

Home Network Applications

- Access to remote information
- Person-to-person communication
- Interactive entertainment
- Electronic commerce

Home Network Applications (3)

Tag	Full name	Example
B2C	Business-to-consumer	Ordering books on-line
B2B	Business-to-business	Car manufacturer ordering tires from supplier
G2C	Government-to-consumer	Government distributing tax forms electronically
C2C	Consumer-to-consumer	Auctioning second-hand products on-line
P2P	Peer-to-peer	File sharing

Some forms of e-commerce.

Mobile Network Users

Wireless	Mobile	Applications
No	No	Desktop computers in offices
No	Yes	A notebook computer used in a hotel room
Yes	No	Networks in older, unwired buildings
Yes	Yes	Portable office; PDA for store inventory

Combinations of wireless networks and mobile computing.

Network Hardware

- Local Area Networks
- Metropolitan Area Networks
- Wide Area Networks
- Wireless Networks
- Home Networks
- Internetworks

Broadcast Networks

Types of transmission technology

- Broadcast links
- Point-to-point links

Home Network Categories

- Computers (desktop PC, PDA, shared peripherals
- Entertainment (TV, DVD, VCR, camera, stereo, MP3)
- Telecomm (telephone, cell phone, intercom, fax)
- Appliances (microwave, fridge, clock, furnace, airco)
- Telemetry (utility meter, burglar alarm, babycam).

Network Software

- Protocol Hierarchies
- Design Issues for the Layers
- Connection-Oriented and Connectionless Services
- Service Primitives
- The Relationship of Services to Protocols

The philosopher-translator-secretary architecture.

Connection-Oriented and Connectionless
Services

	Service	Example
onnection-	Reliable message stream	Sequence of pages
oriented	Reliable byte stream	Remote login
	Unreliable connection	Digitized voice
ſ	Unreliable datagram	Electronic junk mail
nnection-	Acknowledged datagram	Registered mail
	Request-reply	Database query

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

Reference Models

- The OSI Reference Model
- The TCP/IP Reference Model
- A Comparison of OSI and TCP/IP
- A Critique of the OSI Model and Protocols
- A Critique of the TCP/IP Reference Model

Comparing OSI and TCP/IP Models

Concepts central to the OSI model

- Services
- Interfaces
- Protocols

Internet Usage

Traditional applications (1970 – 1990)

- E-mail
- News
- Remote login
- File transfer

OSI layer	ATM layer	ATM sublayer	Functionality
		CS	Providing the standard interface (convergence)
3/4	AAL	SAR	Segmentation and reassembly
2/3	ATM		Flow control Cell header generation/extraction Virtual circuit/path management Cell multiplexing/demultiplexing
2	Dhysiaal	тс	Cell rate decoupling Header checksum generation and verification Cell generation Packing/unpacking cells from the enclosing envelope Frame generation
1	Physical	PMD	Bit timing Physical network access

Network Standardization

- Who's Who in the Telecommunications World
- Who's Who in the International Standards World
- Who's Who in the Internet Standards World

ITU

- Main sectors
 - Radiocommunications
 - Telecommunications Standardization
 - Development
- Classes of Members
 - National governments
 - Sector members
 - Associate members
 - Regulatory agencies

Number	Торіс
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	lsochronous LANs (for real-time applications)
802.10↓	Virtual LANs and security
802.11 *	Wireless LANs
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number. Nobody wanted it
802.14↓	Cable modems (defunct: an industry consortium got there first
802.15 *	Personal area networks (Bluetooth)
802.16 *	Broadband wireless
802.17	Resilient packet ring

	M	-tri	o T	Inits	
				/IIIUS	
Eve	Frankisia	Duefix	Eve	Fruitait	Drefi
Exp.	Explicit	Prefix	Exp.	Explicit	Prefix
10 °	0.001	milli	10°	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ^{_9}	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.000000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.0000000000000000000000000000000000000	atto	10 ¹⁸	1,000,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000000000000000000000	zepto	10 ²¹	1,000,000,000,000,000,000,000	Zetta
10 - 24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000,000	Yotta
			1		
	The prin	ncipal	metr	ic prefixes.	

Chapter 2

The Physical Layer

The Theoretical Basis for Data Communication

- Fourier Analysis
- Bandwidth-Limited Signals
- Maximum Data Rate of a Channel

Bps	T (msec)	First harmonic (Hz)	# Harmonics sen
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

ltem	LED	Semiconductor laser
Data rate	Low	High
Fiber type	Multimode	Multimode or single mode
Distance	Short	Long
Lifetime	Long life	Short life
Temperature sensitivity	Minor	Substantial
Cost	Low cost	Expensive

Wireless Transmission

- The Electromagnetic Spectrum
- Radio Transmission
- Microwave Transmission
- Infrared and Millimeter Waves
- Lightwave Transmission

Band	Downlink	Uplink	Bandwidth	Problems
L	1.5 GHz	1.6 GHz	15 MHz	Low bandwidth; crowded
S	1.9 GHz	2.2 GHz	70 MHz	Low bandwidth; crowdec
С	4.0 GHz	6.0 GHz	500 MHz	Terrestrial interference
Ku	11 GHz	14 GHz	500 MHz	Rain
Ka	20 GHz	30 GHz	3500 MHz	Rain, equipment cost

- (a) The Iridium satellites from six necklaces around the earth.
- (b) 1628 moving cells cover the earth.

Major Components of the Telephone System

- Local loops
 - Analog twisted pairs going to houses and businesses
- Trunks
 - Digital fiber optics connecting the switching offices
- Switching offices
 - Where calls are moved from one trunk to another

SONET		SDH	Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912

Packet Switching				
ltem	Circuit-switched	Packet-switched		
Call setup	Required	Not needed		
Dedicated physical path	Yes	No		
Each packet follows the same route	Yes	No		
Packets arrive in order	Yes	No		
Is a switch crash fatal	Yes	No		
Bandwidth available	Fixed	Dynamic		
When can congestion occur	At setup time	On every packet		
Potentially wasted bandwidth	Yes	No		
Store-and-forward transmission	No	Yes		
Transparency	Yes	No		
Charging	Per minute	Per packet		

A comparison of circuit switched and packet-switched networks.

- First-Generation Mobile Phones: Analog Voice
- Second-Generation Mobile Phones: Digital Voice
- Third-Generation Mobile Phones: Digital Voice and Data

Channel Categories

The 832 channels are divided into four categories:

- Control (base to mobile) to manage the system
- Paging (base to mobile) to alert users to calls for them
- Access (bidirectional) for call setup and channel assignment
- Data (bidirectional) for voice, fax, or data

Third-Generation Mobile Phones: Digital Voice and Data

Basic services an IMT-2000 network should provide

- High-quality voice transmission
- Messaging (replace e-mail, fax, SMS, chat, etc.)
- Multimedia (music, videos, films, TV, etc.)
- Internet access (web surfing, w/multimedia.)

Cable Television

- Community Antenna Television
- Internet over Cable
- Spectrum Allocation
- Cable Modems
- ADSL versus Cable

The Data Link Layer

- Services Provided to the Network Layer
- Framing
- Error Control
- Flow Control

Functions of the Data Link Layer

- Provide service interface to the network layer
- Dealing with transmission errors
- Regulating data flow
 - Slow receivers not swamped by fast senders

Elementary Data Link Protocols

- An Unrestricted Simplex Protocol
- A Simplex Stop-and-Wait Protocol
- A Simplex Protocol for a Noisy Channel

Protocol Definition (ctd.)

/* Wait for an event to happen; return its type in event. */ void wait_for_event(event_type *event);			
/* Fetch a packet from the network layer for transmission on the channel. */ void from_network_layer(packet *p);			
/* Deliver information from an inbound frame to the network layer. */ void to_network_layer(packet *p);			
/* Go get an inbound frame from the physical layer and copy it to r. */ void from_physical_layer(frame *r);			
/* Pass the frame to the physical layer for transmission. */ void to_physical_layer(frame *s);			
/* Start the clock running and enable the timeout event. */ void start_timer(seq_nr k);			
/* Stop the clock and disable the timeout event. */ void stop_timer(seq_nr k);			
/* Start an auxiliary timer and enable the ack_timeout event. */ void start_ack_timer(void);			
/* Stop the auxiliary timer and disable the ack_timeout event. */ void stop_ack_timer(void);			
/* Allow the network layer to cause a network_layer_ready event. */ void enable_network_layer(void);			
/* Forbid the network layer from causing a network_layer_ready event. */ void disable_network_layer(void);			
/* Macro inc is expanded in-line: Increment k circularly. */ #define inc(k) if (k < MAX_SEQ) k = k + 1; else k = 0			

A Simplex	Protocol for a N	loisy Channel	
	/* Protocol 3 (par) allows unidirectional data flow over an unreliable channel. */ #define MAX_SEQ 1 /* must be 1 for protocol 3 */ typedef enum {frame_arrival, cksum_err, timeout} event_type; #include "protocol.h"		
	<pre>void sender3(void) { seq_nr next_frame_to_send; frame s; packet buffer; event_type event;</pre>	/* seq number of next outgoing frame */ /* scratch variable */ /* buffer for an outbound packet */	
A positive acknowledgement with retransmission	<pre>next_frame_to_send = 0; from_network_layer(&buffer); while (true) { s.info = buffer; s.seq = next_frame_to_send; to_physical_layer(&s); start_timer(s.seq); wait_for_event(&event); if (event == frame_arrival) { from_physical_layer(&s); if (s.ack == next_frame_to_send) { stop_timer(s.ack); from_network_layer(&buffer); inc(next_frame_to_send); } }</pre>	/* initialize outbound sequence numbers */ /* fetch first packet */ /* construct a frame for transmission */ /* insert sequence number in frame */ /* send it on its way */ /* if answer takes too long, time out */ /* frame_arrival, cksum_err, timeout */ /* get the acknowledgement */ /* turn the timer off */ /* get the next one to send */ /* invert next_frame_to_send */	
protocol.	} } }	Continued \rightarrow	

Sliding Window Protocol Using Go Back N

void protocol5(void)

seq_nr next_frame_to_send; seq_nr ack_expected; seq_nr frame_expected; frame r; packet buffer[MAX_SEQ + 1]; seq_nr nbuffered; seq_nr i; event_type event;

enable_network_layer(); ack_expected = 0; next_frame_to_send = 0; frame_expected = 0; nbuffered = 0;

- /* MAX_SEQ > 1; used for outbound stream */ /* oldest frame as yet unacknowledged */ /* next frame expected on inbound stream */
- /* scratch variable */
- /* buffers for the outbound stream */
- /* # output buffers currently in use */
- /* used to index into the buffer array */
- /* allow network_layer_ready events */
- /* next ack expected inbound */
- /* next frame going out */
- /* number of frame expected inbound */
- /* initially no packets are buffered */

Continued \rightarrow

PPP – Point to Point Protocol (3)

Name	Direction	Description
Configure-request	$I \rightarrow R$	List of proposed options and values
Configure-ack	I ← R	All options are accepted
Configure-nak	I ← R	Some options are not accepted
Configure-reject	I ← R	Some options are not negotiable
Terminate-request	$I \rightarrow R$	Request to shut the line down
Terminate-ack	I ← R	OK, line shut down
Code-reject	I ← R	Unknown request received
Protocol-reject	I ← R	Unknown protocol requested
Echo-request	$I \rightarrow R$	Please send this frame back
Echo-reply	I ← R	Here is the frame back
Discard-request	$I \rightarrow R$	Just discard this frame (for testing)

The LCP frame types.

Chapter 4

The Medium Access Control Sublayer

The Channel Allocation Problem

- Static Channel Allocation in LANs and MANs
- Dynamic Channel Allocation in LANs and MANs

Dynamic Channel Allocation in LANs and MANs

- 1. Station Model.
- 2. Single Channel Assumption.
- 3. Collision Assumption.
- 4. (a) Continuous Time.(b) Slotted Time.
- (a) Carrier Sense.(b) No Carrier Sense.

Ethernet

- Ethernet Cabling
- Manchester Encoding
- The Ethernet MAC Sublayer Protocol
- The Binary Exponential Backoff Algorithm
- Ethernet Performance
- Switched Ethernet
- Fast Ethernet
- Gigabit Ethernet
- IEEE 802.2: Logical Link Control
- Retrospective on Ethernet

Name Cable Max. seg. Nodes/seg. Advantages 10Base5 Thick coax 500 m 100 Original cable; now obsolet 10Base2 Thin coax 185 m 30 No hub needed 10Base3 Twisted pair 100 m 1024 Chapped avetam	Name Cable Max. seg. Nodes/seg.	A	Nedes/see	Marrison	Ochle	Nama
10Base2 Think coax 300 m 100 Original cable, now obsolet 10Base2 Thin coax 185 m 30 No hub needed 10Base3 Twigted pair 100 m 1024 Choopport system	10Baco5 Thick coax 500 m 100 Ori	Advantages	m 100	500 m		10Baca5
10Base2 Thill coax 185 m 30 No hub heeded	10BaseS Thick coax South Too On	where a ded	m 20	105 m	Thin coox	10Daseo
	10Base2 Thin coax 185 m 30 No		m 30	185 m	Thin coax	TUBase2
10Base-1 Twisted pair Too III 1024 Cheapest system	10Base-1 Twisted pair 100 m 1024 Chi	apest system	m 1024	100 m	I wisted pair	10Base-1
10Base-F Fiber optics 2000 m 1024 Best between buildings	10Base-F Fiber obtics 2000 m 1024 Bes	between buildings	m 1024	2000 m	Fiber optics	10Base-F

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

	Gigał	oit Ethe	ernet (2)
Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP
	Gig	abit Ethernet	cabling.
	Giga	abit Ethernet	cabling.

Broadband Wireless

- Comparison of 802.11 and 802.16
- The 802.16 Protocol Stack
- The 802.16 Physical Layer
- The 802.16 MAC Sublayer Protocol
- The 802.16 Frame Structure

The 802.16 MAC Sublayer Protocol

Service Classes

- Constant bit rate service
- Real-time variable bit rate service
- Non-real-time variable bit rate service
- Best efforts service

Bluetooth

- Bluetooth Architecture
- Bluetooth Applications
- The Bluetooth Protocol Stack
- The Bluetooth Radio Layer
- The Bluetooth Baseband Layer
- The Bluetooth L2CAP Layer
- The Bluetooth Frame Structure

Bluetooth Applications

Name	Description
Generic access	Procedures for link management
Service discovery	Protocol for discovering offered services
Serial port	Replacement for a serial port cable
Generic object exchange	Defines client-server relationship for object movement
LAN access	Protocol between a mobile computer and a fixed LAN
Dial-up networking	Allows a notebook computer to call via a mobile phone
Fax	Allows a mobile fax machine to talk to a mobile phone
Cordless telephony	Connects a handset and its local base station
Intercom	Digital walkie-talkie
Headset	Intended for hands-free voice communication
Object push	Provides a way to exchange simple objects
File transfer	Provides a more general file transfer facility
Synchronization	Permits a PDA to synchronize with another computer
Т	he Bluetooth profiles.

Summary	
Method	Description
FDM	Dedicate a frequency band to each station
WDM	A dynamic FDM scheme for fiber
TDM	Dedicate a time slot to each station
Pure ALOHA	Unsynchronized transmission at any instant
Slotted ALOHA	Random transmission in well-defined time slots
1-persistent CSMA	Standard carrier sense multiple access
Nonpersistent CSMA	Random delay when channel is sensed busy
P-persistent CSMA	CSMA, but with a probability of p of persisting
CSMA/CD	CSMA, but abort on detecting a collision
Bit map	Round robin scheduling using a bit map
Binary countdown	Highest numbered ready station goes next
Tree walk	Reduced contention by selective enabling
MACA, MACAW	Wireless LAN protocols
Ethernet	CSMA/CD with binary exponential backoff
FHSS	Frequency hopping spread spectrum
DSSS	Direct sequence spread spectrum
CSMA/CA	Carrier sense multiple access with collision avoidance