageNames[index]);

negativeImageObjects[index] = new Image(150, 25);
negativeImageObjects[index].src =
negativeImageFile(imageNames[index]);

}

imageNames = new Array("Home", "Tibet", "Nepal",
"Austria", "Switzerland");

regularImageObjects = new Array(imageNames.length);
negativeImageObjects = new Array(imageNames.length);

// Put images in cache for fast highlighting.
for(var i=0; i<imageNames.length; i++) {

cacheImages(i);
}

26

Highlighting Images Under the
Mouse, Example, cont.

...
function highlight(imageName) {

document.images[imageName].src = negativeImageFile(imageName);
}
function unHighlight(imageName) {

document.images[imageName].src = regularImageFile(imageName);
}
// -->
</SCRIPT>
</HEAD>
<BODY BGCOLOR="WHITE">
<TABLE BORDER=0 WIDTH=150 BGCOLOR="WHITE"

CELLPADDING=0 CELLSPACING=0>
<TR><TD><A HREF="Tibet.html"

TARGET="Main"
onMouseOver="highlight('Tibet')"
onMouseOut="unHighlight('Tibet')">
<IMG SRC="images/Tibet.gif"

NAME="Tibet"
WIDTH=150 HEIGHT=25 BORDER=0>

...

Highlighting Images Under the
Mouse, Result

27

Making Pages Dynamic:
Moving Layers

 Netscape 4 introduced “layers” – regions that can
overlap and be positioned arbitrarily

 JavaScript 1.2 lets you access layers via the
document.layers array, each element of which is
a Layer object with properties corresponding to the
attributes of the LAYER element

 A named layer can be accessed via
document.layers["layer name"] rather than
by using an index, or simply by using
document.layerName

Moving Layers, Example
 Descriptive overlays slowly “drift” to final spot when button

clicked

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Camps on K-3</TITLE>

<SCRIPT TYPE="text/javascript">
<!--
function hideCamps() {
// Netscape 4 document model.
document.layers["baseCamp"].visibility = "hidden";
document.layers["highCamp"].visibility = "hidden";
// Or document.baseCamp.visibility = "hidden";

}

function moveBaseCamp() {
baseCamp.moveBy(1, 3);
if (baseCamp.pageX < 130) {
setTimeout("moveBaseCamp()", 10);

}
}

28

Moving Layers, Example, cont.
function showBaseCamp() {
hideCamps();
baseCamp = document.layers["baseCamp"];
baseCamp.moveToAbsolute(0, 20);
baseCamp.visibility = "show";
moveBaseCamp();

}
function moveHighCamp() {

highCamp.moveBy(2, 1);
if (highCamp.pageX < 110) {
setTimeout("moveHighCamp()", 10);

}
}

function showHighCamp() {
hideCamps();
highCamp = document.layers["highCamp"];
highCamp.moveToAbsolute(0, 65);
highCamp.visibility = "show";
moveHighCamp();

}
// -->
</SCRIPT>

Moving Layers, Example, cont.
<LAYER ID="highCamp" PAGEX=50 PAGEY=100 VISIBILITY="hidden">

<TABLE>
<TR><TH BGCOLOR="WHITE" WIDTH=50>

High Camp
<TD>

</TABLE>
</LAYER>
<LAYER ID="baseCamp" PAGEX=50 PAGEY=100 VISIBILITY="hidden">

<TABLE>
<TR><TH BGCOLOR="WHITE" WIDTH=50>

Base Camp
<TD>

</TABLE>
</LAYER>

<FORM>
<INPUT TYPE="Button" VALUE="Show Base Camp"

onClick="showBaseCamp()">
<INPUT TYPE="Button" VALUE="Show High Camp"

onClick="showHighCamp()">
<INPUT TYPE="Button" VALUE="Hide Camps"

onClick="hideCamps()">
</FORM>

29

Moving Layers, Result

Moving Layers, Result

30

Application: Using JavaScript to
Validate CGI Forms

1. Accessing Forms
 The document.forms property contains an array

of Form entries contained in the document

 As usual in JavaScript, named entries can be
accessed via name instead of by number, plus
named forms are automatically inserted as
properties in the document object, so any of the
following formats would be legal to access forms

var firstForm = document.forms[0];

// Assumes <FORM NAME="orders" ...>

var orderForm = document.forms["orders"];

// Assumes <FORM NAME="register" ...>

var registrationForm = document.register;

Application: Using JavaScript to
Validate CGI Forms, cont.

2. Accessing Elements within Forms
 The Form object contains an elements property that

holds an array of Element objects

 You can retrieve form elements by number, by
name from the array, or via the property name:

var firstElement = firstForm.elements[0];

// Assumes <INPUT ... NAME="quantity">

var quantityField = orderForm.elements["quantity"];

// Assumes <INPUT ... NAME="submitSchedule">

var submitButton = register.submitSchedule;

31

Checking Form Values
Individually, Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>On-Line Training</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
...
// When the user changes and leaves textfield, check
// that a valid choice was entered. If not, alert
// user, clear field, and set focus back there.
function checkLanguage() {

// or document.forms["langForm"].elements["langField"]
var field = document.langForm.langField;
var lang = field.value;
var prefix = lang.substring(0, 4).toUpperCase();
if (prefix != "JAVA") {
alert("Sorry, '" + lang + "' is not valid.\n" +

"Please try again.");
field.value = ""; // Erase old value
field.focus(); // Give keyboard focus

}
}

Checking Form Values
Individually, Example, cont.

// -->
</SCRIPT>
</HEAD>
<BODY BGCOLOR="WHITE">
<H1>On-Line Training</H1>

<FORM ACTION="cgi-bin/registerLanguage" NAME="langForm">
To see an introduction to any of our on-line training
courses, please enter the name of an important Web
programming language below.
<P>
Language:
<INPUT TYPE="TEXT" NAME="langField"

onFocus="describeLanguage()"
onBlur="clearStatus()"
onChange="checkLanguage()">

<P>
<INPUT TYPE="SUBMIT" VALUE="Show It To Me">
</FORM>

</BODY>
</HTML>

32

Checking Form Values
Individually, Results

Checking Values When Form is
Submitted, Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Camp Registration</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function isInt(string) {

var val = parseInt(string);
return(val > 0);

}
function checkRegistration() {

var ageField = document.registerForm.ageField;
if (!isInt(ageField.value)) {
alert("Age must be an integer.");
return(false);

}
...
// Format looks OK. Submit form.
return(true);

}
// -->
</SCRIPT>

33

Checking Values When Form is
Submitted, Example, cont.

<BODY BGCOLOR="WHITE">
<H1>Camp Registration</H1>

<FORM ACTION="cgi-bin/register"
NAME="registerForm"
onSubmit="return(checkRegistration())">

Age: <INPUT TYPE="TEXT" NAME="ageField"
onFocus="promptAge()"
onBlur="clearStatus()">

Rank: <INPUT TYPE="TEXT" NAME="rankField"

onFocus="promptRank()"
onBlur="clearStatus()">

Serial Number: <INPUT TYPE="TEXT" NAME="serialField"

onFocus="promptSerial()"
onBlur="clearStatus()">

<P>
<INPUT TYPE="SUBMIT" VALUE="Submit Registration">
</FORM>

</BODY>
</HTML>

Checking Values When Form is
Submitted, Results

34

Application: Using JavaScript to
Store and Examine Cookies

1. Using document.cookies

 Set it (one cookie at a time) to store values

document.cookie = "name1=val1";

document.cookie = "name2=val2; expires=" + someDate;

document.cookie = "name3=val3; path=/;

domain=test.com";

 Read it (all cookies in a single string) to access
values

Application: Using JavaScript to
Store and Examine Cookies

2. Parsing Cookies

function cookieVal(cookieName, cookieString) {

var startLoc = cookieString.indexOf(cookieName);

if (startLoc == -1) {

return(""); // No such cookie

}

var sepLoc = cookieString.indexOf("=", startLoc);

var endLoc = cookieString.indexOf(";", startLoc);

if (endLoc == -1) { // Last one has no ";"

endLoc = cookieString.length;

}

return(cookieString.substring(sepLoc+1, endLoc));

}

35

Cookie, Example
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Widgets "R" Us</TITLE>
<SCRIPT TYPE="text/javascript">
<!--

function storeCookies() {
var expires = "; expires=Monday, 01-Dec-01 23:59:59 GMT";
var first = document.widgetForm.firstField.value;
var last = document.widgetForm.lastField.value;
var account = document.widgetForm.accountField.value;
document.cookie = "first=" + first + expires;
document.cookie = "last=" + last + expires;
document.cookie = "account=" + account + expires;

}

// Store cookies and give user confirmation.
function registerAccount() {

storeCookies();
alert("Registration Successful.");

}

Cookie, Example, cont.
function cookieVal(cookieName, cookieString) {

var startLoc = cookieString.indexOf(cookieName);
if (startLoc == -1) {

return(""); // No such cookie
}
var sepLoc = cookieString.indexOf("=", startLoc);
var endLoc = cookieString.indexOf(";", startLoc);
if (endLoc == -1) { // Last one has no ";"

endLoc = cookieString.length;
}
return(cookieString.substring(sepLoc+1, endLoc));

}
function presetValues() {

var firstField = document.widgetForm.firstField;
var lastField = document.widgetForm.lastField;
var accountField = document.widgetForm.accountField;
var cookies = document.cookie;
firstField.value = cookieVal("first", cookies);
lastField.value = cookieVal("last", cookies);
accountField.value = cookieVal("account", cookies);

}
// -->
</SCRIPT>

36

Cookie, Examaple, cont.
</HEAD>
<BODY BGCOLOR="WHITE" onLoad="presetValues()">

<H1>Widgets "R" Us</H1>

<FORM ACTION="servlet/cwp.Widgets"
NAME="widgetForm"
onSubmit="storeCookies()">

First Name: <INPUT TYPE="TEXT" NAME="firstField">

Last Name: <INPUT TYPE="TEXT" NAME="lastField">

Account Number: <INPUT TYPE="TEXT" NAME="accountField">

Widget Name: <INPUT TYPE="TEXT" NAME="widgetField">

<INPUT TYPE="BUTTON" VALUE="Register Account"

onClick="registerAccount()">
<INPUT TYPE="SUBMIT" VALUE="Submit Order">

</FORM>
</BODY>
</HTML>

Cookie, Example, Result

37

Application: Using JavaScript to
Interact with Frames

 Idea
 The default Window object contains a frames

property holding an array of frames (other
Window objects) contained by the current
window or frame.
 It also has parent and top properties referring to the

directly enclosing frame or window and the top-level
window, respectively.

 All of the properties of Window can be applied to any of
these entries.

Displaying a URL in a Particular
Frame, Example

 ShowURL.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">

<HTML>

<HEAD>

<TITLE>Show a URL</TITLE>

</HEAD>

<FRAMESET ROWS="150, *">

<FRAME SRC="GetURL.html" NAME="inputFrame">

<FRAME SRC="DisplayURL.html" NAME="displayFrame">

</FRAMESET>

</HTML>

38

Displaying a URL in a Particular
Frame, Example, cont.

 GetURL.html
<HTML>
<HEAD>

<TITLE>Choose a URL</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function showURL() {

var url = document.urlForm.urlField.value;
// or parent.frames["displayFrame"].location = url;
parent.displayFrame.location = url;

}

function preloadUrl() {
if (navigator.appName == "Netscape") {
document.urlForm.urlField.value =
"http://home.netscape.com/";

} else {
document.urlForm.urlField.value =
"http://www.microsoft.com/";

}
}
...

Displaying a URL in a Particular
Frame, Example, cont.

 GetURL.html, cont.

<BODY BGCOLOR="WHITE" onLoad="preloadUrl()">

<H1 ALIGN="CENTER">Choose a URL</H1>

<CENTER>

<FORM NAME="urlForm">

URL: <INPUT TYPE="TEXT" NAME="urlField" SIZE=35>

<INPUT TYPE="BUTTON" VALUE="Show URL"

onClick="showURL()">

</FORM>

</CENTER>

</BODY>

</HTML>

39

Displaying a URL in a Particular
Frame, Result

Displaying a URL in a Particular
Frame, Result, cont.

40

Giving a Frame the Input Focus,
Example

 If JavaScript is manipulating the frames, the fix
is easy: just add a call to focus in showUrl:
function showURL() {

var url = document.urlForm.urlField.value;

parent.displayFrame.location = url;

// Give frame the input focus

parent.displayFrame.focus();

}

 Fixing the problem in regular HTML documents
is a bit more tedious
 Requires adding onClick handlers that call focus to

each and every occurrence of A and AREA that
includes a TARGET, and a similar onSubmit handler
to each FORM that uses TARGET

Application: Accessing Java
from JavaScript

1. Idea
 Netscape 3.0 introduced a package called

LiveConnect that allows JavaScript to talk to Java
and vice versa

 Applications:
 Calling Java methods directly.

 In particular, this section shows how to print debugging
messages to the Java console

 Using applets to perform operations for JavaScript
 In particular, this section shows how a hidden applet can be

used to obtain the client hostname, information not otherwise
available to JavaScript

 Controlling applets from JavaScript
 In particular, this section shows how LiveConnect allows user

actions in the HTML part of the page to trigger actions in the
applet

41

Application: Accessing Java
from JavaScript

 Calling Java Methods Directly
 JavaScript can access Java variables and methods

simply by using the fully qualified name. For instance:

java.lang.System.out.println("Hello Console");

 Limitations:
 Can’t perform operations forbidden to applets

 No try/catch, so can’t call methods that throw exceptions

 Cannot write methods or create subclasses

Controlling Applets from
JavaScript, Example

 MoldSimulation.html, cont.
<BODY BGCOLOR="#C0C0C0">
<H1>Mold Propagation Simulation</H1>

<APPLET CODE="RandomCircles.class" WIDTH=100 HEIGHT=75>
</APPLET>
<P>
<APPLET CODE="RandomCircles.class" WIDTH=300 HEIGHT=75>
</APPLET>
<P>
<APPLET CODE="RandomCircles.class" WIDTH=500 HEIGHT=75>
</APPLET>

<FORM>
<INPUT TYPE="BUTTON" VALUE="Start Simulations"

onClick="startCircles()">
<INPUT TYPE="BUTTON" VALUE="Stop Simulations"

onClick="stopCircles()">
</FORM>

</BODY>
</HTML>

42

Controlling Applets from
JavaScript, Example

 MoldSimulation.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Mold Propagation Simulation</TITLE>
<SCRIPT TYPE="text/javascript">
<!--
function startCircles() {

for(var i=0; i<document.applets.length; i++) {
document.applets[i].startCircles();

}
}

function stopCircles() {
for(var i=0; i<document.applets.length; i++) {
document.applets[i].stopCircles();

}
}
// -->
</SCRIPT>
</HEAD>

Controlling Applets from
JavaScript, Example

 RandomCircles.java

public class RandomCircles extends Applet
implements Runnable {

private boolean drawCircles = false;

public void startCircles() {
Thread t = new Thread(this);
t.start();

}

public void run() {
Color[] colors = { Color.lightGray, Color.gray,

Color.darkGray, Color.black };
int colorIndex = 0;
int x, y;
int width = getSize().width;
int height = getSize().height;

Graphics g = getGraphics();
drawCircles = true;
...

43

Controlling Applets from
JavaScript, Example

 RandomCircles.java, cont.
while(drawCircles) {

x = (int)Math.round(width * Math.random());
y = (int)Math.round(height * Math.random());
g.setColor(colors[colorIndex]);
colorIndex = (colorIndex + 1) % colors.length;
g.fillOval(x, y, 10, 10);
pause(0.1);

}
}

public void stopCircles() {
drawCircles = false;

}

private void pause(double seconds) {
try {

Thread.sleep((int)(Math.round(seconds * 1000.0)));
} catch(InterruptedException ie) {}

}
}

Controlling Applets from
JavaScript, Results

44

Accessing JavaScript from Java
 Steps

1. Obtain and install the JSObject class
– Installed with Netscape 4 (javar40.jar)

– JDK 1.4 includes JSObject in jaws.jar
 See Chapter 24 in

http://java.sun.com/j2se/1.4.1/docs/guide/plugin/developer
_guide/contents.html

2. Import it in your applet
import netscape.javascript.JSObject

3. From the applet, obtain a JavaScript reference to
the current window

JSObject window = JSObject.getWindow(this);

Accessing JavaScript from Java,
cont.

 Steps, cont.
4. Read the JavaScript properties of interest

– Use getMember to access properties of the JSObject
JSObject someForm =

(JSObject)document.getMember("someFormName");

5. Set the JavaScript properties of interest
– Use setMember to set properties of the JSObject

document.setMember("bgColor", "red");

6. Call the JavaScript methods of interest
String[] message = { "An alert message" };
window.call("alert", message);
window.eval("alert(’An alert message’)");

7. Give the applet permission to access its Web page
<APPLET CODE=... WIDTH=... HEIGHT=... MAYSCRIPT>
...
</APPLET>

45

Matching Applet Background
with Web Page, Example

 MatchColor.java
import java.applet.Applet;
import java.awt.*;
import netscape.javascript.JSObject;

public class MatchColor extends Applet {
public void init() {

JSObject window = JSObject.getWindow(this);
JSObject document =

(JSObject)window.getMember("document");
// E.g., "#ff0000" for red
String pageColor = (String)document.getMember("bgColor");
// E.g., parseInt("ff0000", 16) --> 16711680
int bgColor =

Integer.parseInt(pageColor.substring(1, 7), 16);
setBackground(new Color(bgColor));

}
}

Matching Applet Background
with Web Page, Example, cont.

 MatchColor.html

<HTML>

<HEAD>

<TITLE>MatchColor</TITLE>

</HEAD>

<BODY BGCOLOR="RED">

<H1>MatchColor</H1>

<APPLET CODE="MatchColor.class"

WIDTH=300 HEIGHT=300 MAYSCRIPT>

</APPLET>

</BODY>

</HTML>

46

Applet That Controls HTML Form
Values, Example

 See on-line example for Everest.html

Summary

 JavaScript permits you to:
 Customize Web pages based on the situation

 Make pages more dynamic

 Validate HTML form input

 Manipulate cookies

 Control frames

 Integrate Java and JavaScript

 Web resources:

http://www.javascriptsource.com

47

Thank you for your attention!

1

AWT
Components

Agenda
 Basic AWT windows

 Canvas, Panel, Frame, Dialog

 Creating lightweight components

 Closing frames

 Using object serialization to save components
to disk

 Basic AWT user interface controls

 Button, checkbox, radio button, list box,
scrollbars

 Processing events in GUI controls

2

Windows and Layout Management
 Containers

 Most windows are a Container that can hold other
windows or GUI components. Canvas is the major
exception.

 Layout Managers
 Containers have a LayoutManager that

automatically sizes and positions components that
are in the window

 You can change the behavior of the layout manager
or disable it completely. Details in next lecture.

 Events
 Windows and components can receive mouse and

keyboard events, just as in previous lecture.

Windows and Layout Management

 Drawing in Windows
 To draw into a window, make a subclass with its own
paint method

 Having one window draw into another window is not
usually recommended

 Popup Windows
 Some windows (Frame and Dialog) have their own

title bar and border and can be placed at arbitrary
locations on the screen

 Other windows (Canvas an Panel) are embedded
into existing windows only

3

Canvas Class
 Major Purposes

 A drawing area
 A custom Component that does not need to contain

any other Component (e.g. an image button)

 Default Layout Manager - None
 Canvas cannot contain any other Components

 Creating and Using
 Create the Canvas

Canvas canvas = new Canvas();

Or, since you typically create a subclass of Canvas
that has customized drawing via its paint method:

SpecializedCanvas canvas =
new SpecializedCanvas();

Canvas (Continued)
 Creating and Using, cont.

 Size the Canvas
canvas.setSize(width, height);

 Add the Canvas to the current Window
add(canvas);

or depending on the layout manager you can position
the Canvas
add(canvas, BorderLayout.Region_Name);

If you first create a separate window (e.g. a Panel),
then put the Canvas in the window using something
like

someWindow.add(canvas);

4

Canvas Example
import java.awt.*;
/** A Circle component built using a Canvas. */

public class Circle extends Canvas {
private int width, height;

public Circle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius;
height = 2*radius;
setSize(width, height);

}
public void paint(Graphics g) {
g.fillOval(0, 0, width, height);

}
public void setCenter(int x, int y) {
setLocation(x - width/2, y - height/2);

}
}

Canvas Example (Continued)
import java.awt.*;

import java.applet.Applet;

public class CircleTest extends Applet {

public void init() {

setBackground(Color.lightGray);

add(new Circle(Color.white, 30));

add(new Circle(Color.gray, 40));

add(new Circle(Color.black, 50));

}

}

5

Canvases are Rectangular and
Opaque: Example

public class CircleTest2 extends Applet {

public void init() {

setBackground(Color.lightGray);

setLayout(null); // Turn off layout manager.

Circle circle;

int radius = getSize().width/6;

int deltaX = round(2.0*(double)radius/Math.sqrt(2.0));

for (int x=radius; x<6*radius; x=x+deltaX) {

circle = new Circle(Color.black, radius);

add(circle); circle.setCenter(x, x);

}

}

private int round(double num) {

return((int)Math.round(num));

}

}

Canvases are Rectangular and
Opaque: Result

Standard components have an associated peer
(native window system object).

6

Component Class
 Direct Parent Class of Canvas
 Ancestor of all Window Types
 Useful Methods

 getBackground/setBackground
 getForeground/setForeground

Change/lookup the default foreground color
Color is inherited by the Graphics object of the

component
 getFont/setFont

Returns/sets the current font
 Inherited by the Graphics object of the component

 paint
Called whenever the user call repaint or when the

component is obscured and reexposed

Component Class (Continued)
 Useful Methods

 setVisible
 Exposes (true) or hides (false) the component

 Especially useful for frames and dialogs

 setSize/setBounds/setLocation

 getSize/getBounds/getLocation
 Physical aspects (size and position) of the component

 list
 Prints out info on this component and any components

it contains; useful for debugging

 invalidate/validate
 Tell layout manager to redo the layout

 getParent
 Returns enclosing window (or null if there is none)

7

Lightweight Components

 Components that inherit directly from
Component have no native peer

 The underlying component will show through
except for regions directly drawn in paint

 If you use a lightweight component in a
Container that has a custom paint method, call
super.paint or the lightweight components
will not be drawn

Lightweight Components: Example
public class BetterCircle extends Component {

private Dimension preferredDimension;
private int width, height;

public BetterCircle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius; height = 2*radius;
preferredDimension = new Dimension(width, height);
setSize(preferredDimension);

}
public void paint(Graphics g) {

g.setColor(getForeground());
g.fillOval(0, 0, width, height);

}
public Dimension getPreferredSize() {

return(preferredDimension);
}
public Dimension getMinimumSize() {
return(preferredDimension);

}
...

}

8

Lightweight Components: Result

Lightweight components can be transparent

Panel Class
 Major Purposes

 To group/organize components
 A custom component that requires embedded

components
 Default Layout Manager - FlowLayout

 Shrinks components to their preferred (minimum) size
 Places them left to right in centered rows

 Creating and Using
 Create the Panel

Panel panel = new Panel();
 Add Components to Panel

panel.add(someComponent);
panel.add(someOtherComponent);
...

9

Panel (Continued)
 Creating and Using, continued

 Add Panel to Container
 To an external container

 container.add(panel);

 From within a container
 add(panel);

 To an external container that is using BorderLayout
 container.add(panel,region);

 Note the lack of an explicit setSize
 The components inside determine the size of a panel; the

panel is no larger then necessary to hold the components

 A panel holding no components has a size of zero

 Note: Applet is a subclass of Panel

No Panels: Example
import java.applet.Applet;

import java.awt.*;

public class ButtonTest1 extends Applet {

public void init() {

String[] labelPrefixes = { "Start", "Stop",
"Pause", "Resume" };

for (int i=0; i<4; i++) {

add(new Button(labelPrefixes[i] + " Thread1"));

}

for (int i=0; i<4; i++) {

add(new Button(labelPrefixes[i] + " Thread2"));

}

}

}

10

No Panels: Result

Panels: Example
import java.applet.Applet;
import java.awt.*;

public class ButtonTest2 extends Applet {
public void init() {
String[] labelPrefixes = { "Start", "Stop",

"Pause", "Resume" };
Panel p1 = new Panel();
for (int i=0; i<4; i++) {
p1.add(new Button(labelPrefixes[i] + " Thread1"));

}
Panel p2 = new Panel();
for (int i=0; i<4; i++) {
p2.add(new Button(labelPrefixes[i] + " Thread2"));

}
add(p1);
add(p2);

}
}

11

Panels: Result

Container Class
 Ancestor of all Window Types Except Canvas

 Inherits all Component Methods

 Useful Container Methods
 add

 Add a component to the container (in the component array)

 If using BorderLayout, you can also specify in which region to
place the component

 remove
 Remove the component from the window (container)

 getComponents
 Returns an array of components in the window

 Used by layout managers

 setLayout
 Changes the layout manager associated with the window

12

Frame Class
 Major Purpose

 A stand-alone window with its own title and menu bar,
border, cursor, and icon image

 Can contain other GUI components
 Default LayoutManager: BorderLayout

 BorderLayout
 Divides the screen into 5 regions: North, South, East,

West, and Center
 To switch to the applet’s layout manager use

 setLayout(new FlowLayout());

 Creating and Using – Two Approaches:
 A fixed-size Frame
 A Frame that stretches to fit what it contains

Creating a Fixed-Size Frame
 Approach

Frame frame = new Frame(titleString);
frame.add(somePanel,BorderLayout.CENTER);
frame.add(otherPanel, BorderLayout.NORTH);
...
frame.setSize(width, height);
frame.setVisible(true);

 Note: be sure you pop up the frame last
 Odd behavior results if you add components to a window

that is already visible (unless you call doLayout on the
frame)

13

Creating a Frame that Stretches to
Fit What it Contains

 Approach
Frame frame = new Frame(titleString);

frame.setLocation(left, top);

frame.add(somePanel, BorderLayout.CENTER);

...

frame.pack();

frame.setVisible(true);

 Again, be sure to pop up the frame after adding
the components

Frame Example 1
 Creating the Frame object in main

public class FrameExample1 {
public static void main(String[] args) {
Frame f = new Frame("Frame Example 1");
f.setSize(400, 300);
f.setVisible(true);

}
}

14

Frame Example 2

 Using a Subclass of Frame

public class FrameExample2 extends Frame {
public FrameExample2() {
super("Frame Example 2");
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new FrameExample2();

}
}

A Closeable Frame
import java.awt.*;
import java.awt.event.*;

public class CloseableFrame extends Frame {

public CloseableFrame(String title) {
super(title);
enableEvents(AWTEvent.WINDOW_EVENT_MASK);

}

public void processWindowEvent(WindowEvent event){
super.processWindowEvent(event); // Handle listeners
if (event.getID() == WindowEvent.WINDOW_CLOSING){
System.exit(0);

}
}

}
 If a Frame is used in an Applet, use dispose instead of
System.exit(0)

15

Dialog Class

 Major Purposes
 A simplified Frame (no cursor, menu, icon image).

 A modal Dialog that freezes interaction with other AWT
components until it is closed

 Default LayoutManager: BorderLayout

 Creating and Using
 Similar to Frame except constructor takes two additional

arguments: the parent Frame and a boolean specifying
whether or not it is modal
Dialog dialog =

new Dialog(parentFrame, titleString, false);

Dialog modalDialog =

new Dialog(parentFrame, titleString, true);

A Confirmation Dialog
class Confirm extends Dialog

implements ActionListener {
private Button yes, no;

public Confirm(Frame parent) {
super(parent, "Confirmation", true);
setLayout(new FlowLayout());
add(new Label("Really quit?"));
yes = new Button("Yes");
yes.addActionListener(this);
no = new Button("No");
no.addActionListener(this);
add(yes);
add(no);
pack();
setVisible(true);

}

16

A Confirmation Dialog
(Continued)

public void actionPerformed(ActionEvent
event) {

if (event.getSource() == yes) {
System.exit(0);

} else {
dispose();

}
}

}

Using Confirmation Dialog
public class ConfirmTest extends Frame {

public static void main(String[] args) {

new ConfirmTest();

}

public ConfirmTest() {

super("Confirming QUIT");

setSize(200, 200);

addWindowListener(new ConfirmListener());

setVisible(true);

}

public ConfirmTest(String title) {

super(title);

}

17

Using Confirmation Dialog
(Continued)

private class ConfirmListener extends
WindowAdapter {

public void windowClosing(WindowEvent event) {

new Confirm(ConfirmTest.this);

}

}

}

A Confirmation Dialog: Result

Modal dialogs freeze interaction with all other Java components

18

Serializing Windows

 Serialization of Objects
 Can save state of serializable objects to disk

 Can send serializable objects over the network

 All objects must implement the Serializable
interface
 The interface is a marker; doesn’t declare any methods
 Declare data fields not worth saving as transient

 All AWT components are serializable

Serialization,
Writing a Window to Disk

try {

File saveFile = new File("SaveFilename");

FileOutputStream fileOut =

new FileOutputStream(saveFile);

ObjectOutputStream out =

new ObjectOutputStream(fileOut);

out.writeObject(someWindow);

out.flush();

out.close();

} catch(IOException ioe) {

System.out.println("Error saving window: " +
ioe);

}

19

Serialization,
Reading a Window from Disk
try {

File saveFile = new File("SaveFilename");

FileInputStream fileIn =

new FileInputStream(saveFile);

ObjectInputStream in =

new ObjectInputStream(fileIn);

someWindow = (WindowType)in.readObject();

doSomethingWith(someWindow); // E.g. setVisible.

} catch(IOException ioe) {

System.out.println("Error reading file: " +
ioe);

} catch(ClassNotFoundException cnfe) {

System.out.println("No such class: " + cnfe);

}

AWT GUI Controls

 Automatically drawn - you don’t override paint

 Positioned by layout manager

 Use native window-system controls (widgets)

 Controls adopt look and feel of underlying
window system

 Higher level events typically used
 For example, for buttons you don’t monitor mouse

clicks, since most OS’s also let you trigger a button by
hitting RETURN when the button has the keyboard
focus

20

GUI Event Processing
 Decentralized Event Processing

 Give each component its own event-handling methods

 The user of the component doesn’t need to know
anything about handling events

 The kind of events that the component can handle will
need to be relatively independent of the application that
it is in

 Centralized Event Processing
 Send events for multiple components to a single

listener
 The (single) listener will have to first determine from

which component the event came before determining
what to do about it

Decentralized Event Processing:
Example

import java.awt.*;

public class ActionExample1 extends CloseableFrame {
public static void main(String[] args) {
new ActionExample1();

}

public ActionExample1() {
super("Handling Events in Component");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
add(new SetSizeButton(300, 200));
add(new SetSizeButton(400, 300));
add(new SetSizeButton(500, 400));
setSize(400, 300);
setVisible(true);

}
}

21

Decentralized Event Processing:
Example (Continued)

import java.awt.*;
import java.awt.event.*;

public class SetSizeButton extends Button
implements ActionListener {

private int width, height;

public SetSizeButton(int width, int height) {
super("Resize to " + width + "x" + height);
this.width = width;
this.height = height;
addActionListener(this);

}
public void actionPerformed(ActionEvent event) {
Container parent = getParent();
parent.setSize(width, height);
parent.invalidate();
parent.validate();

}
}

Decentralized Event Processing:
Result

22

Centralized Event Processing,
Example

import java.awt.*;

import java.awt.event.*;

public class ActionExample2 extends CloseableFrame

implements ActionListener {

public static void main(String[] args) {

new ActionExample2();

}

private Button button1, button2, button3;

public ActionExample2() {

super("Handling Events in Other Object");

setLayout(new FlowLayout());

setFont(new Font("Serif", Font.BOLD, 18));

button1 = new Button("Resize to 300x200");

button1.addActionListener(this);
add(button1);

Centralized Event Processing:
Example (Continued)

...
setSize(400, 300);
setVisible(true);

}

public void actionPerformed(ActionEvent event) {
if (event.getSource() == button1) {

updateLayout(300, 200);
} else if (event.getSource() == button2) {

updateLayout(400, 300);
} else if (event.getSource() == button3) {

updateLayout(500, 400);
}

}

private void updateLayout(int width, int height) {
setSize(width, height);
invalidate();
validate();

}
}

23

Buttons

 Constructors
 Button()

Button(String buttonLabel)
 The button size (preferred size) is based on the height and

width of the label in the current font, plus some extra space
determined by the OS

 Useful Methods
 getLabel/setLabel

 Retrieves or sets the current label
 If the button is already displayed, setting the label does not

automatically reorganize its Container

 The containing window should be invalidated and
validated to force a fresh layout
someButton.setLabel("A New Label");
someButton.getParent().invalidate();
someButton.getParent().validate();

Buttons (Continued)
 Event Processing Methods

 addActionListener/removeActionListener
 Add/remove an ActionListener that processes
ActionEvents in actionPerformed

 processActionEvent
 Low-level event handling

 General Methods Inherited from Component
 getForeground/setForeground

 getBackground/setBackground
 getFont/setFont

24

Button: Example
public class Buttons extends Applet {

private Button button1, button2, button3;

public void init() {

button1 = new Button("Button One");

button2 = new Button("Button Two");

button3 = new Button("Button Three");

add(button1);

add(button2);

add(button3);

}

}

Handling Button Events
 Attach an ActionListener to the Button and

handle the event in actionPerformed
public class MyActionListener

implements ActionListener {

public void actionPerformed(ActionEvent event) {

...

}

}

public class SomeClassThatUsesButtons {

...

MyActionListener listener = new MyActionListener();

Button b1 = new Button("...");

b1.addActionListener(listener);

...

}

25

Checkboxes

 Constructors
 These three constructors apply to checkboxes that

operate independently of each other (i.e., not radio
buttons)

 Checkbox()
 Creates an initially unchecked checkbox with no label

 Checkbox(String checkboxLabel)
 Creates a checkbox (initially unchecked) with the specified

label; see setState for changing it

 Checkbox(String checkboxLabel, boolean state)

 Creates a checkbox with the specified label
 The initial state is determined by the boolean value provided

 A value of true means it is checked

Checkbox, Example
public class Checkboxes extends CloseableFrame {

public Checkboxes() {

super("Checkboxes");

setFont(new Font("SansSerif", Font.BOLD, 18));

setLayout(new GridLayout(0, 2));

Checkbox box;

for(int i=0; i<12; i++) {

box = new Checkbox("Checkbox " + i);

if (i%2 == 0) {

box.setState(true);

}

add(box);

}

pack();

setVisible(true);

}

}

26

Other Checkbox Methods
 getState/setState

 Retrieves or sets the state of the checkbox: checked (true) or
unchecked (false)

 getLabel/setLabel
 Retrieves or sets the label of the checkbox
 After changing the label invalidate and validate the window to

force a new layout
someCheckbox.setLabel("A New Label");
someCheckbox.getParent().invalidate();
someCheckbox.getParent().validate();

 addItemListener/removeItemListener
 Add or remove an ItemListener to process ItemEvents in
itemStateChanged

 processItemEvent(ItemEvent event)
 Low-level event handling

Handling Checkbox Events

 Attach an ItemListener through addItemListener and
process the ItemEvent in itemStateChanged

public void itemStateChanged(ItemEvent event){

...
}

 The ItemEvent class has a getItem method which returns the item
just selected or deselected

 The return value of getItem is an Object so you should cast it to a
String before using it

 Ignore the Event
 With checkboxes, it is relatively common to ignore the select/deselect

event when it occurs

 Instead, you look up the state (checked/unchecked) of the checkbox
later using the getState method of Checkbox when you are ready
to take some other sort of action

27

Checkbox Groups
(Radio Buttons)

 CheckboxGroup Constructors
 CheckboxGroup()

 Creates a non-graphical object used as a “tag” to group
checkboxes logically together

 Checkboxes with the same tag will look and act like radio
buttons

 Only one checkbox associated with a particular tag can be
selected at any given time

 Checkbox Constructors
 Checkbox(String label, CheckboxGroup group,

boolean state)
 Creates a radio button associated with the specified group,

with the given label and initial state
 If you specify an initial state of true for more than one

Checkbox in a group, the last one will be shown selected

CheckboxGroup: Example
import java.applet.Applet;
import java.awt.*;

public class CheckboxGroups extends Applet {
public void init() {
setLayout(new GridLayout(4, 2));
setBackground(Color.lightGray);
setFont(new Font("Serif", Font.BOLD, 16));
add(new Label("Flavor", Label.CENTER));
add(new Label("Toppings", Label.CENTER));
CheckboxGroup flavorGroup = new CheckboxGroup();
add(new Checkbox("Vanilla", flavorGroup, true));
add(new Checkbox("Colored Sprinkles"));
add(new Checkbox("Chocolate", flavorGroup, false));
add(new Checkbox("Cashews"));
add(new Checkbox("Strawberry", flavorGroup, false));
add(new Checkbox("Kiwi"));

}
}

28

CheckboxGroup, Result

By tagging Checkboxes with a CheckboxGroup, the Checkboxes
in the group function as radio buttons

Other Methods for Radio Buttons

 CheckboxGroup
 getSelectedCheckbox

 Returns the radio button (Checkbox) that is currently
selected or null if none is selected

 Checkbox
 In addition to the general methods described in

Checkboxes, Checkbox has the following two
methods specific to CheckboxGroup’s:

 getCheckboxGroup/setCheckboxGroup
 Determines or registers the group associated with the radio

button

 Note: Event-handling is the same as with Checkboxes

29

List Boxes
 Constructors

 List(int rows, boolean multiSelectable)
 Creates a listbox with the specified number of visible rows

(not items)

 Depending on the number of item in the list (addItem or add),
a scrollbar is automatically created

 The second argument determines if the List is multiselectable

 The preferred width is set to a platform-dependent value, and
is typically not directly related to the width of the widest entry

 List()
 Creates a single-selectable list box with a platform-

dependent number of rows and a platform-dependent width

 List(int rows)
 Creates a single-selectable list box with the specified number

of rows and a platform-dependent width

List Boxes: Example
import java.awt.*;
public class Lists extends CloseableFrame {

public Lists() {
super("Lists");
setLayout(new FlowLayout());
setBackground(Color.lightGray);
setFont(new Font("SansSerif", Font.BOLD, 18));
List list1 = new List(3, false);
list1.add("Vanilla");
list1.add("Chocolate");
list1.add("Strawberry");
add(list1);
List list2 = new List(3, true);
list2.add("Colored Sprinkles");
list2.add("Cashews");
list2.add("Kiwi");
add(list2);
pack();
setVisible(true);

}}

30

List Boxes: Result

A list can be single-selectable or multi-selectable

Other List Methods
 add

 Add an item at the end or specified position in the list box

 All items at that index or later get moved down

 isMultipleMode
 Determines if the list is multiple selectable (true) or single

selectable (false)

 remove/removeAll
 Remove an item or all items from the list

 getSelectedIndex
 For a single-selectable list, this returns the index of the selected

item
 Returns –1 if nothing is selected or if the list permits multiple

selections

 getSelectedIndexes
 Returns an array of the indexes of all selected items

 Works for single- or multi-selectable lists
 If no items are selected, a zero-length (but non-null) array is

returned

31

Other List Methods (Continued)

 getSelectedItem
 For a single-selectable list, this returns the label of the selected item

 Returns null if nothing is selected or if the list permits multiple

selections

 getSelectedItems
 Returns an array of all selected items

 Works for single- or multi-selectable lists

 If no items are selected, a zero-length (but non-null) array is
returned

 select
 Programmatically selects the item in the list

 If the list does not permit multiple selections, then the previously
selected item, if any, is also deselected

Handling List Events

 addItemListener/removeItemListener
 ItemEvents are generated whenever an item is

selected or deselected (single-click)
 Handle ItemEvents in itemStateChanged

 addActionListener/removeActionListener
 ActionEvents are generated whenever an item is

double-clicked or RETURN (ENTER) is pressed
while selected

 Handle ActionEvents in actionPerformed

32

Scrollbars and Sliders
 Constructors

 Scrollbar
 Creates a vertical scrollbar
 The “bubble” (or “thumb,” the part that actually moves) size

defaults to 10% of the trough length
 The internal min and max values are set to zero

 Scrollbar(int orientation)
 Similar to above; specify a horizontal (Scrollbar.HORIZONTAL)

or vertical (Scrollbar.VERTICAL) scrollbar

 Scrollbar(int orientation, int initialValue,
int bubbleSize, int min, int max)

 Creates a horizontal or vertical “slider” for interactively selecting
values

 Specify a customized bubble thickness and a specific internal
range of values

 Bubble thickness is in terms of the scrollbar’s range of values,
not in pixels, so if max minus min was 5, a bubble size of 1 would
specify 20% of the trough length

Scollbars: Example
public class Scrollbars extends Applet {
public void init() {
int i;
setLayout(new GridLayout(1, 2));
Panel left = new Panel(), right = new Panel();
left.setLayout(new GridLayout(10, 1));
for(i=5; i<55; i=i+5) {
left.add(new Scrollbar(Scrollbar.HORIZONTAL,

50, i, 0, 100));
}
right.setLayout(new GridLayout(1, 10));
for(i=5; i<55; i=i+5) {
right.add(new Scrollbar(Scrollbar.VERTICAL,

50, i, 0, 100));
}
add(left);
add(right);

}
}

33

Scrollbars: Result

Scrollbars with varying bubble sizes, but constant ranges
and initial values, shown on Windows 98

Handling Scrollbar Events
 AdjustmentListener

 Attach an AdjustmentListener through
addAdjustmentListener and process the
AdjustmentEvent in adjustmentValueChanged

public void adjustmentValueChanged

(AdjustmentEvent event) {

...

}

 Use ScrollPane
 If you are using a Scrollbar only to implement

scrolling, a ScrollPane is much simpler

 JSlider (Swing) is much better

34

Other GUI Controls

 Choice Lists (Combo Boxes)

 Textfields

Other GUI Controls (Continued)

 Text Areas

 Labels

35

Summary
 In the AWT, all windows and graphical components are

rectangular and opaque

 Canvas: drawing area or custom component

 Panel: grouping other components

 Frame: popup window

 Button: handle events with ActionListener

 Checkbox, radio button: handle events with ItemListener

 List box: handle single click with ItemListener,
double click with ActionListener

 To quickly determine the event handlers for a
component, simply look at the online API

 addXxxListener methods are at the top

Thank you for your attention!

1

Layout
Managers

Arranging Elements in Windows

Agenda
 How layout managers simplify interface

design

 Standard layout managers
 FlowLayout, BorderLayout, CardLayout,

GridLayout, GridBagLayout, BoxLayout

 Positioning components manually

 Strategies for using layout managers
effectively

 Using invisible components

2

Layout Managers
 Assigned to each Container

 Give sizes and positions to components in the window

 Helpful for windows whose size changes or that display on
multiple operating systems

 Relatively easy for simple layouts
 But, it is surprisingly hard to get complex layouts with a

single layout manager

 Controlling complex layouts
 Use nested containers (each with its own layout manager)

 Use invisible components and layout manager options

 Write your own layout manager

 Turn some layout managers off and arrange
some things manually

FlowLayout
 Default layout for Panel and Applet

 Behavior
 Resizes components to their preferred size

 Places components in rows left to right, top to bottom

 Rows are centered by default

 Constructors
 FlowLayout()

 Centers each row and keeps 5 pixels between entries in a row and
between rows

 FlowLayout(int alignment)
 Same 5 pixels spacing, but changes the alignment of the rows
 FlowLayout.LEFT, FlowLayout.RIGHT, FlowLayout.CENTER

 FlowLayout(int alignment, int hGap, int vGap)
 Specify the alignment as well as the horizontal and vertical spacing

between components (in pixels)

3

FlowLayout: Example
public class FlowTest extends Applet {

public void init() {

// setLayout(new FlowLayout()); [Default]

for(int i=1; i<6; i++) {

add(new Button("Button " + i));

}

}

}

Testing the FlowLayout
Manager

The components are arranged in the container
from left to right in the order in which they were
added. When one row becomes filled, a new
row is started.

ShowFlowLayout Run

4

BorderLayout
 Default layout for Frame and Dialog

 Behavior
 Divides the Container into five regions

 Each region is identified by a corresponding
BorderLayout constant

 NORTH, SOUTH, EAST, WEST, and CENTER

 NORTH and SOUTH respect the preferred height of the
component

 EAST and WEST respect the preferred width of the
component

 CENTER is given the remaining space

 Is allowing a maximum of five components too
restrictive? Why not?

BorderLayout (Continued)
 Constructors

 BorderLayout()
 Border layout with no gaps between components

 BorderLayout(int hGap, int vGap)
 Border layout with the specified empty pixels between

regions

 Adding Components
 add(component, BorderLayout.REGION)

 Always specify the region in which to add the
component
 CENTER is the default, but specify it explicitly to avoid

confusion with other layout managers

5

BorderLayout: Example
public class BorderTest extends Applet {
public void init() {
setLayout(new BorderLayout());
add(new Button("Button 1"), BorderLayout.NORTH);
add(new Button("Button 2"), BorderLayout.SOUTH);
add(new Button("Button 3"), BorderLayout.EAST);
add(new Button("Button 4"), BorderLayout.WEST);
add(new Button("Button 5"), BorderLayout.CENTER);

}
}

Testing the BorderLayout
Manager

The BorderLayout
manager divides the
window into five areas:
East, South, West, North,
and Center. Components
are added to a
BorderLayout by
using

ShowBorderLayout Run

add(Component,
constraint), where

constraint is

BorderLayout.East,
BorderLayout.South,
BorderLayout.West",
BorderLayout.North", or

BorderLayout.Center.

6

GridLayout
 Behavior

 Divides window into equal-sized rectangles based
upon the number of rows and columns specified

 Items placed into cells left-to-right, top-to-bottom,
based on the order added to the container

 Ignores the preferred size of the component; each
component is resized to fit into its grid cell

 Too few components results in blank cells

 Too many components results in extra columns

GridLayout (Continued)
 Constructors

 GridLayout()
 Creates a single row with one column allocated per

component

 GridLayout(int rows, int cols)
 Divides the window into the specified number of rows and

columns

 Either rows or cols (but not both) can be zero

 GridLayout(int rows, int cols,
int hGap, int vGap)

 Uses the specified gaps between cells

7

GridLayout, Example
public class GridTest extends Applet {
public void init() {
setLayout(new GridLayout(2,3)); // 2 rows, 3

cols
add(new Button("Button One"));
add(new Button("Button Two"));
add(new Button("Button Three"));
add(new Button("Button Four"));
add(new Button("Button Five"));
add(new Button("Button Six"));

}

}

Testing the GridLayout
Manager

The GridLayout manager arranges components
in a grid (matrix) formation with the number of rows
and columns defined by the constructor. The com-
ponents are placed in the grid from left to right start-
ing with the first row, then the second, and so on.

ShowGridLayout Run

8

CardLayout
 Behavior

 Stacks components on top of each other, displaying
the top one

 Associates a name with each component in window
Panel cardPanel;
CardLayout layout new CardLayout();
cardPanel.setLayout(layout);
...
cardPanel.add("Card 1", component1);
cardPanel.add("Card 2", component2);
...
layout.show(cardPanel, "Card 1");
layout.first(cardPanel);
layout.next(cardPanel);

CardLayout, Example

9

GridBagLayout

 Behavior
 Divides the window into grids, without requiring the

components to be the same size
 About three times more flexible than the other standard layout

managers, but nine times harder to use

 Each component managed by a grid bag layout is
associated with an instance of GridBagConstraints
 The GridBagConstraints specifies:

 How the component is laid out in the display area

 In which cell the component starts and ends

 How the component stretches when extra room is available

 Alignment in cells

GridBagLayout: Basic Steps
 Set the layout, saving a reference to it

GridBagLayout layout = new GridBagLayout();
setLayout(layout);

 Allocate a GridBagConstraints object
GridBagConstraints constraints =

new GridBagConstraints();

 Set up the GridBagConstraints for
component 1

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;
constraints.gridheight = height1;

 Add component 1 to the window, including
constraints

add(component1, constraints);

 Repeat the last two steps for each component

10

GridBagConstraints

 Copied when component added to window
 Thus, can reuse the GridBagConstraints

GridBagConstraints constraints =

new GridBagConstraints();

constraints.gridx = x1;

constraints.gridy = y1;

constraints.gridwidth = width1;

constraints.gridheight = height1;

add(component1, constraints);

constraints.gridx = x1;

constraints.gridy = y1;

add(component2, constraints);

GridBagConstraints Fields
 gridx, gridy

 Specifies the top-left corner of the component

 Upper left of grid is located at (gridx, gridy)=(0,0)
 Set to GridBagConstraints.RELATIVE to

auto-increment row/column

GridBagConstraints constraints =

new GridBagConstraints();

constraints.gridx =

GridBagConstraints.RELATIVE;

container.add(new Button("one"), constraints);

container.add(new Button("two"), constraints);

11

GridBagConstraints Fields
(Continued)

 gridwidth, gridheight
 Specifies the number of columns and rows the

Component occupies
constraints.gridwidth = 3;

 GridBagConstraints.REMAINDER lets the
component take up the remainder of the row/column

 weightx, weighty
 Specifies how much the cell will stretch in the x or y

direction if space is left over

constraints.weightx = 3.0;

 Constraint affects the cell, not the component (use fill)

 Use a value of 0.0 for no expansion in a direction

 Values are relative, not absolute

GridBagConstraints Fields
(Continued)

 fill
 Specifies what to do to an element that is smaller than the

cell size
constraints.fill = GridBagConstraints.VERTICAL;

 The size of row/column is determined by the widest/tallest
element in it

 Can be NONE, HORIZONTAL, VERTICAL, or BOTH

 anchor
 If the fill is set to GridBagConstraints.NONE, then the
anchor field determines where the component is placed

constraints.anchor =
GridBagConstraints.NORTHEAST;

 Can be NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, or SOUTHWEST

12

GridBagLayout: Example

GridBagLayout: Example
public GridBagTest() {

setLayout(new GridBagLayout());
textArea = new JTextArea(12, 40); // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");
GridBagConstraints c = new GridBagConstraints();
// Text Area.
c.gridx = 0;
c.gridy = 0;
c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 1.0;
c.fill = GridBagConstraints.BOTH;
c.insets = new Insets(2,2,2,2); //t,l,b,r
add(textArea, c);
...

13

GridBagLayout: Example
(Continued)

// Save As Button.
c.gridx = 0;
c.gridy = 1;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.VERTICAL;
add(bSaveAs,c);

// Filename Input (Textfield).
c.gridx = 1;
c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.BOTH;
add(fileField,c);
...

GridBagLayout: Example
(Continued)

// Exit Button.
c.gridx = 3;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.NONE;
add(bExit,c);

// Filler so Column 1 has nonzero width.
Component filler =
Box.createRigidArea(new Dimension(1,1));

c.gridx = 1;
c.weightx = 1.0;
add(filler,c);
...

}

14

GridBagLayout: Result

Without Box filler at (2,1)With Box filler at (2,1)

Disabling the Layout Manager

 Behavior
 If the layout is set to null, then components must be

sized and positioned by hand

 Positioning components
 component.setSize(width, height)

 component.setLocation(left, top)

 or

 component.setBounds(left, top,
width, height)

15

No Layout Manager: Example
setLayout(null);
Button b1 = new Button("Button 1");
Button b2 = new Button("Button 2");
...
b1.setBounds(0, 0, 150, 50);
b2.setBounds(150, 0, 75, 50);
...
add(b1);
add(b2);
...

Using Layout Managers
Effectively

 Use nested containers
 Rather than struggling to fit your design in a single

layout, try dividing the design into sections

 Let each section be a panel with its own layout
manager

 Turn off the layout manager for some containers

 Adjust the empty space around components
 Change the space allocated by the layout manager
 Override insets in the Container

 Use a Canvas or a Box as an invisible spacer

16

Nested Containers: Example

Nested Containers: Example

public NestedLayout() {

setLayout(new BorderLayout(2,2));

textArea = new JTextArea(12,40); // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");

add(textArea,BorderLayout.CENTER);

// Set up buttons and textfield in bottom panel
JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new GridLayout(2,1));

17

Nested Containers, Example
JPanel subPanel1 = new JPanel();
JPanel subPanel2 = new JPanel();
subPanel1.setLayout(new BorderLayout());
subPanel2.setLayout

(new FlowLayout(FlowLayout.RIGHT,2,2));

subPanel1.add(bSaveAs,BorderLayout.WEST);
subPanel1.add(fileField,BorderLayout.CENTER);
subPanel2.add(bOk);
subPanel2.add(bExit);

bottomPanel.add(subPanel1);
bottomPanel.add(subPanel2);

add(bottomPanel,BorderLayout.SOUTH);
}

Nested Containers: Result

18

Turning Off Layout Manager for
Some Containers: Example

 Suppose that you wanted to arrange a column of buttons (on
the left) that take exactly 40% of the width of the container
setLayout(null);
int width1 = getSize().width*4/10;,
int height = getSize().height;
Panel buttonPanel = new Panel();
buttonPanel.setBounds(0, 0, width1, height);
buttonPanel.setLayout(new GridLayout(6, 1));
buttonPanel.add(new Label("Buttons", Label.CENTER));
buttonPanel.add(new Button("Button One"));
...
buttonPanel.add(new Button("Button Five"));
add(buttonPanel);
Panel everythingElse = new Panel();
int width2 = getSize().width - width1,
everythingElse.setBounds(width1+1, 0, width2, height);

Turning Off Layout Manager for
Some Containers: Result

19

Adjusting Space Around
Components

 Change the space allocated by the layout
manager
 Most LayoutManagers accept a horizontal spacing

(hGap) and vertical spacing (vGap) argument

 For GridBagLayout, change the insets

 Use a Canvas or a Box as an invisible spacer
 For AWT layouts, use a Canvas that does not draw

or handle mouse events as an “empty” component
for spacing.

 For Swing layouts, add a Box as an invisible spacer
to improve positioning of components

Invisible Components in
Box Class

 Rigid areas
 Box.createRigidArea(Dimension dim)

 Creates a two-dimensional invisible Component with a fixed
width and height

Component spacer =

Box.createRigidArea(new Dimension(30, 40));

 Struts
 Box.createHorizontalStrut(int width)

 Box.createVerticalStrut(int width)
 Creates an invisible Component of fixed width and zero

height, and an invisible Component of fixed height and zero
width, respectively

20

Invisible Components in
Box Class (Continued)

 Glue
 Box.createHorizontalGlue()

 Box.createVerticalGlue()
 Create an invisible Component that can expand horizontally

or vertically, respectively, to fill all remaining space

 Box.createGlue()
 Creates a Component that can expand in both directions

 A Box object achieves the glue effect by expressing a
maximum size of Short.MAX_VALUE

 Only apply glue to layout managers that respect the
maximum size of a Component

Invisible Components: Example

21

BoxLayout
 Behavior

 Manager from Swing; available only in Java 2
 Arranges Components either in a horizontal row,
BoxLayout.X_AXIS, or in a vertical column,
BoxLayout.Y_AXIS

 Lays out the components in the order in which they were
added to the Container

 Resizing the container does not cause the components to
relocate

 Unlike the other standard layout managers, the BoxLayout
manager cannot be shared with more than one Container
BoxLayout layout =

new BoxLayout(container,BoxLayout.X_AXIS);

Component Arrangement for
BoxLayout

 Attempts to arrange the components with:
 Their preferred widths (vertical layout), or

 Their preferred heights (horizontal layout)

 Vertical Layout
 If the components are not all the same width,
BoxLayout attempts to expand all the
components to the width of the component with
the largest preferred width

 If expanding a component is not possible
(restricted maximum size), BoxLayout aligns that
component horizontally in the container, according
to the x alignment of the component

22

Component Arrangement for
BoxLayout (Continued)

 Horizontal Layout
 If the components are not all the same height,
BoxLayout attempts to expand all the components to
the height of the tallest component

 If expanding the height of a component is not
possible, BoxLayout aligns that component vertically
in the container, according to the y alignment of the
component.

Component Alignment for
BoxLayout

 Every lightweight Swing component can define
an alignment value from 0.0f to 1.0f
 0.0 represents positioning the component closest to the

axis origin in the container
 1.0 represents positioning the component farthest from

the axis origin in the container

 The Component class predefines five alignment values:
 LEFT_ALIGNMENT (0.0)

 CENTER_ALIGNMENT (0.5)

 RIGHT_ALIGNMENT (1.0)

 TOP_ALIGNMENT (0.0)

 BOTTOM_ALIGNMENT (1.0)

23

Component Alignment for
BoxLayout (Continued)

 Most Swing components have a default
x-axis alignment of center

 Exceptions include JButton, JComboBox, JLabel,
and JMenu, which have x-axis alignment of left

 Set the Component alignment

component.setAlignmentX(Component.Xxx_ALIGNMENT)

component.setAlignmentY(Component.Xxx_ALIGNMENT)

BoxLayout: Example

• All components have a 0.0
(left) alignment

• The label has a 0.0
alignment
• The buttons have a 1.0
(right) alignment

24

Summary
 Default layout managers

 Applet and Panel: FlowLayout
 Frame and Dialog: BorderLayout

 Layout managers respect the preferred size
of the component differently

 GridBagLayout is the most complicated but
most flexible manager
 Use GridBagConstraints to specify the layout of

each component

 Complex layouts can often be simplified
through nested containers

 In AWT use a Canvas as a spacer; in Swing
use a Box as a spacer

Thank you for your attention!

1

Swing
Components

Agenda
 New features

 Basic approach

 Summary of Swing components
 Starting points

 JApplet, JFrame

 Swing equivalent of AWT components

 JLabel, JButton, JPanel, JSlider

 New Swing components
 JColorChooser, JInternalFrame, JOptionPane,

JToolBar, JEditorPane

 Other simple components
 JCheckBox, JRadioButton, JTextField, JTextArea,

JFileChooser

2

New Features
 Many more built-in controls

 Image buttons, tabbed panes, sliders, toolbars, color
choosers, HTML text areas, lists, trees, and tables.

 Increased customization of components
 Border styles, text alignments, and basic drawing features.

Images can be added to almost any control.

 A pluggable “look and feel”
 Not limited to “native” look.

 Many miscellaneous small features
 Built-in double buffering, tool-tips, dockable toolbars,

keyboard accelerators, custom cursors, etc.

 Model-view-controller architecture
 Can change internal representation of trees, lists, tables.

Graphics Class Hierarchy
(Swing)

AWTEvent

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Component
in the javax.swing package

Lightweight

Heavyweight
Classes in the

java.awt package1

LayoutManager

*

3

JComponent

JButton

JMenuItem

JCheckBoxMenuItem

AbstractButton

JComponent

JMenu

.JRadioButtonMenuItem

.JToggleButton JCheckBox

JRadioButton

.JComboBox

.JInternalFrame .JLayeredPane

.JList .JMenuBar .JOptionPane

.JPopupMenu

.JProgressBar

.JPane

.JFileChooser.JScrollBar .JScrollPane

.JSeparator

.JSplitPane

.JSlider .JTabbedPane

.JTable

.JTableHeader

.JTextField.JTextComponent

.JEditorPane

.JTextArea

.JToolBar

.JToolTip

.JTree

.JRootPane

.JPanel

.JPasswordField

.JColorChooser

.JLabel

AWT (Abstract Window Toolkit)
AWTEvent

Font

FontMetrics

Component

Graphics

Object Color

Canvas

Button

TextComponent

Label

List

CheckBoxGroup

CheckBox

Choice

Container Panel Applet

Frame

Dialog FileDialog

Window

TextField

TextArea

MenuComponent MenuItem

MenuBar

Menu

Scrollbar

LayoutManager

4

Basic Components

Applet Dialog Frame

Panel Scroll panel

Split pane Tabbed pane Tool bar

Internal frame Layered pane

Root pane Buttons Combo box

Menu Slider Text fieldsList

5

Label Progress bar Tool tip

Color chooser File chooser

Table Text Tree

Swing vs. AWT Programming
 Naming convention

 All Swing component names begin with a capital J and
follow the format JXxx. E.g., JFrame, JPanel, JApplet,
JDialog, JButton. Many are just AWT names with a J.

 Lightweight components
 Most Swing components are lightweight: formed by

drawing in the underlying window.

 Use of paintComponent for drawing
 Custom drawing code is in paintComponent, not paint.

Double buffering turned on by default.

 New Look and Feel as default
 With Swing, you have to explicitly set the native look.

 Don't mix Swing and AWT in same window

6

Windows Look and Feel

Motif Look and Feel

7

Java Look and Feel

Setting Native Look and Feel
 Most applications should use native look, not

default “Java” look

 Changing is tedious, so use static method

public class WindowUtilities {

public static void setNativeLookAndFeel() {

try {

UIManager.setLookAndFeel(

UIManager.getSystemLookAndFeelClassName());

} catch(Exception e) {

System.out.println("Error setting native LAF: " + e);

}

}

...

8

Whirlwind Tour of Basic
Components

 Starting points
 JApplet, JFrame

 Swing equivalent of AWT components
 JLabel, JButton, JPanel, JSlider

 New Swing components
 JColorChooser, JInternalFrame, JOptionPane,

JToolBar, JEditorPane

 Other simple components
 JCheckBox, JRadioButton, JTextField, JTextArea,

JFileChooser

Starting Point 1: JApplet
 Content pane

 A JApplet contains a content pane in which to add
components. Changing other properties like the layout
manager, background color, etc., also applies to the content
pane. Access the content pane through getContentPane.

 Panels act as smaller containers for grouping user interface components.
It is recommended that you place the user interface components in panels
and place the panels in a frame. You can also place panels in a panel.

 Layout manager
 The default layout manager is BorderLayout (as with Frame

and JFrame), not FlowLayout (as with Applet). BorderLayout
is really layout manager of content pane.

 Look and feel
 The default look and feel is Java (Metal), so you have to

explicitly switch the look and feel if you want the native look.

9

JApplet: Example Code
import java.awt.*;

import javax.swing.*;

public class JAppletExample extends JApplet {

public void init() {

WindowUtilities.setNativeLookAndFeel();

Container content = getContentPane();

content.setBackground(Color.white);

content.setLayout(new FlowLayout());

content.add(new JButton("Button 1"));

content.add(new JButton("Button 2"));

content.add(new JButton("Button 3"));

}

}

JApplet: Example Output

10

Starting Point 2: JFrame
 Content pane

 JFrame uses content pane in same way as does JApplet.
 Frame is a window that is not contained inside another window. Frame is

the basis to contain other user interface components in Java graphical
applications. The Frame class can be used to create windows.

 Auto-close behavior
 JFrames close automatically when you click on the Close button

(unlike AWT Frames). However, closing the last JFrame does not
result in your program exiting the Java application. So, your “main”
JFrame still needs a WindowListener to call System.exit. Or,
alternatively, if using JDK 1.3 or later, you can call setDefault-
CloseOperation(EXIT_ON_CLOSE). This permits the JFrame to
close; however, you won’t be able to complete any house cleaning
as you might in the WindowListener.

 Look and feel
 The default look and feel is Java (Metal)

JFrames

Frame Pull-down Menus

User Interface
Components (UI)

Panel

Panel

Panel

UI

Panel

UI

Panel

UI

Applet

Panel

User Interface
Components

Panel

User Interface
Components

Panel

User Interface
Components

Panel

User Interface
Components

panel

Pull-down Menus

11

JFrame: Example Code
import java.awt.*;

import javax.swing.*;

public class JFrameExample {

public static void main(String[] args) {

WindowUtilities.setNativeLookAndFeel();

JFrame f = new JFrame("This is a test");

f.setSize(400, 150);

Container content = f.getContentPane();

content.setBackground(Color.white);

content.setLayout(new FlowLayout());

content.add(new JButton("Button 1"));

content.add(new JButton("Button 2"));

content.add(new JButton("Button 3"));

f.addWindowListener(new ExitListener());

f.setVisible(true);

}

}

JFrame Helper: ExitListener

import java.awt.*;

import java.awt.event.*;

public class ExitListener extends
WindowAdapter {

public void windowClosing(WindowEvent
event) {

System.exit(0);

}

}

12

JFrame: Example Output

JFrame: Another Example Code

Run

import javax.swing.*;
public class MyFrame
{
public static void main(String[] args)
{
JFrame frame = new JFrame("Test Frame");
frame.setSize(400, 300);
frame.setVisible(true);
// frame.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);

}
}

NOTE: You must have JDK 1.3 to run the slides.

13

Swing Equivalents of AWT
Components

 JLabel
 New features: HTML content images, borders

 JButton
 New features: icons, alignment, mnemonics

 JPanel
 New feature: borders

 JSlider
 New features: tick marks and labels

JLabel
 Main new feature: HTML content

 If text is "<html>...</html>", it gets rendered as HTML

 HTML labels only work in JDK 1.2.2 or later, or in
Swing 1.1.1 or later.

 In JDK 1.2 the label string must begin with <html>, not
<HTML>. It is case-insensitive in JDK 1.3 and 1.4.

 JLabel fonts are ignored if HTML is used. If you use
HTML, all font control must be performed by HTML.

 You must use <P>, not
, to force a line break.

 Other HTML support is spotty.
 Be sure to test each HTML construct you use. Permitting the

user to enter HTML text at runtime is asking for trouble.

 Other new features: images, borders

14

JLabel: Example Code
String labelText =

“<html>WHITE and " +

"GRAY Text</html>";

JLabel coloredLabel =

new JLabel(labelText, JLabel.CENTER);

...

labelText =

“<html>Bold and <I>Italic</I> Text</html>";

JLabel boldLabel =

new JLabel(labelText, JLabel.CENTER);

labelText =

“<html>The Applied Physics Laboratory is..." +

"of the Johns Hopkins University." +

"<P>" + ... "...</html>";

JLabel: Example Output

15

JButton
 Main new feature: icons

1. Create an ImageIcon by passing the ImageIcon
constructor a String representing a GIF or JPG file
(animated GIFs are supported!).
 From an applet, call getImage(getCodeBase()…) normally,

then pass resultant Image to ImageIcon.
2. Pass the ImageIcon to the JButton constructor.

 Alternatively, call setIcon. In fact, there are 7 possible
images (rollover images, images for when button is
depressed, etc.)

 Other features
 HTML content as with JLabel

 Alignment: location of image with respect to text

 Mnemonics: keyboard accelerators that let you use
Alt-someChar to trigger the button.

JButton: Example Code
import java.awt.*;

import javax.swing.*;

public class JButtons extends JFrame {

public static void main(String[] args) {

new JButtons();

}

public JButtons() {

super("Using JButton");

WindowUtilities.setNativeLookAndFeel();

addWindowListener(new ExitListener());

Container content = getContentPane();

content.setBackground(Color.white);

content.setLayout(new FlowLayout());

16

JButton button1 = new JButton("Java");

content.add(button1);

ImageIcon cup = new ImageIcon("images/cup.gif");

JButton button2 = new JButton(cup);

content.add(button2);

JButton button3 = new JButton("Java", cup);

content.add(button3);

JButton button4 = new JButton("Java", cup);

button4.setHorizontalTextPosition

(SwingConstants.LEFT);

content.add(button4);

pack();

setVisible(true);

}

}

JButton: Example Output

17

JPanel
 Main new feature: borders

 Create a Border object by calling
BorderFactory.createXxxBorder.

 Supply the Border object to the JPanel by means of
setBorder.

JPanel p = new JPanel();

p.setBorder(BorderFactory.createTitledBorder("Java"));

 Other features:
 Layout manager settings

 Can pass the layout manager to the JPanel constructor

 Setting preferred size
 There is no JCanvas. If you want JPanel to act like Canvas, call

setPreferredSize.

Standard Borders
 Static methods in BorderFactory

 createEmptyBorder(int top, int left, int bottom, int right)
 Creates an EmptyBorder object that simply adds space

(margins) around the component.

 createLineBorder(Color color)
 createLineBorder(Color color, int thickness)

 Creates a solid-color border

 createTitledBorder(String title)
 createTitledBorder(Border border, String title)

 The border is an etched line unless you explicitly provide a
border style in second constructor.

 createEtchedBorder()
 createEtchedBorder(Color highlight, Color shadow)

 Creates a etched line without the label

18

JPanel: Example Code
public class SixChoicePanel extends JPanel {

public SixChoicePanel(String title, String[] buttonLabels){
super(new GridLayout(3, 2));
setBackground(Color.lightGray);
setBorder(BorderFactory.createTitledBorder(title));
ButtonGroup group = new ButtonGroup();
JRadioButton option;
int halfLength = buttonLabels.length/2;
for(int i=0; i<halfLength; i++) {
option = new JRadioButton(buttonLabels[i]);
group.add(option);
add(option);
option = new RadioButton(buttonLabels[i+halfLength]);
group.add(option);
add(option);

}
}

}

JPanel: Example Output

 Left window uses createLineBorder

 Right window has three SixChoicePanels

19

JSlider
 Basic use

 public JSlider()

 public JSlider(int orientation)

 public JSlider(int min, int max)

 public JSlider(int min, int max, int initialValue)

 public JSlider(int orientation, int min, int max,
int initialValue)

 New features: tick marks and labels
 setMajorTickSpacing

 setMinorTickSpacing

 setPaintTicks

 setPaintLabels (icons allowed as labels)

JSlider: Example Code
JSlider slider1 = new JSlider();
slider1.setBorder(...);
content.add(slider1, BorderLayout.NORTH);
JSlider slider2 = new JSlider();
slider2.setBorder(...);
slider2.setMajorTickSpacing(20);
slider2.setMinorTickSpacing(5);
slider2.setPaintTicks(true);
content.add(slider2, BorderLayout.CENTER);
JSlider slider3 = new JSlider();
slider3.setBorder(...);
slider3.setMajorTickSpacing(20);
slider3.setMinorTickSpacing(5);
slider3.setPaintTicks(true);
slider3.setPaintLabels(true);
content.add(slider3, BorderLayout.SOUTH);

20

JSlider: Example Output
(Windows, Motif, Java LAF)

JColorChooser

 Open
 Call JColorChooser.showDialog

 First argument: parent component

Second argument: title string

 Third argument: initially-selected Color

 Return value
 Selected Color if "OK" chosen

 null if "Cancel" chosen

21

JColorChooser: Example Code
 Button that lets you change color of window

public void actionPerformed(ActionEvent e) {

Color bgColor

= JColorChooser.showDialog

(this,

"Choose Background Color",

getBackground());

if (bgColor != null)

getContentPane().setBackground(bgColor);

}

JColorChooser: Example Output

22

Internal Frames
 MDI: Multiple Document Interface

 Program has one large “desktop” pane that holds all other
windows. The other windows can be iconified (minimized)
and moved around within this desktop pane, but not moved
outside the pane. Furthermore, minimizing the desktop
pane hides all the contained windows as well.

 Examples: Microsoft PowerPoint, Corel Draw, Borland
JBuilder, and Allaire HomeSite

 Swing Support for MDI
 JDesktopPane

 Serves as a holder for the other windows.

 JInternalFrame
 Acts mostly like a JFrame, except that it is constrained to stay

inside the JDesktopPane.

Using JInternalFrame

 Main constructor
 public JInternalFrame(String title,

boolean resizable,
boolean closeable,
boolean maximizable,
boolean iconifiable)

 Other useful methods
 moveToFront

 moveToBack

 setSize (required!)

 setLocation (required!)

23

Internal Frames: Example Code
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class JInternalFrames extends JFrame {
public static void main(String[] args) {
new JInternalFrames();

}
public JInternalFrames() {
super("Multiple Document Interface");
WindowUtilities.setNativeLookAndFeel();
addWindowListener(new ExitListener());
Container content = getContentPane();
content.setBackground(Color.white);

JDesktopPane desktop = new JDesktopPane();
desktop.setBackground(Color.white);
content.add(desktop, BorderLayout.CENTER);
setSize(450, 400);
for(int i=0; i<5; i++) {
JInternalFrame frame
= new JInternalFrame(("Internal Frame " + i),

true, true, true, true);
frame.setLocation(i*50+10, i*50+10);
frame.setSize(200, 150);
frame.setBackground(Color.white);
frame.setVisible(true);
desktop.add(frame);
frame.moveToFront();

}
setVisible(true);

} }

24

Internal Frames: Example Output

JOptionPane
 Very rich class with many options for different

types of dialog boxes.

 Five main static methods
 JOptionPane.showMessageDialog

 Icon, message, OK button

 JOptionPane.showConfirmDialog
 Icon, message, and buttons:

OK, OK/Cancel, Yes/No, or Yes/No/Cancel

 JOptionPane.showInputDialog (2 versions)
 Icon, message, textfield or combo box, buttons

 JOptionPane.showOptionDialog
 Icon, message, array of buttons or other components

25

JOptionPane Message Dialogs
(Windows LAF)

JOptionPane Confirmation Dialogs
(Java LAF)

26

JToolBar
 Acts mostly like a JPanel for buttons

 Dockable: can be dragged and dropped

JEditorPane
 Acts somewhat like a text area

 Can display HTML and, if HyperLinkListener
attached, can follow links

27

Other Simple Swing Components
 JCheckBox

 Note uppercase B
(vs. Checkbox in AWT)

 JRadioButton
 Use a ButtonGroup to link radio buttons

 JTextField
 Just like AWT TextField except that it does not act as

a password field (use JPasswordField for that)

 JTextArea
 Place in JScrollPane if

you want scrolling

 JFileChooser

Summary
 Port simple AWT components to Swing by

adding J to front of class name

 Put custom drawing in paintComponent
 Call super.paintComponent at beginning unless you

turn off double buffering

 Java look and feel is default
 But you almost always want native look and feel

 Frames and applets use content pane
 Don't put anything directly in window

 Most components support borders & icons

 Many new components

28

End of Chapter

Thank you for your attention!

1

Drawing in
Java 2

Agenda

 Overview

 Drawing Shapes

 Paint Styles

 Transparency

 Using Local Fonts

 Stroke Styles

 Coordinate
Transformations

 Requesting
Drawing Accuracy

2

Java 1.1 vs Java 2 Drawing

Java 1.1
public void paint(Graphics g) {
// Set pen parameters
g.setColor(someColor);
g.setFont(someLimitedFont);
// Draw a shape
g.drawString(…);
g.drawLine(…)
g.drawRect(…); // outline
g.fillRect(…); // solid
g.drawPolygon(…); // outline
g.fillPolygon(…); // solid
g.drawOval(…); // outline
g.fillOval(…); // solid
…

}

Java 2
public void paintComponent(Graphics g) {
// Clear off-screen bitmap
super.paintComponent(g);
// Cast Graphics to Graphics2D
Graphics2D g2d = (Graphics2D)g;
// Set pen parameters
g2d.setPaint(fillColorOrPattern);
g2d.setStroke(penThicknessOrPattern);
g2d.setComposite(someAlphaComposite);
g2d.setFont(anyFont);
g2d.translate(…);
g2d.rotate(…);
g2d.scale(…);
g2d.shear(…);
g2d.setTransform(someAffineTransform);
// Create a Shape object
SomeShape s = new SomeShape(…);
// Draw shape
g2d.draw(s); // outline
g2d.fill(s); // solid

}

Java 1.1 Drawing on Panels

JPanel can be used to draw graphics
(including text) and enable user interaction.

To draw in a panel, you create a
new class that extends JPanel and
override the paintComponent method
to tell the panel how to draw
things. You can then display
strings, draw geometric shapes,
and view images on the panel.

3

The Color Class
Color c = new Color(r, g, b);
r, g, and b specify a color by its red, green, and blue components.

Example:

Color c = new Color(128, 100, 100);

You can use the following methods to set the component’s
background and foreground colors:

setBackground(Color c)

setForeground(Color c)
Example:

setBackground(Color.yellow);
setForeground(Color.red);

The Font Class
Font myFont = Font(name, style, size);

Example:

Font myFont = new Font("SansSerif ", Font.BOLD, 16);

Font myFont = new Font("Serif", Font.BOLD+Font.ITALIC, 12);

Seting Fonts:
public void paint(Graphics g)

{

Font myFont = new Font("Times", Font.BOLD, 16);

g.setFont(myFont);

g.drawString("Welcome to Java", 20, 40);

//set a new font

g.setFont(new Font("Courier", Font.BOLD+Font.ITALIC, 12));

g.drawString("Welcome to Java", 20, 70);

}

4

The Font Class: Example
 Objective: Display “Welcome to Java” in different fonts.

TestFontMetrics

Run

(0,0)

(120, 100)

x

 y

(120, 0)

(0, 100)

Drawing Geometric Figures

drawLine(x1, y1, x2, y2);

(x1 , y1)

(x2 , y2)

int[] x = {40, 70, 60, 45, 20};
int[] y = {20, 40, 80, 45, 60};
g.drawPolygon(x, y, x.length);
g.fillPolygon(x, y, x.length);

(x[0], y[0])

(x[1], y[1])

(x[2], y[2])

(x[3], y[3])

(x[4], y[4])

Lines: Polygons:

5

Drawing Geometric Figures

drawRect(x, y, w, h);

fillRect(x, y, w, h);

(x , y)

w

 h

drawRoundRect(x, y, w, h,
aw, ah);

fillRoundRect(x, y, w, h,
aw, ah);

(x , y)

w

 h

 ah

aw

Rectangles:

Drawing Geometric Figures

drawOval(x, y, w, h);

fillOval(x, y, w, h);

(x, y)

w

 h

drawArc(x, y, w, h,
angle1, angle2);

fillArc(x, y, w, h,
angle1, angle2);

(x, y)

w

 h
angle1

angle2

Ovals: Arcs:

6

Example: Drawing a Clock

 Objective: Use drawing and trigonometric methods
to draw a clock showing the specified hour, minute,
and second in a frame

DisplayClock RunDrawClock

From now till end we will
duscuss Java 2 Drawing !!!

Java 2 Drawing Process: Step 1
 Cast Graphics object to Graphics2D

public void paintComponent(Graphics g) {

super.paintComponent(g); // Typical Swing

Graphics2D g2d = (Graphics2D)g;

g2d.doSomeStuff(...);

...

}

 Note
 All methods that return Graphics in Java 1.1 return

Graphics2D in Java 2
 paint, paintComponent

 getGraphics

7

Java 2 Drawing Process: Step 2

 Set pen parameters
 g2d.setPaint(fillColorOrPattern);

 g2d.setStroke(penThicknessOrPattern);

 g2d.setComposite(someAlphaComposite);

 g2d.setFont(someFont);

 g2d.translate(...);

 g2d.rotate(...);

 g2d.scale(...);

 g2d.shear(...);

 g2d.setTransform(someAffineTransform);

Java 2 Drawing Process: Step 3

 Create a Shape object.
Rectangle2D.Double rect = ...;

Ellipse2D.Double ellipse = ...;

Polygon poly = ...;

GeneralPath path = ...;

// Satisfies Shape interface

SomeShapeYouDefined shape = ...;

 Note
 Most shapes are in the java.awt.geom package

 There is a corresponding Shape class for most of
the drawXxx methods of Graphics (see next slide)

8

Built-in Shape Classes
 Arc2D.Double, Arc2D.Float

 Area (a shape built by union, intersection, subtraction and xor
of other shapes)

 CubicCurve2D.Double, CubicCurve2D.Float

 Ellipse2D.Double, Ellipse2D.Float

 GeneralPath (a series of connected shapes), Polygon

 Line2D.Double, Line2D.Float

 QuadCurve2D.Double, QuadCurve2D.Float (a spline curve)

 Rectangle2D.Double, Rectangle2D.Float, Rectangle

 RoundRectangle2D.Double, RoundRectangle2D.Float
 New shapes are in java.awt.geom. Java 1.1 holdovers (Rectangle,

Polygon) are in java.awt. Several classes have similar versions that
store coordinates as either double precision numbers (Xxx.Double) or
single precision numbers (Xxx.Float). The idea is that single precision
coordinates might be slightly faster to manipulate on some platforms.

Java 2 Drawing Process: Step 4

 Draw an outlined or filled version of the Shape

 g2d.draw(someShape);

 g2d.fill(someShape);

 The legacy methods are still supported

 drawString still commonly used

 drawLine, drawRect, fillRect still somewhat
used

9

Drawing Shapes: Example Code
import javax.swing.*; // For JPanel, etc.
import java.awt.*; // For Graphics, etc.
import java.awt.geom.*; // For Ellipse2D, etc.
public class ShapeExample extends JPanel {

private Ellipse2D.Double circle =
new Ellipse2D.Double(10, 10, 350, 350);

private Rectangle2D.Double square =
new Rectangle2D.Double(10, 10, 350, 350);

public void paintComponent(Graphics g) {
clear(g); // ie super.paintComponent(g);
Graphics2D g2d = (Graphics2D)g;
g2d.fill(circle);
g2d.draw(square);

}
// Code to put JPanel in JFrame omitted.

}

Drawing Shapes: Example Output

10

Paint Styles in Java 2D
 Use setPaint and getPaint to change and retrieve the

Paint settings.
 Note that setPaint and getPaint supersede the setColor

and getColor methods that were used in Graphics (and
inherited in Graphics2D).

 When you fill a Shape, the current Paint attribute of
the Graphics2D object is used. Possible arguments
to setPaint are:
 A Color (solid color--Color implements Paint interface)

 A GradientPaint (gradually-changing color combination)

 A TexturePaint (tiled image)

 A new version of Paint that you write yourself.

Paint Classes: Details
 Color

 Has the same constants (Color.red, Color.yellow, etc.) as
the AWT version, plus some extra constructors.

 GradientPaint
 Constructors take two points, two colors, and optionally a

boolean flag that indicates that the color pattern should
cycle. Colors fade from one color to the other.

 TexturePaint
 Constructor takes a BufferedImage and a Rectangle2D,

maps the image to the rectangle, then tiles the rectangle.
 Creating a BufferedImage from a GIF or JPEG file is tedious. First load

an Image normally, get its size, create a BufferedImage that size with
BufferedImage.TYPE_INT_ARGB as the image type, and get the
BufferedImage's Graphics object via createGraphics. Then, draw the
Image into the BufferedImage using drawImage.

11

Gradient Fills: Example Code
public class GradientPaintExample extends ShapeExample {

private GradientPaint gradient =
new GradientPaint(0, 0, Color.red, 175, 175,

Color.yellow, true);
// true means repeat pattern

public void paintComponent(Graphics g) {
clear(g);
Graphics2D g2d = (Graphics2D)g;
drawGradientCircle(g2d);

}

protected void drawGradientCircle(Graphics2D g2d) {
g2d.setPaint(gradient);
g2d.fill(getCircle());
g2d.setPaint(Color.black);
g2d.draw(getCircle());

} ...

Gradient Fills: Example Output

12

Tiled Images as Fill Patterns
(TexturePaint)

 Create a TexturePaint object.
TexturePaint constructor takes:
 A BufferedImage (see following pages)

 Specifies what to draw

 A Rectangle2D
 Specifies where tiling starts

 Use the setPaint method of Graphics2D to
specify that this TexturePaint object be used.
 Applies to strings and outlines (i.e., draw opera-

tions), not just solid shapes (i.e., fill operations).

Creating a BufferedImage for
Custom Drawing

 Call the BufferedImage constructor with
 A width,

 A height, and

 A value of BufferedImage.TYPE_INT_RGB,

 Call createGraphics on the result to get a
Graphics2D that refers to image
 Use that Graphics2D object to draw onto the

BufferedImage

13

Custom BufferedImage:
Example Code

int width = 32; int height = 32;

BufferedImage bufferedImage =

new BufferedImage(width, height

BufferedImage.TYPE_INT_RGB);

Graphics2D g2dImg = bufferedImage.createGraphics();

g2dImg.draw(...); // Draws onto image

g2dImg.fill(...); // Draws onto image

TexturePaint texture =

new TexturePaint(bufferedImage,

new Rectangle(0, 0, width, height));

g2d.setPaint(texture);

g2d.draw(...); // Draws onto window

g2d.fill(...); // Draws onto window

Creating a BufferedImage from
an Image File

 Quick summary
 Load an Image from an image file via getImage

 Use MediaTracker to be sure it is done loading

 Create an empty BufferedImage using the Image width
and height

 Get the Graphics2D via createGraphics

 Draw the Image onto the BufferedImage

 This process has been wrapped up in the getBuf-
feredImage method of the ImageUtilities class
 Like all examples, code available at

www.corewebprogramming.com

14

BufferedImage from Image File:
Example Code

public class ImageUtilities {

public static BufferedImage getBufferedImage

(String imageFile, Component c) {

Image image = c.getToolkit().getImage(imageFile);

waitForImage(image, c); // Just uses MediaTracker

BufferedImage bufferedImage =

new BufferedImage(image.getWidth(c),

image.getHeight(c),

BufferedImage.TYPE_INT_RGB);

Graphics2D g2dImg = bufferedImage.createGraphics();

g2dImg.drawImage(image, 0, 0, c);

return(bufferedImage);

}

...

}

Tiled Images as Fill Patterns:
Example Code

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;
public class TiledImages extends JPanel {

private String dir = System.getProperty("user.dir");
private String imageFile1 = dir + "/images/marty.jpg";
private TexturePaint imagePaint1;
private Rectangle imageRect;
private String imageFile2 = dir +

"/images/bluedrop.gif";
private TexturePaint imagePaint2;
private int[] xPoints = { 30, 700, 400 };
private int[] yPoints = { 30, 30, 600 };
private Polygon imageTriangle =

new Polygon(xPoints, yPoints, 3);

15

public TiledImages() {

BufferedImage image =

ImageUtilities.getBufferedImage(imageFile1, this);

imageRect =

new Rectangle(235, 70,

image.getWidth(),
image.getHeight());

imagePaint1 =

new TexturePaint(image, imageRect);

image =

ImageUtilities.getBufferedImage(imageFile2, this);

imagePaint2 =

new TexturePaint(image,

new Rectangle(0, 0, 32, 32));

}

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

g2d.setPaint(imagePaint2);

g2d.fill(imageTriangle);

g2d.setPaint(Color.blue);

g2d.setStroke(new BasicStroke(5));

g2d.draw(imageTriangle);

g2d.setPaint(imagePaint1);

g2d.fill(imageRect);

g2d.setPaint(Color.black);

g2d.draw(imageRect);

}

...

}

16

Tiled Images as Fill Patterns:
Example Output

Transparent Drawing: Overview
 Idea

 Assign transparency (alpha) values to drawing
operations so that the underlying graphics partially
shows through when you draw shapes or images.

 Normal steps
 Create an AlphaComposite object

 Call AlphaComposite.getInstance with a mixing rule
designator and a transparency (or "alpha") value.

 There are 8 built-in mixing rules (see the AlphaComposite
API for details), but you only care about
AlphaComposite.SRC_OVER.

 Alpha values range from 0.0F (completely transparent) to
1.0F (completely opaque).

 Pass the AlphaComposite object to the setComposite
method of the Graphics2D

17

Transparent Drawing:
Example Code

public class TransparencyExample extends JPanel {

...

private AlphaComposite makeComposite(float alpha) {

int type = AlphaComposite.SRC_OVER;

return(AlphaComposite.getInstance(type, alpha));

}

private void drawSquares(Graphics2D g2d, float alpha) {

Composite originalComposite = g2d.getComposite();

g2d.setPaint(Color.blue);

g2d.fill(blueSquare);

g2d.setComposite(makeComposite(alpha));

g2d.setPaint(Color.red);

g2d.fill(redSquare);

g2d.setComposite(originalComposite);

}

...

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

for(int i=0; i<11; i++) {

drawSquares(g2d, i*0.1F); // 2nd arg is transparency

g2d.translate(deltaX, 0);

}

18

Using Logical
(Java-Standard) Fonts

 Logical font names: use same names
as in Java 1.1.

 Serif (aka TimesRoman)

 SansSerif (aka Helvetica -- results in Arial on
Windows)

 Monospaced (aka Courier)

 Dialog

 DialogInput

Using Local (System-Specific)
Fonts

 Local fonts: Must Lookup Fonts First
 Use the getAvailableFontFamilyNames or getAllFonts

methods of GraphicsEnvironment. E.g.:

GraphicsEnvironment env =

GraphicsEnvironment.getLocalGraphicsEnvironment();

then
env.getAvailableFontFamilyNames();

or
env.getAllFonts(); // Much slower than just getting
names!

 Safest Option:
 Supply list of preferred font names in order, loop down look-

ing for first match. Supply standard font name as backup.

19

Example 1: Printing Out All Local
Font Names

import java.awt.*;

public class ListFonts {

public static void main(String[] args) {

GraphicsEnvironment env =

GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontNames =

env.getAvailableFontFamilyNames();

System.out.println("Available Fonts:");

for(int i=0; i<fontNames.length; i++)

System.out.println(" " + fontNames[i]);

}

}

Example 2:
Drawing with Local Fonts

public class FontExample extends GradientPaintExample {
public FontExample() {
GraphicsEnvironment env =
GraphicsEnvironment.getLocalGraphicsEnvironment();

env.getAvailableFontFamilyNames();
setFont(new Font("Goudy Handtooled BT", Font.PLAIN, 100));

}
protected void drawBigString(Graphics2D g2d) {
g2d.setPaint(Color.black);
g2d.drawString("Java 2D", 25, 215);

}
public void paintComponent(Graphics g) {
clear(g);
Graphics2D g2d = (Graphics2D)g;
drawGradientCircle(g2d);
drawBigString(g2d);

} ...

20

Drawing with Local Fonts:
Example Output

Stroke Styles: Overview
 AWT

 drawXxx methods of Graphics resulted in solid, 1-
pixel wide lines.

 Predefined line join/cap styles for drawRect,
drawPolygon, etc.

 Java2D
 Pen thickness

 Dashing pattern

 Line join/cap styles

 Setting styles
 Create a BasicStroke object

 Use the setStroke method to tell the Graphics2D
object to use it

21

Stroke Attributes
 Normal use: Use setStroke to assign a BasicStroke.

BasicStroke constructors:
 BasicStroke()

 Creates a BasicStroke with a pen width of 1.0, the default cap style of
CAP_SQUARE, and the default join style of JOIN_MITER.

 BasicStroke(float penWidth)
 Uses the specified pen width and the default cap/join styles.

 BasicStroke(float penWidth, int capStyle, int joinStyle)
 Uses the specified pen width, cap style, and join style.

 BasicStroke(float penWidth, int capStyle, int joinStyle, float
miterLimit)
 Limits how far up the miter join can go (default is 10.0). Stay away

from this.

 BasicStroke(float penWidth, int capStyle, int joinStyle, float
miterLimit, float[] dashPattern, float dashOffset)
 Lets you make dashed lines by specifying an array of opaque (entries

at even array indices) and transparent (odd indices) segments. The
offset, often 0.0, specifies where to start in the dashing pattern.

Thick Lines: Example Code
import java.awt.*;

public class StrokeThicknessExample extends FontExample {

public void paintComponent(Graphics g) {

clear(g);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle(g2d);

drawBigString(g2d);

drawThickCircleOutline(g2d);

}

protected void drawThickCircleOutline(Graphics2D g2d) {

g2d.setPaint(Color.blue);

g2d.setStroke(new BasicStroke(8)); // 8-pixel wide pen

g2d.draw(getCircle());

}

...

22

Thick Lines: Example Output

Dashed Lines: Example Code
public class DashedStrokeExample extends FontExample {

public void paintComponent(Graphics g) {

clear(g);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle(g2d);

drawBigString(g2d);

drawDashedCircleOutline(g2d);

}

protected void drawDashedCircleOutline(Graphics2D g2d) {

g2d.setPaint(Color.blue);

// 30 pixel line, 10 pxl gap, 10 pxl line, 10 pxl gap

float[] dashPattern = { 30, 10, 10, 10 };

g2d.setStroke(new BasicStroke(8, BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER, 10, dashPattern, 0));

g2d.draw(getCircle());

}

...

23

Dashed Lines: Example Output

Join Styles

 JOIN_MITER
 Extend outside edges of lines until they meet

 This is the default

 JOIN_BEVEL
 Connect outside corners of outlines with straight

line

 JOIN_ROUND
 Round off corner with a circle that has diameter

equal to the pen width

24

Cap Styles
 CAP_SQUARE

 Make a square cap that extends past the end point
by half the pen width

 This is the default

 CAP_BUTT

 Cut off segment exactly at end point

Use this one for dashed lines.

 CAP_ROUND
 Make a circle centered on the end point. Use a

diameter equal to the pen width.

Cap and Join Styles:
Example Code

public class LineStyles extends JPanel {
private int[] caps =
{ BasicStroke.CAP_SQUARE, BasicStroke.CAP_BUTT,
BasicStroke.CAP_ROUND };

private int[] joins =
{ BasicStroke.JOIN_MITER, BasicStroke.JOIN_BEVEL,
BasicStroke.JOIN_ROUND };

public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2d = (Graphics2D)g;
g2d.setColor(Color.blue);
for(int i=0; i>caps.length; i++) {
BasicStroke stroke =
new BasicStroke(thickness, caps[i], joins[i]);

g2d.setStroke(stroke);
g2d.draw(path);
...

} ...

25

Cap and Join Styles:
Example Output

Coordinate Transformations
 Idea:

 Instead of computing new coordinates, move the
coordinate system itself

 Available Transformations
 Translate (move)

 Rotate (spin)

 Scale (stretch evenly)

 Shear (stretch more as points get further from origin)

 Custom. New point (x2, y2) derived from original point
(x1, y1) as follows:

[x2] [m00 m01 m02] [x1] [m00x1 + m01y1 + m02]

[y2] = [m10 m11 m12] [y1] = [m10x1 + m11y1 + m12]

[1] [0 0 1] [1] [1]

26

Translations and Rotations:
Example Code

public class RotationExample extends StrokeThicknessExample {

private Color[] colors = { Color.white, Color.black };

public void paintComponent(Graphics g) {

clear(g);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle(g2d);

drawThickCircleOutline(g2d);

// Move the origin to the center of the circle.

g2d.translate(185.0, 185.0);

for (int i=0; i<16; i++) {

// Rotate the coordinate system around current

// origin, which is at the center of the circle.

g2d.rotate(Math.PI/8.0);

g2d.setPaint(colors[i%2]);

g2d.drawString("Java", 0, 0);

} ...

Translations and Rotations:
Example Output

27

Shear Transformations

 Meaning of Shear

 X Shear
If you specify a non-zero x shear, then x values will
be more and more shifted to the right the farther they
are away from the y axis. For example, an x shear of
0.1 means that the x value will be shifted 10% of the
distance the point is away from the y axis.

 Y Shear
Points are shifted down in proportion to the distance
they are away from the x axis.

Shear: Example Code
public class ShearExample extends JPanel {

private static int gap=10, width=100;

private Rectangle rect = new Rectangle(gap, gap, 100, 100);

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

for (int i=0; i<5; i++) {

g2d.setPaint(Color.red);

g2d.fill(rect);

// Each new square gets 0.2 more x shear

g2d.shear(0.2, 0.0);

g2d.translate(2*gap + width, 0);

}

}

...

28

Shear: Example Output

Rendering Hints
 Default:

 Faster drawing, possibly less accuracy

 Rendering Hints:
 Let you request more accurate (but generally slower)

drawing. Eg:
RenderingHints renderHints =

new RenderingHints(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

renderHints.put(RenderingHints.KEY_RENDERING,

RenderingHints.VALUE_RENDER_QUALITY);

...

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

g2d.setRenderingHints(renderHints);

...

29

Summary
 General

 If you have Graphics, cast it to Graphics2D

 Create Shape objects, then call Graphics2D’s draw and fill
methods with shapes as args.

 Paint styles
 Use setPaint to specify a solid color (Color), a gradient fill

(GradientPaint), or tiled image (TexturePaint). TexturePaint
requires a BufferedImage, which you can create from an
image file by creating empty BufferedImage then drawing
image into it.

 Transparent drawing
 Use AlphaComposite for transparency. Create one via

AlphaComposite.getInstance with a type of
AlphaComposite.SRC_OVER.

Summary (Continued)
 Local fonts

 Before using them you must call getAllFonts or
getAvailableFontFamilyNames. Then supply name to Font
constructor and specify font via setFont.

 Stroke styles
 BasicStroke lets you set pen thickness, dashing pattern,

and line cap/join styles. Then call setStroke.

 Coordinate transformations
 Let you move the coordinate system rather than changing

what you draw. Simple transforms: call translate, rotate,
scale, and shear. More complex transforms: supply matrix
to AffineTransform constructor, then call setTransform.

 Rendering Hints
 Improve drawing quality or enable antialiasing

30

End of Chapter

Thank you for your attention!

1

Handling Mouse
and Keyboard

Events

Agenda
 General event-handling strategy

 Handling events with separate listeners

 Handling events by implementing interfaces

 Handling events with named inner classes

 Handling events with anonymous inner
classes

 The standard AWT listener types

 Subtleties with mouse events

 Examples

2

Event-Driven Programming

 Procedural programming is executed in
procedural order

 In event-driven programming, code is executed
upon activation of events

 An event can be defined as a type of signal to the program
that something has happened

 The event is generated by external user actions such as:
mouse movements, mouse button clicks, and keystrokes, or
by the operating system, such as a timer

Event Information
 id: A number that identifies the event.

 target: The source component upon which the event
occurred.

 arg: Additional information about the source
components.

 x, y coordinates: The mouse pointer location when
a mouse movement event occurred.

 clickCount: The number of consecutive clicks for the
mouse events. For other events, it is zero.

 when: The time stamp of the event.

 key: The key that was pressed or released.

3

Event Classes

AWTEvent EventObject

AdjustmentEvent

ComponentEvent

TextEvent

ItemEvent

ActionEvent

InputEvent

WindowEvent

MouseEvent

KeyEvent

ContainerEvent

FocusEvent

PaintEvent

ListSelectionEvent

General Strategy
 Determine what type of listener is of interest

 11 standard AWT listener types, described on later slide.
 ActionListener, AdjustmentListener, ComponentListener,

ContainerListener, FocusListener, ItemListener, KeyListener,
MouseListener, MouseMotionListener, TextListener,
WindowListener

 Define a class of that type
 Implement interface (KeyListener, MouseListener, etc.)

 Extend class (KeyAdapter, MouseAdapter, etc.)

 Register an object of your listener class with the
window
 w.addXxxListener(new MyListenerClass());

 E.g., addKeyListener, addMouseListener

4

Selected User Actions
Source Event Type

User Action Object Generated
Clicked on a button JButton ActionEvent

Changed text JTextComponent TextEvent

Double-clicked on a list item JList ActionEvent

Selected or deselected an item JList ItemEvent
with a single click

Selected or deselected an item JComboBox ItemEvent

Source Object

Trigger an event

Listener Object

Register a listener object

EventObject

Event Handler

Notify listenerGenerate
an event

User
action

Selected Event Handlers

Event Class Listener Interface Listener Methods (Handlers)
ActionEvent ActionListener actionPerformed(ActionEvent)
ItemEvent ItemListener itemStateChanged(ItemEvent)
WindowEvent WindowListener windowClosing(WindowEvent)

windowOpened(WindowEvent)
windowIconified(WindowEvent)
windowDeiconified(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEvent)

ContainerEvent ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

5

Example:
Handling Simple Action Events

 Objective: Display two buttons OK and Cancel in
the window. A message is displayed on the console
to indicate which button is clicked, when a button is
clicked.

TestActionEvent Run

Handling Window Events

TestWindowEvent Run

 Objective: Demonstrate handling the window
events. Any subclass of the Window class can
generate the following window events: window
opened, closing, closed, activated, deactivated,
iconified, and deiconified. This program creates
a frame, listens to the window events, and
displays a message to indicate the occurring
event.

6

Example: Multiple
Listeners for a Single

Source

TestMultipleListener Run

 Objective: This example modifies former
Example to add a new listener for each
button. The two buttons OK and Cancel
use the frame class as the listner. This
example creates a new listener class as
an additional listener for the action
events on the buttons. When a button is
clicked, both listeners respond to the
action event.

Handling Events in Applets with
a Separate Listener

 Listener does not need to call any methods of
the window to which it is attached

import java.applet.Applet;
import java.awt.*;

public class ClickReporter extends Applet {
public void init() {
setBackground(Color.yellow);
addMouseListener(new ClickListener());

}
}

7

import java.awt.event.*;

public class ClickListener extends MouseAdapter {
public void mousePressed(MouseEvent event) {

System.out.println("Mouse pressed at (" +
event.getX() + "," +
event.getY() + ").");

}
}

Generalizing Simple Case

 What if ClickListener wants to draw a circle
wherever mouse is clicked?

 Why can’t it just call getGraphics to get a
Graphics object with which to draw?

 General solution:
 Call event.getSource to obtain a reference to window

or GUI component from which event originated
 Cast result to type of interest
 Call methods on that reference

8

Handling Events with Separate
Listener: General Case

import java.applet.Applet;

import java.awt.*;
import java.awt.event.*;

public class CircleDrawer1 extends Applet {
public void init() {
setForeground(Color.blue);
addMouseListener(new CircleListener());

}
}
public class CircleListener extends MouseAdapter {

private int radius = 25;
public void mousePressed(MouseEvent event) {
Applet app = (Applet)event.getSource();
Graphics g = app.getGraphics();
g.fillOval(event.getX()-radius, event.getY()-radius,

2*radius, 2*radius);
}

}

Separate Listener: General Case
(Results)

TestMouseClick

Run

Implemented as
an application

TestMouseClick

Run

Implemented as
an applet

9

Case 2: Implementing a Listener
Interface

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class CircleDrawer2 extends Applet

implements MouseListener {
private int radius = 25;

public void init() {
setForeground(Color.blue);
addMouseListener(this);

}
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseClicked(MouseEvent event) {}
public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius, event.getY()-radius,

2*radius, 2*radius); }
}

Case 3: Named Inner Classes
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class CircleDrawer3 extends Applet {
public void init() {
setForeground(Color.blue);
addMouseListener(new CircleListener());

}
private class CircleListener extends MouseAdapter {
private int radius = 25;

public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius, event.getY()-radius,

2*radius, 2*radius);
}

}
}

10

Case 4: Anonymous Inner Classes
public class CircleDrawer4 extends Applet {

public void init() {
setForeground(Color.blue);
addMouseListener (new MouseAdapter() {

private int radius = 25;

public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius,

event.getY()-radius, 2*radius, 2*radius);
}

});
}

}

Event Handling Strategies:
Pros and Cons

 Separate Listener
 Advantages

 Can extend adapter and thus ignore unused methods

 Separate class easier to manage

 Disadvantage
 Need extra step to call methods in main window

 Main window that implements interface
 Advantage

 No extra steps needed to call methods in main window

 Disadvantage
 Must implement methods you might not care about

11

Event Handling Strategies:
Pros and Cons (Continued)

 Named inner class
 Advantages

 Can extend adapter and thus ignore unused methods

 No extra steps needed to call methods in main window

 Disadvantage
 A bit harder to understand

 Anonymous inner class
 Advantages

 Same as named inner classes

 Even shorter

 Disadvantage
 Much harder to understand

Standard AWT Event Listeners
(Summary)

Adapter Class
Listener (If Any) Registration Method

 ActionListener addActionListener
 AdjustmentListener addAdjustmentListener
 ComponentListener ComponentAdapter addComponentListener
 ContainerListener ContainerAdapter addContainerListener
 FocusListener FocusAdapter addFocusListener
 ItemListener addItemListener
 KeyListener KeyAdapter addKeyListener
 MouseListener MouseAdapter addMouseListener
 MouseMotionListener MouseMotionAdapter addMouseMotionListener

 TextListener addTextListener
 WindowListener WindowAdapter addWindowListener

12

Standard AWT Event Listeners
(Details)

 ActionListener
 Handles buttons and a few other actions

 actionPerformed(ActionEvent event)

 AdjustmentListener
 Applies to scrolling

 adjustmentValueChanged(AdjustmentEvent event)

 ComponentListener

 Handles moving/resizing/hiding GUI objects
 componentResized(ComponentEvent event)
 componentMoved (ComponentEvent event)
 componentShown(ComponentEvent event)
 componentHidden(ComponentEvent event)

(AWT Event Listeners Details Continued)
 ContainerListener

 Triggered when window adds/removes GUI controls
 componentAdded(ContainerEvent event)
 componentRemoved(ContainerEvent event)

 FocusListener
 Detects when controls get/lose keyboard focus

 focusGained(FocusEvent event)
 focusLost(FocusEvent event)

 ItemListener
 Handles selections in lists, checkboxes, etc.

 itemStateChanged(ItemEvent event)

 KeyListener (Detects keyboard events)
 keyPressed(KeyEvent event) -- any key pressed down
 keyReleased(KeyEvent event) -- any key released
 keyTyped(KeyEvent event) -- key for printable char released

13

 ItemListener
 Handles selections in lists, checkboxes, etc.

 itemStateChanged(ItemEvent event)

 KeyListener
 Detects keyboard events

 keyPressed(KeyEvent event) -- any key pressed down
 keyReleased(KeyEvent event) -- any key released
 keyTyped(KeyEvent event) -- key for printable char released

 MouseListener
 Applies to basic mouse events

 mouseEntered(MouseEvent event),
 mouseExited(MouseEvent event)
 mousePressed(MouseEvent event)
 mouseReleased(MouseEvent event)
 mouseClicked(MouseEvent event) -- Release without drag

 Applies on release if no movement since press

(AWT Event Listeners Details Continued)

 MouseMotionListener

 Handles mouse movement
 mouseMoved(MouseEvent event)
 mouseDragged(MouseEvent event)

 TextListener
 Applies to textfields and text areas

 textValueChanged(TextEvent event)

 WindowListener
 Handles high-level window events

 windowOpened, windowClosing, windowClosed,
windowIconified, windowDeiconified, windowActivated,
windowDeactivated
 windowClosing particularly useful

(AWT Event Listeners Details Continued)

14

Mouse Events: Details
 MouseListener and MouseMotionListener share

event types

 Location of clicks
 event.getX() and event.getY()

 Double clicks
 Determined by OS, not by programmer

 Call event.getClickCount()

 Distinguishing mouse buttons
 Call event.getModifiers() and compare to

MouseEvent.Button2_MASK for a middle click and
MouseEvent.Button3_MASK for right click.

 Can also trap Shift-click, Alt-click, etc.

Simple Example: Spelling-
Correcting Textfield

 KeyListener corrects spelling during typing
 ActionListener completes word on ENTER
 FocusListener gives subliminal hints

15

Example: Simple Whiteboard
import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

public class SimpleWhiteboard extends Applet {

protected int lastX=0, lastY=0;

public void init() {

setBackground(Color.white);

setForeground(Color.blue);

addMouseListener(new PositionRecorder());

addMouseMotionListener(new LineDrawer());

}

protected void record(int x, int y) {

lastX = x; lastY = y;

}

private class PositionRecorder extends MouseAdapter {
public void mouseEntered(MouseEvent event) {
requestFocus(); // Plan ahead for typing
record(event.getX(), event.getY());

}

public void mousePressed(MouseEvent event) {
record(event.getX(), event.getY());

}
}
...
private class LineDrawer extends MouseMotionAdapter {
public void mouseDragged(MouseEvent event) {
int x = event.getX();
int y = event.getY();
Graphics g = getGraphics();
g.drawLine(lastX, lastY, x, y);
record(x, y);

}
}

}

16

Simple Whiteboard (Results)

TestMouseClick

Run

Implemented as
an applet

Whiteboard: Adding Keyboard
Events

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

public class Whiteboard extends SimpleWhiteboard {

protected FontMetrics fm;

public void init() {

super.init();

Font font = new Font("Serif", Font.BOLD, 20);

setFont(font);

fm = getFontMetrics(font);

addKeyListener(new CharDrawer());

}

17

...

private class CharDrawer extends KeyAdapter {

// When user types a printable character,

// draw it and shift position rightwards.

public void keyTyped(KeyEvent event) {

String s = String.valueOf(event.getKeyChar());

getGraphics().drawString(s, lastX, lastY);

record(lastX + fm.stringWidth(s), lastY);

}

}

}

Whiteboard (Results)

18

Summary

 General strategy
 Determine what type of listener is of interest

 Check table of standard types

 Define a class of that type
 Extend adapter separately, implement interface, extend adapter

in named inner class, extend adapter in anonymous inner class

 Register an object of your listener class with the window
 Call addXxxListener

 Understanding listeners

 Methods give specific behavior.
 Arguments to methods are of type XxxEvent

 Methods in MouseEvent of particular interest

Thank you for your attention!

1

Exception

Agenda

 Exceptions and Exception Types

 Claiming Exceptions

 Throwing Exceptions

 Catching Exceptions

 Rethrowing Exceptions
 The finally Clause

 Cautions When Using Exceptions

 Creating Your Own Exception Classes
(Optional)

2

Error Handling: Exceptions

 In Java, the error-handling system is based on
exceptions
 Exceptions must be handed in a try/catch block

 When an exception occurs, process flow is immediately
transferred to the catch block

 Basic Form
try {

statement1;

statement2;

...

} catch(SomeException someVar) {

handleTheException(someVar);

}

Exceptions and Classes

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

3

Exception Hierarchy

 Simplified Diagram of Exception Hierarchy

Throwable

Error

IOException RuntimeException

Exception

…

Claiming, Throwing, and
Catching Exceptions

catch exception
claim exception

method1() {

try {

invoke method2

}

catch (Exception ex) {

Process exception;

}

}

method2() throws Exception {

if (an error occurs) {

throw new Exception();

}

}

throw exception

4

Throwable Types

 Error
 A non-recoverable problem that should not be caught

(OutOfMemoryError, StackOverflowError, …)

 Exception
 An abnormal condition that should be caught and

handled by the programmer

 RuntimeException
 Special case; does not have to be caught

 Usually the result of a poorly written program (integer
division by zero, array out-of-bounds, etc.)
 A RuntimeException is considered a bug

Thrown Exceptions

 If a potential exception is not handled in the
method, then the method must declare that the
exception can be thrown

public SomeType someMethod(...) throws SomeException {

// Unhandled potential exception

...

}

 Note: Multiple exception types (comma separated) can be
declared in the throws clause

 Explicitly generating an exception
throw new IOException("Blocked by firewall.");
throw new MalformedURLException("Invalid protocol");

5

Throwing Exceptions Example
public Rational divide(Rational r)

throws Exception
{
if (r.numer == 0)
{

throw new Exception("divisor
cannot be zero");

}

long n = numer*r.denom;
long d = denom*r.numer;
return new Rational(n,d);

}

TestRationalException RunRational

Catching Exceptions
 A single try can have more that one catch clause

 If multiple catch clauses are used, order them from the
most specific to the most general

 If no appropriate catch is found, the exception is handed
to any outer try blocks

 If no catch clause is found within the method, then the
exception is thrown by the method

try {
...

} catch (ExceptionType1 var1) {
// Do something

} catch (ExceptionType2 var2) {
// Do something else

}

6

Try-Catch, Example
...
BufferedReader in = null;
String lineIn;
try {
in = new BufferedReader(new FileReader("book.txt"));
while((lineIn = in.readLine()) != null) {
System.out.println(lineIn);

}
in.close();

} catch (FileNotFoundException fnfe) {
System.out.println("File not found.");

} catch (EOFException eofe) {
System.out.println("Unexpected End of File.");

} catch (IOException ioe) {
System.out.println("IOError reading input: " + ioe);
ioe.printStackTrace(); // Show stack dump

}

The finally Clause
 After the final catch clause, an optional
finally clause may be defined

 The finally clause is always executed, even if
the try or catch blocks are exited through a
break, continue, or return

try {
...

} catch (SomeException someVar) {
// Do something

} finally {
// Always executed

}

7

Example: Exceptions in GUI
Applications

 An error message appears on the console,
but the GUI application continues running

 Re-run the MenuDemo applet from former
Example and divide by 0 to see how a GUI
deals with unhandled exceptions.

MenuDemo Run

Cautions When Using
Exceptions

Exception handling separates error-handling
code from normal programming tasks, thus
making programs easier to read and to modify.

Be aware, however, that exception
handling usually requires more time
and resources because it requires
instantiating a new exception
object, rolling back the call
stack, and propagating the errors
to the calling methods.

8

Summary

 Loops, conditional statements, and array
access is the same as in C and C++

 String is a real class in Java

 Use equals, not ==, to compare strings

 You can allocate arrays in one step or in two
steps

 Vector or ArrayList is a useful data
structure
 Can hold an arbitrary number of elements

 Handle exceptions with try/catch blocks

Creating Own Exception Classes
class SimpleException extends Exception {}
public class SimpleExceptionDemo {

public void f() throws SimpleException {
System.out.println(

"Throwing SimpleExceptionfrom f()");
throw new SimpleException ();

}
public static void main(String[] args) {

SimpleExceptionDemo sed =
new SimpleExceptionDemo();

try {
sed.f();

} catch(SimpleException e) {
System.err.println("Caught it!");

}
}

}

9

Example (Optional): Creating Your
Own Exception Classes

 Objective: This program creates a Java applet for
handling account transactions. The applet displays the
account id and balance, and lets the user deposit to or
withdraw from the account. For each transaction, a
message is displayed to indicate the status of the
transaction: successful or failed. In case of failure, the
failure reason is reported.

Example, cont.

RunNegativeAmountException

AccountInsufficientFundException

AccountApplet

NegativeAmountException

-account
-transactionAmount
-transactionType

Exception

InsufficientAmountException

-account
-transactionAmount

Account

-id
-balance

+getId
+getBalance
+setBalance
+deposit
+withdraw

AccountApplet

JApplet ActionListener

10

Thank you for your attention!

1

Multithreaded
Programming

Agenda

 Why threads?

 Approaches for starting threads
 Separate class approach

 Callback approach

 Solving common thread problems

 Synchronizing access to shared resources

 Thread life cycle

 Stopping threads

2

Concurrent Programming
Using Java Threads

 Motivation
 Efficiency

 Downloading network data files

 Convenience
A clock icon

 Multi-client applications
 HTTP Server, SMTP Server

 Caution
 Significantly harder to debug and maintain

 Two Main Approaches:
 Make a self-contained subclass of Thread with the

behavior you want
 Implement the Runnable interface and put behavior in

the run method of that object

Threads Concept

Multiple
threads on
multiple
CPUs

Multiple
threads
sharing a
single CPU

Thread 3

Thread 2

Thread 1

Thread 3

Thread 2

Thread 1

3

Thread Mechanism 1:
Making a Thread Subclass

 Create a separate subclass of Thread
 No import statements needed: Thread is in java.lang

 Put the actions to be performed in the run
method of the subclass
 public void run() { … }

 Create an instance of your Thread subclass
 Or lots of instances if you want lots of threads

 Call that instance’s start method
 You put the code in run, but you call start!

Threads Mechanism 1:
Making a Thread Subclass

// Custom thread class

public class CustomThread extends Thread {
...
public CustomThread(...) {

...
}

// Override the run method in Thread

public void run() {
// Tell system how to run custom thread

...
}
...

}

// Client class

public class Client {
...
public someMethod() {

...
// Create a thread

CustomThread thread = new
CustomThread(...);

// Start a thread
thread.start();
...

}

subclass of Thread

run method

create an instance

instance’s start

4

Thread Mechanism 1:
Making a Thread Subclass

public class ThreadClass extends Thread {
public void run() {
// Thread behavior here

}
}
public class DriverClass extends SomeClass {
...
public void startAThread() {
// Create a Thread object
ThreadClass thread = new ThreadClass();
// Start it in a separate process
thread.start();

}
}

Thread Mechanism 1: Example
public class Counter extends Thread {
private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;

}
private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds));

}
catch(InterruptedException ie) {}

}
...

5

Example (Continued)
/** When run finishes, the thread exits. */
public void run() {
for(int i=0; i<loopLimit; i++) {
System.out.println("Counter " + currentNum

+ ": " + i);
pause(Math.random()); // Sleep for up to 1 second
}

}
}
public class CounterTest {
public static void main(String[] args) {
Counter c1 = new Counter(5);
Counter c2 = new Counter(5);
Counter c3 = new Counter(5);
c1.start();
c2.start();
c3.start();

}
}

Thread Mechanism 1: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 2: 1
Counter 1: 2
Counter 0: 1
Counter 0: 2
Counter 1: 3
Counter 2: 2
Counter 0: 3
Counter 1: 4
Counter 0: 4
Counter 2: 3
Counter 2: 4

6

Thread Mechanism 1: Example

TestThread Run

Objective: Create and run three threads:

1. The first thread prints the letter a 100 times.
2. The second thread prints the letter b 100 times.
3. The third thread prints the integers 1 through

100.

Thread Mechanism 2:
Implementing Runnable

 Put the actions to be performed in the run
method of your existing class

 Have class implement Runnable interface
 If your class already extends some other class (e.g.,

Applet), why can't it still extend Thread? Because
Java does not support multiple inheritance.

 Construct an instance of Thread passing in the
existing object (i.e., the Runnable)
 Thread t = new Thread(theRunnableObject);

 Call that Thread’s start method
 t.start();

7

Threads by Implementing the
Runnable Interface

// Custom thread class

public class CustomThread implements Runnable {
...
public CustomThread(...) {

...
}

// Implement the run method in Runnable

public void run() {
// Tell system how to run custom thread

...
}
...

}

// Client class
public class Client {

...
public someMethod() {

...
// Create an instance of CustomThread

CustomThread thread = new CustomThread(...);
// Create a thread

Thread thread = new Thread(customThread);
// Start a thread
thread.start();
...

}
}

Thread Mechanism 2:
Implementing Runnable (Cont.)

public class ThreadedClass extends AnyClass
implements Runnable {

public void run() {
// Thread behavior here
// If you want to access thread instance
// (e.g. to get private per-thread data), use
// Thread.currentThread().

}

public void startThread() {
Thread t = new Thread(this);
t.start(); // Calls back to run method in this

}
...

}

8

Thread Mechanism 2: Example
public class Counter2 implements Runnable {
private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter2(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;
Thread t = new Thread(this);
t.start();

}

private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds));
}
catch(InterruptedException ie) {}

}
...

Example (Continued)
public void run() {
for(int i=0; i<loopLimit; i++) {
System.out.println("Counter " + currentNum

+ ": " + i);
pause(Math.random()); // Sleep for up to 1 second

}
}

}
public class Counter2Test {

public static void main(String[] args) {
Counter2 c1 = new Counter2(5);
Counter2 c2 = new Counter2(5);
Counter2 c3 = new Counter2(5);

}
}

9

Thread Mechanism 2: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 1: 2
Counter 0: 1
Counter 1: 3
Counter 2: 1
Counter 0: 2
Counter 0: 3
Counter 1: 4
Counter 2: 2
Counter 2: 3
Counter 0: 4
Counter 2: 4

Thread Mechanism 2: Example

TestRunnable Run

Objective: Create and run three threads:

1. The first thread prints the letter a 100 times.
2. The second thread prints the letter b 100 times.
3. The third thread prints the integers 1 through

100.

10

Race Conditions: Example
public class BuggyCounterApplet extends Applet

implements Runnable{
private int totalNum = 0;
private int loopLimit = 5;
public void start() {
Thread t;
for(int i=0; i<3; i++) {t = new Thread(this); t.start();}

}
private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}
public void run() {
int currentNum = totalNum;
System.out.println("Setting currentNum to" + currentNum);
totalNum = totalNum + 1;
for(int i=0; i<loopLimit; i++) {
System.out.println("Counter " + currentNum + ": " + i);
pause(Math.random());

}
}

} What's wrong with this code?

Race Conditions: Result
 Usual Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Counter 1: 0
Setting currentNum to 2
Counter 2: 0
Counter 2: 1
Counter 1: 1
Counter 0: 1
Counter 2: 2
Counter 0: 2
Counter 1: 2
Counter 1: 3
Counter 0: 3
Counter 2: 3
Counter 1: 4
Counter 2: 4
Counter 0: 4

 Occasional Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Setting currentNum to 1
Counter 0: 1
Counter 1: 0
Counter 1: 0
Counter 0: 2
Counter 0: 3
Counter 1: 1
Counter 0: 4
Counter 1: 1
Counter 1: 2
Counter 1: 3
Counter 1: 2
Counter 1: 3
Counter 1: 4
Counter 1: 4

11

Race Conditions: Solution?

 Do things in a single step

public void run() {

int currentNum = totalNum++;

System.out.println("Setting currentNum to "

+ currentNum);

for(int i=0; i<loopLimit; i++) {

System.out.println("Counter "

+ currentNum + ": " + i);

pause(Math.random());

}

}

Arbitrating Contention for
Shared Resources

 Synchronizing a Section of Code
synchronized(someObject) {
code

}

 Normal interpretation
 Once a thread enters the code, no other thread can

enter until the first thread exits.

 Stronger interpretation
 Once a thread enters the code, no other thread can

enter any section of code that is synchronized using
the same “lock” tag

12

Synchronization Problem
Example

A shared resource may be corrupted if
it is accessed simultaneously by
multiple threads. For example, two
unsynchronized threads accessing the
same bank account causes conflict.

Step Balance Thread[i] Thread[j]
1 0 newBalance = b.getBalance() + 5;
2 0 newBalance = b.getBalance() + 2;
3 5 bank.setBalance(newBalance);
4 2 bank.setBalance(newBalance);

Arbitrating Contention for
Shared Resources

 Synchronizing an Entire Method
public synchronized void someMethod() {

body

}

 Note that this is equivalent to
public void someMethod() {

synchronized(this) {

body

}

}

13

Common Synchronization Bug
 What’s wrong with this class?

public class SomeThreadedClass extends Thread {
private static RandomClass someSharedObject;
...
public synchronized void doSomeOperation() {
accessSomeSharedObject();

}
...
public void run() {
while(someCondition) {
doSomeOperation(); // Accesses shared data
doSomeOtherOperation(); // No shared data

}
}

}

Synchronization Solution
 Solution 1: synchronize on the shared data

public void doSomeOperation() {
synchronized(someSharedObject) {
accessSomeSharedObject();

}
}

 Solution 2: synchronize on the class object
public void doSomeOperation() {
synchronized(SomeThreadedClass.class) {

accessSomeSharedObject();
}
}

 Note that if you synchronize a static method, the lock
is the corresponding Class object, not this

14

Synchronization Solution
(Continued)

 Solution 3: synchronize on arbitrary object

public class SomeThreadedClass extends
Thread {
private static Object lockObject
= new Object();

...
public void doSomeOperation() {
synchronized(lockObject) {
accessSomeSharedObject();

}
}
...

 Why doesn't this problem usually occur with Runnable?

Example

PiggyBankWithoutSync

Run

PiggyBank

-balance

+getBalance
+setBalance

1

100

PiggyBankWithoutSync

-PiggyBank bank
-Thread[] thread

+main

Object

char token

Object

AddAPennyThread

+run()

Thread

1

1

With
synchronize

PiggyBankWithSync

Run

Objective: create and
launch 100 threads,
each of which adds a
penny to a piggy bank.
Assume that the piggy
bank is initially empty.

15

Thread Lifecycle

new

ready

running

waiting

blocked

sleeping

start()

sleep()

Block on I/O

wait()

I/O completed

dead
run completes

yield()

times expires
or interrupted

notify()

dispatch

Useful Thread Constructors
 Thread()

 Default version you get when you call constructor of your
custom Thread subclass.

 Thread(Runnable target)
 Creates a thread, that, once started, will execute the run

method of the target

 Thread(ThreadGroup group, Runnable target)

 Creates a thread and places it in the specified thread
group

 A ThreadGroup is a collection of threads that can be
operated on as a set

 Thread(String name)
 Creates a thread with the given name

 Useful for debugging

16

Thread Priorities
 A thread’s default priority is the same as the

creating thread
 Thread API defines three thread priorities

 Thread.MAX_PRIORITY (typically 10)
 Thread.NORM_PRIORITY (typically 5)
 Thread.MIN_PRIORITY (typically 1)

 Problems
 A Java thread priority may map differently to the

thread priorities of the underlying OS
 Solaris has 232–1 priority levels;

Windows NT has only 7 user priority levels

 Starvation can occur for lower-priority threads if the
higher-priority threads never terminate, sleep, or wait
for I/O

Useful Thread Methods
 currentThread ()

 Returns a reference to the currently executing thread
 This is a static method that can be called by arbitrary

methods, not just from within a Thread object

 I.e., anyone can call Thread.currentThread

 Interrupt ()
 One of two outcomes:

 If the thread is executing join, sleep, or wait, an
InterruptedException is thrown

 Sets a flag, from which the interrupted thread can check
(isInterrupted)

 Interrupted ()
 Checks whether the currently executing thread has a

request for interruption (checks flag) and clears the flag

17

Useful Thread Methods
(Continued)

 isInterrupted()
 Simply checks whether the thread’s interrupt flag has

been set (does not modify the flag)
 Reset the flag by calling interrupted from within the run

method of the flagged thread

 Join()
 Joins to another thread by simply waiting (sleeps)

until the other thread has completed execution

 isDaemon()/setDaemon()
 Determines or set the thread to be a daemon

 A Java program will exit when the only active threads
remaining are daemon threads

Useful Thread Methods
(Continued)

 Start()
 Initializes the thread and then calls run

 If the thread was constructed by providing a
Runnable, then start calls the run method of that
Runnable

 Run()
 The method in which a created thread will execute

 Do not call run directly; call start on the thread object

 When run completes the thread enters a dead state
and cannot be restarted

18

Useful Thread Methods
(Continued)

 Sleep()
 Causes the currently executing thread to do a nonbusy

wait for at least the amount of time (milliseconds), unless
interrupted

 As a static method, may be called for nonthreaded
applications as well
 I.e., anyone can call Thread.sleep
 Note that sleep throws InterruptedException. Need try/catch

 Yield()
 Allows any other threads of the same or higher priority to

execute (moves itself to the end of the priority queue)
 If all waiting threads have a lower priority, then the yielding

thread remains on the CPU

Useful Thread Methods
(Continued)

 Wait()/waitForAll()
 Releases the lock for other threads and suspends

itself (placed in a wait queue associated with the lock)
 Thread can be restarted through notify or
notifyAll

 These methods must be synchronized on the lock
object of importance

 Notify()/notifyAll()
 Wakes up all threads waiting for the lock

 A notified doesn’t begin immediate execution, but is
placed in the runnable thread queue

19

Stopping a Thread
public class ThreadExample implements Runnable {

private boolean running;
public ThreadExample()

Thread thread = new Thread(this);
thread.start();

}
public void run(){
running = true;
while (running) {
...

}
doCleanup();

}

public void setRunning(boolean running) {
this.running = running;

}
}

Signaling with wait and notify
public class ConnectionPool implements Runnable {

...
public synchronized Connection getConnection() {
if (availableConnections.isEmpty()) {
try {
wait(); } catch(InterruptedException ie) {}

// Someone freed up a connection, so try again.
return(getConnection());

} else {
// Get available connection
...
return(connection)

}
}
public synchronized void free(Connection connection) {
busyConnections.removeElement(connection);
availableConnections.addElement(connection);
// Wake up threads that are waitingfor a connection
notifyAll();

}
...

}

20

Summary
 Achieve multithreaded behavior by

 Inheriting directly from Thread
(separate class approach)

 Implementing the Runnable interface
(callback approach)

 In either case, put your code in the run method.
Call start on the Thread object.

 Avoid race conditions by placing the shared
resource in a synchronized block

 You can’t restart a dead thread

 Stop threads by setting a flag that the thread's run
method checks

Creating Threads for Applets
In Example "Displaying a Clock" in P11

(Graphics), you drew a clock to show the
current time in an applet. The clock does not
tick after it is displayed. What can you do
to let the clock display a new current time
every second? The key to making the clock
tick is to repaint it every second with a new
current time. You can use the code given
below to override the start() method in
CurrentTimeApplet:

public void start() {
while (true) {
stillClock.repaint();
try {
Thread.sleep(1000);

}
catch(InterruptedException ex){}

}

What is wrong in this code?

As long as the while loop is
running, the browser cannot
serve any other event that
might be occurring.

21

Creating a Thread to run the while loop
public class MyApplet extends JApplet implements

Runnable {
private Thread timer = null;
public void init() {

timer = new Thread(this);
timer.start();

}
...
public void run() {

while (true){
repaint();
try { thread.sleep(1000);

waitForNotificationToResume();
}
catch (InterruptedException ex) { }

}
}

}

Creating a Thread to run Synhronization

private synchronized void
waitForNotificationToResume()
throws InterruptedException {

while (suspended)
wait();

}public synchronized void resume() {
if (suspended) {
suspended = false;
notify();

}
}

public synchronized void suspend() {
suspended = true;

}

Objective: Simulate a running
clock by using a separate
thread to repaint the clock.

ClockApplet

Run Applet Viewer

22

Controlling a Group of Clocks

ClockGroup RunClock

3
ClockGroup

-clockPanel1: ClockPanel
-clockPanel2: ClockPanel
-clockPanel3: ClockPanel
-jbtResumeAll: JButton
-jbtSuspendAll: JButton

+jbtResumeAll(): void
+jbtSuspendAll(): void
+actionPerformed(e: ActionEvent): void
+main(args: String[]): void
+init(): void

JApplet

ClockPanel

-jlblTitle: JLabel
-clock: Clock
jbtResume: JButton
-jbtSuspend: JButton

+setTitle(title: String): void
+resume(): void
+suspend(): void
+actionPerformed(e: ActionEvent): void

Thread

Clock

+run(): void
+suspend(): void
+resume(): void

StillClock

1

ActionListener Runnable

1 1

Thank you for your attention!

1

Multimedia

Agenda

 Audio Files

 Playing Audio

 Running Audio on a Separate Thread

 Displaying Images

 Displaying a Sequence of Images

 Using MediaTracker

2

Playing Audio

 play(URL url, String filename);

Plays the audio clip after it is given the URL and the file
name that is relative to the URL. Nothing happens if the
audio file cannot be found.

 play(getCodeBase(), "soundfile.au");

Plays the sound file soundfile.au, located in the
applet’s directory.

 play(getDocumentBase(),"soundfile.au");

Plays the sound file soundfile.au, located in the
HTML file’s directory.

 JDK can play several audio file formats, including
.wav and .au files.

Using Audio Clips

 public AudioClip getAudioClip(URL url);

 public AudioClip getAudioClip(URL url,
String name);

Either method creates an audio clip. Specify String
name to use a relative URL address.

 public abstract void play()

 public abstract void loop()

 public abstract void stop()

Use these methods to start the clip, play it
repeatedly, and stop the clip, respectively.

3

Example: Incorporating Sound
in Applets

 Objective: Display a running clock and play sound
files to announce the time at every minute.

ClockAppletWithAudio Run Applet Viewer

 Objective: Avoid the conflict between painting the
clock and announcing time in Example by running
the tasks on separate threads.

ClockAppletWithAudioOnSeparateThread

Run Applet Viewer

ClockAppletWithAudio

-clock: ClockWithAudio
-hourAudio: AudioClip[12]
-minuteAudio: AudioClip[60]
-amAudio: AudioClip
-pmAudio: AudioClip

+init(): void
+createClcok(): void
+announceTime(s: int, m: int, h: int): void
+start(): void
+stop(): void

CurrentTimeApplet

ClockWithAudio

-applet: ClockAppletWithAudio

+paintComponent(g: Graphics): void

Clock

1 1

Defined
In Example
15.5

Defined
In Example
14.1

4

Displaying Images
Two methods are available for displaying images:
 Use the getImage() method to retrieve image files and

create Image objects.

 Paint the images on the viewing area using the
drawImage() method.

 Objective: Display images in applets

DisplayImageApplet Run Applet Viewer

 Objective: Display images and playing audio in applets
and in applications.

ResourceLocatorDemo
Run as an Applet

Run as an Application

Using Image Animation

 Objective: Simulate a movie by displaying a
sequence of images in a control loop.

ImageAnimation Run Applet Viewer

Note: Images may take several seconds to load.

 Objective: Use the MediaTracker class to load all
the images before displaying them in a sequence.

ImageAnimationUsingMediaTracker

Run Applet Viewer

5

Thank you for your attention!

	P01 - Introduction
	P02 - Basic Syntax
	P03 - Data Structures
	P04 - OOP
	P05 - IO
	P06 - Applets
	P07 - Java Script
	P08 - AWT Components
	P09 - Layout Managers
	P10 - Swing Components
	P11 - Graphics
	P12 - Events
	P13 - Exceptions
	P14 - Multithread
	P15 - Multimedia

