
1

©Silberschatz, Korth and Sudarshan1.1Database System Concepts

Chapter 1: Introduction

 Purpose of Database Systems

 View of Data

 Data Models

 Data Definition Language

 Data Manipulation Language

 Transaction Management

 Storage Management

 Database Administrator

 Database Users

 Overall System Structure

 DBMS Vs. IRS

©Silberschatz, Korth and Sudarshan1.2Database System Concepts

Database Management System (DBMS)

 Collection of interrelated data

 Set of programs to access the data

 DBMS contains information about a particular enterprise

 DBMS provides an environment that is both convenient
and efficient to use.

 Database Applications:
 Banking: all transactions

 Airlines: reservations, schedules

 Universities: registration, grades

 Sales: customers, products, purchases

 Manufacturing: production, inventory, orders, supply chain

 Human resources: employee records, salaries, tax deductions

 Databases touch all aspects of our lives

2

©Silberschatz, Korth and Sudarshan1.3Database System Concepts

Purpose of Database System

 In the early days, database applications were built on top
of file systems

 Drawbacks of using file systems to store data:
 Data redundancy and inconsistency

Multiple file formats, duplication of information in different files

 Difficulty in accessing data

 Need to write a new program to carry out each new task

 Data isolation — multiple files and formats

 Integrity problems

 Integrity constraints (e.g. account balance > 0) become part
of program code

 Hard to add new constraints or change existing ones

©Silberschatz, Korth and Sudarshan1.4Database System Concepts

Purpose of Database Systems (Cont.)

 Drawbacks of using file systems (cont.)
 Atomicity of updates

 Failures may leave database in an inconsistent state with partial
updates carried out

 E.g. transfer of funds from one account to another should either
complete or not happen at all

 Concurrent access by multiple users

 Concurrent accessed needed for performance

 Uncontrolled concurrent accesses can lead to inconsistencies

– E.g. two people reading a balance and updating it at the same
time

 Security problems

 Database systems offer solutions to all the above problems

3

©Silberschatz, Korth and Sudarshan1.5Database System Concepts

Is the WWW a DBMS?

 Fairly sophisticated search available
 crawler indexes pages for fast search

 But, currently
 data is mostly unstructured and untyped

 can’t manipulate the data

 few guarantees provided for freshness of data,

consistency across data items, fault tolerance, …

 Web sites typically have a DBMS in the
background to provide these functions.

 The picture is quickly changing
 New standards like XML can help data modeling

 Research groups are working on providing some of this functionality
across multiple web sites.

©Silberschatz, Korth and Sudarshan1.6Database System Concepts

Is a File System a DBMS?

 Thought Experiment 1:
 You and your project partner are editing the same file.

 You both save it at the same time.

 Whose changes survive?

A) Yours B) Partner’s C) Both D) Neither E) ???

 Thought Experiment 2:
 You’re updating a file.

 The power goes out.

 Which of your changes survive?

A) All B) None C) All Since last save D) ???

4

©Silberschatz, Korth and Sudarshan1.7Database System Concepts

Levels of Abstraction

 Physical level describes how a record (e.g., customer) is
stored.

 Logical level: describes data stored in database, and the
relationships among the data.

type customer = record
name : string;
street : string;
city : integer;

end;

 View level: application programs hide details of data types.
Views can also hide information (e.g., salary) for security
purposes.

©Silberschatz, Korth and Sudarshan1.8Database System Concepts

View of Data

An architecture for a database system

5

©Silberschatz, Korth and Sudarshan1.9Database System Concepts

Instances and Schemas

 Similar to types and variables in programming languages

 Schema – the logical structure of the database
 e.g., the database consists of information about a set of customers and

accounts and the relationship between them)

 Analogous to type information of a variable in a program

 Physical schema: database design at the physical level

 Logical schema: database design at the logical level

 Instance – the actual content of the database at a particular point
in time
 Analogous to the value of a variable

 Physical Data Independence – the ability to modify the physical
schema without changing the logical schema
 Applications depend on the logical schema

 In general, the interfaces between the various levels and components should
be well defined so that changes in some parts do not seriously influence others.

©Silberschatz, Korth and Sudarshan1.10Database System Concepts

Data Models

 A collection of tools for describing
 data
 data relationships
 data semantics
 data constraints

 Entity-Relationship model

 Relational model

 Other models:
 object-oriented model
 semi-structured data models

 Older models: network model and hierarchical model

6

©Silberschatz, Korth and Sudarshan1.11Database System Concepts

Entity-Relationship Model

Example of schema in the entity-relationship model

©Silberschatz, Korth and Sudarshan1.12Database System Concepts

Entity Relationship Model (Cont.)

 E-R model of real world
 Entities (objects)

 E.g. customers, accounts, bank branch

 Relationships between entities

 E.g. Account A-101 is held by customer Johnson

 Relationship set depositor associates customers with accounts

 Widely used for database design
 Database design in E-R model usually converted to design in the

relational model (coming up next) which is used for storage and
processing

7

©Silberschatz, Korth and Sudarshan1.13Database System Concepts

Relational Model

 Example of tabular data in the relational model

customer-
name

Customer-id customer-
street

customer-
city

account-
number

Johnson

Smith

Johnson

Jones

Smith

192-83-7465

019-28-3746

192-83-7465

321-12-3123

019-28-3746

Alma

North

Alma

Main

North

Palo Alto

Rye

Palo Alto

Harrison

Rye

A-101

A-215

A-201

A-217

A-201

Attributes

©Silberschatz, Korth and Sudarshan1.14Database System Concepts

A Sample Relational Database

8

©Silberschatz, Korth and Sudarshan1.15Database System Concepts

Data Definition Language (DDL)

 Specification notation for defining the database schema
 E.g.

create table account (
account-number char(10),
balance integer)

 DDL compiler generates a set of tables stored in a data
dictionary

 Data dictionary contains metadata (i.e., data about data)
 database schema

 Data storage and definition language

 language in which the storage structure and access methods
used by the database system are specified

 Usually an extension of the data definition language

©Silberschatz, Korth and Sudarshan1.16Database System Concepts

Data Manipulation Language (DML)

 Language for accessing and manipulating the data
organized by the appropriate data model
 DML also known as query language

 Two classes of languages
 Procedural – user specifies what data is required and how to get

those data

 Nonprocedural – user specifies what data is required without
specifying how to get those data

 SQL is the most widely used query language

9

©Silberschatz, Korth and Sudarshan1.17Database System Concepts

SQL

 SQL: widely used non-procedural language
 E.g. find the name of the customer with customer-id 192-83-7465

select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

 E.g. find the balances of all accounts held by the customer with
customer-id 192-83-7465

select account.balance
from depositor, account
where depositor.customer-id = ‘192-83-7465’ and

depositor.account-number = account.account-number

 Application programs generally access databases through
 Language extensions to allow embedded SQL

 Application program interface (e.g. ODBC/JDBC) which allow SQL
queries to be sent to a database

©Silberschatz, Korth and Sudarshan1.18Database System Concepts

Database Users

 Users are differentiated by the way they expect to interact
with the system

 Application programmers – interact with system through
DML calls

 Sophisticated users – form requests in a database query
language

 Specialized users – write specialized database
applications that do not fit into the traditional data
processing framework

 Naïve users – invoke one of the permanent application
programs that have been written previously
 E.g. people accessing database over the web, bank tellers, clerical

staff

10

©Silberschatz, Korth and Sudarshan1.19Database System Concepts

Database Administrator

 Coordinates all the activities of the database
system; the database administrator has a good
understanding of the enterprise’s information
resources and needs.

 Database administrator's duties include:

 Schema definition

 Storage structure and access method definition

 Schema and physical organization modification

 Granting user authority to access the database

 Specifying integrity constraints

 Acting as liaison with users

 Monitoring performance and responding to changes in
requirements

©Silberschatz, Korth and Sudarshan1.20Database System Concepts

Transaction Management

 A transaction is a collection of operations that performs a
single logical function in a database application

 Transaction-management component ensures that the
database remains in a consistent (correct) state despite
system failures (e.g., power failures and operating system
crashes) and transaction failures.

 Concurrency-control manager controls the interaction
among the concurrent transactions, to ensure the
consistency of the database.

11

©Silberschatz, Korth and Sudarshan1.21Database System Concepts

Storage Management

 Storage manager is a program module that provides the
interface between the low-level data stored in the database
and the application programs and queries submitted to the
system.

 The storage manager is responsible to the following tasks:
 interaction with the file manager

 efficient storing, retrieving and updating of data

©Silberschatz, Korth and Sudarshan1.22Database System Concepts

Overall System Structure

12

©Silberschatz, Korth and Sudarshan1.23Database System Concepts

Application Architectures

Two-tier architecture: E.g. client programs using ODBC/JDBC to
communicate with a database
Three-tier architecture: E.g. web-based applications, and
applications built using “middleware”

©Silberschatz, Korth and Sudarshan1.24Database System Concepts

Advantages of a DBMS

 Data independence

 Efficient data access

 Data integrity & security

 Data administration

 Concurrent access, crash recovery

 Reduced application development time

 So why not use them always?

 Expensive/complicated to set up & maintain

 This cost & complexity must be offset by need

 General-purpose, not suited for special-purposetasks (e.g. text
search!)

13

©Silberschatz, Korth and Sudarshan1.25Database System Concepts

DBMS vs. IRS

Filtering

Retrieval

Distribution of selected information

Users Information

DBMS: The entities are
uniquely and completely
described by its
attributes.

IRS: The number of
content identifiers can
be very large and they
do not describe the
information uniquely
and completely.

©Silberschatz, Korth and Sudarshan1.26Database System Concepts

Search vs. Retrieval

 Give me all
about ...

Content
Identifiers 2

Content
Identifiers k

Content
Identifiers n

Document 2

Document k

Document n

Content
Identifiers 1

Query
Identifiers

similariey estimation

Document 1 . .
.

. .
.

DBMS: Strict matching between the
query and the information
identifiers.

IRS: Degree of similarity between
the query and information
identifiers.

13.10.2011

1

©Silberschatz, Korth and Sudarshan2.1Database System Concepts

Chapter 2: Entity-Relationship Model

 Entity Sets

 Relationship Sets

 Design Issues

 Mapping Constraints

 Keys

 E-R Diagram

 Extended E-R Features

 Design of an E-R Database Schema

 Reduction of an E-R Schema to Tables

©Silberschatz, Korth and Sudarshan2.2Database System Concepts

Entity Sets

 A database can be modeled as:
 a collection of entities,

 relationship among entities.

 An entity is an object that exists and is distinguishable from
other objects.

 Example: specific person, company, event, plant

 Entities have attributes
 Example: people have names and addresses

 An entity set is a set of entities of the same type that share
the same properties.
 Example: set of all persons, companies, trees, holidays

13.10.2011

2

©Silberschatz, Korth and Sudarshan2.3Database System Concepts

Entity Sets customer and loan

customer-id customer- customer- customer- loan- amount
name street city number

©Silberschatz, Korth and Sudarshan2.4Database System Concepts

Attributes

 An entity is represented by a set of attributes, that is
descriptive properties possessed by all members of an
entity set.

 Domain – the set of permitted values for each attribute

 Attribute types:
 Simple and composite attributes.

 Single-valued and multi-valued attributes

 E.g. multivalued attribute: phone-numbers

 Derived attributes

 Can be computed from other attributes

 E.g. age, given date of birth

Example:

customer = (customer-id, customer-name,
customer-street, customer-city)

loan = (loan-number, amount)

13.10.2011

3

©Silberschatz, Korth and Sudarshan2.5Database System Concepts

Composite Attributes

©Silberschatz, Korth and Sudarshan2.6Database System Concepts

Relationship Sets

 A relationship is an association among several entities

Example:
Hayes depositor A-102

customer entity relationship set account entity

 A relationship set is a mathematical relation among n  2
entities, each taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship

 Example:

(Hayes, A-102)  depositor

13.10.2011

4

©Silberschatz, Korth and Sudarshan2.7Database System Concepts

Relationship Set borrower

©Silberschatz, Korth and Sudarshan2.8Database System Concepts

Relationship Sets (Cont.)

 An attribute can also be property of a relationship set.

 For instance, the depositor relationship set between entity sets
customer and account may have the attribute access-date

13.10.2011

5

©Silberschatz, Korth and Sudarshan2.9Database System Concepts

Degree of a Relationship Set

 Refers to number of entity sets that participate in a
relationship set.

 Relationship sets that involve two entity sets are binary (or
degree two). Generally, most relationship sets in a
database system are binary.

 Relationship sets may involve more than two entity sets.

 Relationships between more than two entity sets are rare.
Most relationships are binary. (More on this later.)

E.g. Suppose employees of a bank may have jobs
(responsibilities) at multiple branches, with different jobs at
different branches. Then there is a ternary relationship set
between entity sets employee, job and branch

©Silberschatz, Korth and Sudarshan2.10Database System Concepts

Mapping Cardinalities

 Express the number of entities to which another entity
can be associated via a relationship set.

 Most useful in describing binary relationship sets.

 For a binary relationship set the mapping cardinality
must be one of the following types:

 One to one

 One to many

 Many to one

 Many to many

13.10.2011

6

©Silberschatz, Korth and Sudarshan2.11Database System Concepts

Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

©Silberschatz, Korth and Sudarshan2.12Database System Concepts

Mapping Cardinalities

Many to one Many to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

13.10.2011

7

©Silberschatz, Korth and Sudarshan2.13Database System Concepts

Mapping Cardinalities affect ER Design

 Can make access-date an attribute of account, instead of a
relationship attribute, if each account can have only one customer

 I.e., the relationship from account to customer is many to one,
or equivalently, customer to account is one to many

©Silberschatz, Korth and Sudarshan2.14Database System Concepts

E-R Diagrams

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets and entity sets to relationship sets.

 Ellipses represent attributes

 Double ellipses represent multivalued attributes.

 Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes (will study later)

13.10.2011

8

©Silberschatz, Korth and Sudarshan2.15Database System Concepts

E-R Diagram With Composite, Multivalued, and
Derived Attributes

©Silberschatz, Korth and Sudarshan2.16Database System Concepts

Relationship Sets with Attributes

13.10.2011

9

©Silberschatz, Korth and Sudarshan2.17Database System Concepts

Roles

 Entity sets of a relationship need not be distinct
 The labels “manager” and “worker” are called roles; they specify how

employee entities interact via the works-for relationship set.

 Roles are indicated in E-R diagrams by labeling the lines that connect
diamonds to rectangles.

 Role labels are optional, and are used to clarify semantics of the
relationship

©Silberschatz, Korth and Sudarshan2.18Database System Concepts

Cardinality Constraints

 We express cardinality constraints by drawing either a directed
line (), signifying “one,” or an undirected line (—), signifying
“many,” between the relationship set and the entity set.

 E.g.: One-to-one relationship:

 A customer is associated with at most one loan via the relationship
borrower

 A loan is associated with at most one customer via borrower

13.10.2011

10

©Silberschatz, Korth and Sudarshan2.19Database System Concepts

One-To-Many Relationship

 In the one-to-many relationship a loan is associated with at most
one customer via borrower, a customer is associated with
several (including 0) loans via borrower

©Silberschatz, Korth and Sudarshan2.20Database System Concepts

Many-To-One Relationships

 In a many-to-one relationship a loan is associated with several
(including 0) customers via borrower, a customer is associated
with at most one loan via borrower

13.10.2011

11

©Silberschatz, Korth and Sudarshan2.21Database System Concepts

Many-To-Many Relationship

 A customer is associated with several (possibly 0) loans
via borrower

 A loan is associated with several (possibly 0) customers
via borrower

©Silberschatz, Korth and Sudarshan2.22Database System Concepts

Participation of an Entity Set in a
Relationship Set

 Total participation (indicated by double line): every entity in the entity
set participates in at least one relationship in the relationship set

 E.g. participation of loan in borrower is total

 every loan must have a customer associated to it via borrower

 Partial participation: some entities may not participate in any
relationship in the relationship set

 E.g. participation of customer in borrower is partial

13.10.2011

12

©Silberschatz, Korth and Sudarshan2.23Database System Concepts

Alternative Notation for Cardinality
Limits

 Cardinality limits can also express participation constraints

©Silberschatz, Korth and Sudarshan2.24Database System Concepts

Keys

 A super key of an entity set is a set of one or more
attributes whose values uniquely determine each
entity.

 A candidate key of an entity set is a minimal super key

 Customer-id is candidate key of customer

 account-number is candidate key of account

 Although several candidate keys may exist, one of the
candidate keys is selected to be the primary key.

13.10.2011

13

©Silberschatz, Korth and Sudarshan2.25Database System Concepts

Keys for Relationship Sets

 The combination of primary keys of the participating entity
sets forms a super key of a relationship set.
 (customer-id, account-number) is the super key of depositor

 NOTE: this means a pair of entity sets can have at most one
relationship in a particular relationship set.

 E.g. if we wish to track all access-dates to each account by each
customer, we cannot assume a relationship for each access.
We can use a multivalued attribute though

 Must consider the mapping cardinality of the relationship
set when deciding the what are the candidate keys

 Need to consider semantics of relationship set in selecting
the primary key in case of more than one candidate key

©Silberschatz, Korth and Sudarshan2.26Database System Concepts

E-R Diagram with a Ternary Relationship

13.10.2011

14

©Silberschatz, Korth and Sudarshan2.27Database System Concepts

Cardinality Constraints on Ternary
Relationship

 We allow at most one arrow out of a ternary (or greater
degree) relationship to indicate a cardinality constraint

 E.g. an arrow from works-on to job indicates each employee
works on at most one job at any branch.

 If there is more than one arrow, there are two ways of defining
the meaning.
 E.g a ternary relationship R between A, B and C with arrows to B and C

could mean

 1. each A entity is associated with a unique entity from B and C or

 2. each pair of entities from (A, B) is associated with a unique C entity,
and each pair (A, C) is associated with a unique B

 Each alternative has been used in different formalisms

 To avoid confusion we outlaw more than one arrow

©Silberschatz, Korth and Sudarshan2.28Database System Concepts

Binary Vs. Non-Binary Relationships

 Some relationships that appear to be non-binary may be
better represented using binary relationships
 E.g. A ternary relationship parents, relating a child to his/her father and

mother, is best replaced by two binary relationships, father and mother

 Using two binary relationships allows partial information (e.g. only
mother being know)

 But there are some relationships that are naturally non-binary

 E.g. works-on

13.10.2011

15

©Silberschatz, Korth and Sudarshan2.29Database System Concepts

Converting Non-Binary Relationships to
Binary Form

 In general, any non-binary relationship can be represented using
binary relationships by creating an artificial entity set.
 Replace R between entity sets A, B and C by an entity set E, and three

relationship sets:

1. RA, relating E and A 2.RB, relating E and B

3. RC, relating E and C
 Create a special identifying attribute for E

 Add any attributes of R to E

 For each relationship (ai , bi , ci) in R, create

1. a new entity ei in the entity set E 2. add (ei , ai) to RA

3. add (ei , bi) to RB 4. add (ei , ci) to RC

©Silberschatz, Korth and Sudarshan2.30Database System Concepts

Converting Non-Binary Relationships
(Cont.)

 Also need to translate constraints

 Translating all constraints may not be possible

 There may be instances in the translated schema that
cannot correspond to any instance of R

 Exercise: add constraints to the relationships RA, RB and RC to
ensure that a newly created entity corresponds to exactly one entity
in each of entity sets A, B and C

 We can avoid creating an identifying attribute by making E a weak
entity set (described shortly) identified by the three relationship sets

13.10.2011

16

©Silberschatz, Korth and Sudarshan2.31Database System Concepts

Weak Entity Sets

 An entity set that does not have a primary key is referred to as a
weak entity set.

 The existence of a weak entity set depends on the existence of a
identifying entity set

 it must relate to the identifying entity set via a total, one-to-many
relationship set from the identifying to the weak entity set

 Identifying relationship depicted using a double diamond

 The discriminator (or partial key) of a weak entity set is the set of
attributes that distinguishes among all the entities of a weak
entity set.

 The primary key of a weak entity set is formed by the primary key
of the strong entity set on which the weak entity set is existence
dependent, plus the weak entity set’s discriminator.

©Silberschatz, Korth and Sudarshan2.32Database System Concepts

Weak Entity Sets (Cont.)

 We depict a weak entity set by double rectangles.

 We underline the discriminator of a weak entity set with a
dashed line.

 payment-number – discriminator of the payment entity set

 Primary key for payment – (loan-number, payment-number)

13.10.2011

17

©Silberschatz, Korth and Sudarshan2.33Database System Concepts

Weak Entity Sets (Cont.)

 Note: the primary key of the strong entity set is not
explicitly stored with the weak entity set, since it is implicit
in the identifying relationship.

 If loan-number were explicitly stored, payment could be
made a strong entity, but then the relationship between
payment and loan would be duplicated by an implicit
relationship defined by the attribute loan-number common
to payment and loan

©Silberschatz, Korth and Sudarshan2.34Database System Concepts

Example: Logins (Email Addresses)

Login name = user name + host name, e.g.,
ark@soe.ucsc.edu.

 A “login” entity corresponds to a user name on a particular host, but
the passwd table doesn’t record the host, just the user name, e.g.,
ark.

 Key for a login = the user name at the host (which is unique for that
host only) + the IP address of the host (which is unique globally).

 Design issue: Under what circumstances could we simply make
login-name and host-name be attributes of logins, and dispense
with the weak E.S.?

Logins Hosts@@

name name

13.10.2011

18

©Silberschatz, Korth and Sudarshan2.35Database System Concepts

All “Connecting”
Entity Sets
Are Weak

 In this special case, where bar and beer determine a price, we can
omit price from the key, and remove the double diamond from
ThePrice.

 Better: price is attribute of BBP.

Bars Beers

The-
Bar

Price

The-
Beer

The-
Price

BBPBBP

The-
Bar

The-
Beer

The-
Price

name manfname addr price

©Silberschatz, Korth and Sudarshan2.36Database System Concepts

Relationship To Weak Entities

 Consider a relationship, Ordered, between two entity sets,
Buyer and Product

 How can we add Shipments to the mix?

This is wrong. Why?

Buyer ProductOrdered

Qty

Buyer ProductOrdered

Qty
Shipment

Name

UPC

Name

UPC

ID

13.10.2011

19

©Silberschatz, Korth and Sudarshan2.37Database System Concepts

 Solution: make Ordered into a weak entity set.

 And then add Shipment.

Buyer Product

Qty

Buyer Product

Shipment

Name

UPC

Name

UPC

ID

OrderedOBOB OPOP

Qty
Ordered

OrderedOBOB OPOP

Part of
Qty

Shipped

Part-of is
many-many
and not a weak
relationship!

©Silberschatz, Korth and Sudarshan2.38Database System Concepts

Design Issues

 Use of entity sets vs. attributes
Choice mainly depends on the structure of the enterprise being modeled,
and on the semantics associated with the attribute in question.

 Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an action
that occurs between entities

 Binary versus n-ary relationship sets
Although it is possible to replace any nonbinary (n-ary, for n > 2)
relationship set by a number of distinct binary relationship sets, a n-ary
relationship set shows more clearly that several entities participate in a
single relationship.

 Avoid redundancy
Redudancy wastes space and encourages inconsistency.

 Don't overuse weak entity sets

13.10.2011

20

©Silberschatz, Korth and Sudarshan2.39Database System Concepts

You may be unsure which concepts are worthy of being entity
sets, and which are handled more simply as attributes.

 Especially tricky for the class design project, since there is a
temptation to create needless entity sets to make project “larger.”

Wrong:

Right:

Entity Sets Vs. Attributes

Beers ManfsManfBy

namename

Beers

name manf
Make an entity set only if it either:

Is more than a name of something; i.e., it
has nonkey attributes or relationships
with a number of different entity sets,

or
Is the “many” in a many-one relationship.

©Silberschatz, Korth and Sudarshan2.40Database System Concepts

Example

The following design illustrates both points:

 Manfs deserves to be an E.S. because we record addr, a nonkey
attribute.

 Beers deserves to be an E.S. because it is at the “many” end.

 If not, we would have to make “set of beers” an attribute of Manfs –
something we avoid doing, although some may tell you it is OK in E/R
model.

Beers ManfsManfBy

name addrname

13.10.2011

21

©Silberschatz, Korth and Sudarshan2.41Database System Concepts

Avoid redundancy
Setting: client has (possibly vague) idea of what he/she wants. You must
design a database that represents these thoughts and only these thoughts.

Good:

Bad:

Bad:

Beers ManfsManfBy

name addrname

Beers

name manf

Manf
addr

Repeats manufacturer
address for each beer
they manufacture.

Beers ManfsManfBy

name addrname manf Manufacturer’s
name said twice.

©Silberschatz, Korth and Sudarshan2.42Database System Concepts

Don't Overuse Weak E.S.

 There is a tendency to feel that no E.S. has its entities uniquely
determined without following some relationships.

 However, in practice, we almost always create unique ID's to
compensate: social-security numbers, VIN's, etc.

 The only times weak E.S.'s seem necessary are when:
 We can't easily create such ID's; e.g., no one is going to accept a

“species ID” as part of the standard nomenclature (species is a
weak E.S. supported by membership in a genus).

 There is no global authority to create them, e.g., crews and
studios.

13.10.2011

22

This image cannot currently be displayed.

How about doing an ER design
interactively on the board?

Suggest an application to be modeled.

©Silberschatz, Korth and Sudarshan2.44Database System Concepts

Specialization

 Top-down design process; we designate subgroupings within an
entity set that are distinctive from other entities in the set.

 These subgroupings become lower-level entity sets that have
attributes or participate in relationships that do not apply to the
higher-level entity set.

 Depicted by a triangle component labeled ISA (E.g. customer “is
a” person).

 Attribute inheritance – a lower-level entity set inherits all the
attributes and relationship participation of the higher-level entity
set to which it is linked.

13.10.2011

23

©Silberschatz, Korth and Sudarshan2.45Database System Concepts

Specialization Example

©Silberschatz, Korth and Sudarshan2.46Database System Concepts

Generalization

 A bottom-up design process – combine a number of entity
sets that share the same features into a higher-level entity
set.

 Specialization and generalization are simple inversions of
each other; they are represented in an E-R diagram in the
same way.

 The terms specialization and generalization are used
interchangeably.

13.10.2011

24

©Silberschatz, Korth and Sudarshan2.47Database System Concepts

Specialization and Generalization
(Contd.)

 Can have multiple specializations of an entity set based on
different features.

 E.g. permanent-employee vs. temporary-employee, in
addition to officer vs. secretary vs. teller

 Each particular employee would be
 a member of one of permanent-employee or temporary-employee,

 and also a member of one of officer, secretary, or teller

 The ISA relationship also referred to as superclass -
subclass relationship

©Silberschatz, Korth and Sudarshan2.48Database System Concepts

Design Constraints on a
Specialization/Generalization

 Constraint on which entities can be members of a given
lower-level entity set.
 condition-defined

 E.g. all customers over 65 years are members of senior-
citizen entity set; senior-citizen ISA person.

 user-defined

 Constraint on whether or not entities may belong to more than
one lower-level entity set within a single generalization.
 Disjoint

 an entity can belong to only one lower-level entity set

 Noted in E-R diagram by writing disjoint next to the ISA
triangle

 Overlapping

 an entity can belong to more than one lower-level entity set

13.10.2011

25

©Silberschatz, Korth and Sudarshan2.49Database System Concepts

Design Constraints on a
Specialization/Generalization (Contd.)

 Completeness constraint -- specifies whether or not an
entity in the higher-level entity set must belong to at least
one of the lower-level entity sets within a generalization.
 total : an entity must belong to one of the lower-level entity sets

 partial: an entity need not belong to one of the lower-level entity
sets

©Silberschatz, Korth and Sudarshan2.50Database System Concepts

Aggregation

 Consider the ternary relationship works-on, which we saw earlier

 Suppose we want to record managers for tasks performed by an
employee at a branch

13.10.2011

26

©Silberschatz, Korth and Sudarshan2.51Database System Concepts

Aggregation (Cont.)

 Relationship sets works-on and manages represent overlapping
information

 Every manages relationship corresponds to a works-on relationship

 However, some works-on relationships may not correspond to any
manages relationships

 So we can’t discard the works-on relationship

 Eliminate this redundancy via aggregation

 Treat relationship as an abstract entity

 Allows relationships between relationships

 Abstraction of relationship into new entity

 Without introducing redundancy, the following diagram represents:

 An employee works on a particular job at a particular branch

 An employee, branch, job combination may have an associated manager

©Silberschatz, Korth and Sudarshan2.52Database System Concepts

E-R Diagram With Aggregation

13.10.2011

27

©Silberschatz, Korth and Sudarshan2.53Database System Concepts

E-R Design Decisions

 The use of an attribute or entity set to represent an object.

 Whether a real-world concept is best expressed by an
entity set or a relationship set.

 The use of a ternary relationship versus a pair of binary
relationships.

 The use of a strong or weak entity set.

 The use of specialization/generalization – contributes to
modularity in the design.

 The use of aggregation – can treat the aggregate entity set
as a single unit without concern for the details of its
internal structure.

©Silberschatz, Korth and Sudarshan2.54Database System Concepts

Beers-Bars-Drinkers Example

name addr license

name manf name addr

Beers Drinkers

BarsServes Frequents

Likes

13.10.2011

28

©Silberschatz, Korth and Sudarshan2.55Database System Concepts

E-R Diagram for a Banking Enterprise

This image cannot currently be displayed.

How about doing another ER design
interactively on the board?

13.10.2011

29

©Silberschatz, Korth and Sudarshan2.57Database System Concepts

Summary of Symbols Used in E-R
Notation

©Silberschatz, Korth and Sudarshan2.58Database System Concepts

Summary of Symbols (Cont.)

13.10.2011

30

©Silberschatz, Korth and Sudarshan2.59Database System Concepts

Alternative E-R Notations

©Silberschatz, Korth and Sudarshan2.60Database System Concepts

UML

 UML: Unified Modeling Language

 UML has many components to graphically model different
aspects of an entire software system

 UML Class Diagrams correspond to E-R Diagram, but
several differences.

13.10.2011

31

©Silberschatz, Korth and Sudarshan2.61Database System Concepts

Summary of UML Class Diagram Notation

©Silberschatz, Korth and Sudarshan2.62Database System Concepts

UML Class Diagrams (Contd.)

 Entity sets are shown as boxes, and attributes are shown within the
box, rather than as separate ellipses in E-R diagrams.

 Binary relationship sets are represented in UML by just drawing a
line connecting the entity sets. The relationship set name is written
adjacent to the line.

 The role played by an entity set in a relationship set may also be
specified by writing the role name on the line, adjacent to the entity
set.

 The relationship set name may alternatively be written in a box,
along with attributes of the relationship set, and the box is
connected, using a dotted line, to the line depicting the relationship
set.

 Non-binary relationships drawn using diamonds, just as in ER
diagrams

13.10.2011

32

©Silberschatz, Korth and Sudarshan2.63Database System Concepts

UML Class Diagram Notation (Cont.)

*Note reversal of position in cardinality constraint depiction
*Generalization can use merged or separate arrows independent
of disjoint/overlapping

overlapping

disjoint

©Silberschatz, Korth and Sudarshan2.64Database System Concepts

UML Class Diagrams (Contd.)

 Cardinality constraints are specified in the form l..h, where l denotes
the minimum and h the maximum number of relationships an entity
can participate in.

 Beware: the positioning of the constraints is exactly the reverse of the
positioning of constraints in E-R diagrams.

 The constraint 0..* on the E2 side and 0..1 on the E1 side means that
each E2 entity can participate in at most one relationship, whereas
each E1 entity can participate in many relationships; in other words,
the relationship is many to one from E2 to E1.

 Single values, such as 1 or * may be written on edges; The single
value 1 on an edge is treated as equivalent to 1..1, while * is
equivalent to 0..*.

13.10.2011

33

©Silberschatz, Korth and Sudarshan2.65Database System Concepts

Reduction of an E-R Schema to Tables

 Primary keys allow entity sets and relationship sets to be
expressed uniformly as tables which represent the
contents of the database.

 A database which conforms to an E-R diagram can be
represented by a collection of tables.

 For each entity set and relationship set there is a unique
table which is assigned the name of the corresponding
entity set or relationship set.

 Each table has a number of columns (generally
corresponding to attributes), which have unique names.

 Converting an E-R diagram to a table format is the basis
for deriving a relational database design from an E-R
diagram.

©Silberschatz, Korth and Sudarshan2.66Database System Concepts

Representing Entity Sets as Tables

 A strong entity set reduces to a table with the same attributes.

13.10.2011

34

©Silberschatz, Korth and Sudarshan2.67Database System Concepts

Composite and Multivalued Attributes

 Composite attributes are flattened out by creating a separate attribute
for each component attribute
 E.g. given entity set customer with composite attribute name with

component attributes first-name and last-name the table corresponding
to the entity set has two attributes

name.first-name and name.last-name

 A multivalued attribute M of an entity E is represented by a separate
table EM
 Table EM has attributes corresponding to the primary key of E and an

attribute corresponding to multivalued attribute M

 E.g. Multivalued attribute dependent-names of employee is represented
by a table

employee-dependent-names(employee-id, dname)

 Each value of the multivalued attribute maps to a separate row of the
table EM

 E.g., an employee entity with primary key John and
dependents Johnson and Johndotir maps to two rows:

(John, Johnson) and (John, Johndotir)

©Silberschatz, Korth and Sudarshan2.68Database System Concepts

Representing Weak Entity Sets

 A weak entity set becomes a table that includes a column for
the primary key of the identifying strong entity set

13.10.2011

35

©Silberschatz, Korth and Sudarshan2.69Database System Concepts

Representing Relationship Sets as
Tables

 A many-to-many relationship set is represented as a table with
columns for the primary keys of the two participating entity sets,
and any descriptive attributes of the relationship set.

 E.g.: table for relationship set borrower

©Silberschatz, Korth and Sudarshan2.70Database System Concepts

Redundancy of Tables

 Many-to-one and one-to-many relationship sets that are total
on the many-side can be represented by adding an extra
attribute to the many side, containing the primary key of the
one side

 E.g.: Instead of creating a table for relationship account-
branch, add an attribute branch to the entity set account

13.10.2011

36

©Silberschatz, Korth and Sudarshan2.71Database System Concepts

Redundancy of Tables (Cont.)

 For one-to-one relationship sets, either side can be chosen to act
as the “many” side
 That is, extra attribute can be added to either of the tables

corresponding to the two entity sets

 If participation is partial on the many side, replacing a table by an
extra attribute in the relation corresponding to the “many” side
could result in null values

 The table corresponding to a relationship set linking a weak
entity set to its identifying strong entity set is redundant.
 E.g. The payment table already contains the information that would

appear in the loan-payment table (i.e., the columns loan-number
and payment-number).

©Silberschatz, Korth and Sudarshan2.72Database System Concepts

Representing Specialization as Tables
 Method 1:
 Form a table for the higher level entity

 Form a table for each lower level entity set, include primary key of
higher level entity set and local attributes

table table attributes
person name, street, city
customer name, credit-rating
employee name, salary

 Drawback: getting information about, e.g., employee requires
accessing two tables

13.10.2011

37

©Silberschatz, Korth and Sudarshan2.73Database System Concepts

Representing Specialization as Tables
(Cont.)

 Method 2:
 Form a table for each entity set with all local and inherited

attributes
table table attributes

person name, street, city
customer name, street, city, credit-rating
employee name, street, city, salary

 If specialization is total, table for generalized entity (person) not
required to store information

Can be defined as a “view” relation containing union of
specialization tables

But explicit table may still be needed for foreign key constraints

 Drawback: street and city may be stored redundantly for persons
who are both customers and employees

©Silberschatz, Korth and Sudarshan2.74Database System Concepts

Relations Corresponding to
Aggregation

 To represent aggregation, create a table containing

 primary key of the aggregated relationship,

 the primary key of the associated entity set

 Any descriptive attributes

13.10.2011

38

©Silberschatz, Korth and Sudarshan2.75Database System Concepts

Relations Corresponding to
Aggregation (Cont.)

 E.g. to represent aggregation manages between relationship
works-on and entity set manager, create a table
manages(employee-id, branch-name, title, manager-name)

 Table works-on is redundant provided we are willing to store
null values for attribute manager-name in table manages

This image cannot currently be displayed.

End of Chapter 2

13.10.2011

39

©Silberschatz, Korth and Sudarshan2.77Database System Concepts

E-R Diagram for Exercise 2.10

©Silberschatz, Korth and Sudarshan2.78Database System Concepts

E-R Diagram for Exercise 2.15

13.10.2011

40

©Silberschatz, Korth and Sudarshan2.79Database System Concepts

E-R Diagram for Exercise 2.22

©Silberschatz, Korth and Sudarshan2.80Database System Concepts

E-R Diagram for Exercise 2.15

13.10.2011

41

©Silberschatz, Korth and Sudarshan2.81Database System Concepts

Existence Dependencies

 If the existence of entity x depends on the existence of
entity y, then x is said to be existence dependent on y.

 y is a dominant entity (in example below, loan)

 x is a subordinate entity (in example below, payment)

loan-payment paymentloan

If a loan entity is deleted, then all its associated payment entities
must be deleted also.

1

©Silberschatz, Korth and Sudarshan3.1Database System Concepts

Chapter 3: Relational Model

 Structure of Relational Databases

 Relational Algebra

 Tuple Relational Calculus

 Domain Relational Calculus

 Extended Relational-Algebra-Operations

 Modification of the Database

 Views

©Silberschatz, Korth and Sudarshan3.2Database System Concepts

Example of a Relation

2

©Silberschatz, Korth and Sudarshan3.3Database System Concepts

Basic Structure

 Formally, given sets D1, D2, …. Dn a relation r is a subset of
D1 x D2 x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where
each ai  Di

 Example: if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = { (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)}

is a relation over customer-name x customer-street x customer-city

©Silberschatz, Korth and Sudarshan3.4Database System Concepts

Attribute Types

 Each attribute of a relation has a name

 The set of allowed values for each attribute is called the
domain of the attribute

 Attribute values are (normally) required to be atomic, that
is, indivisible
 E.g. multivalued attribute values are not atomic

 E.g. composite attribute values are not atomic

 The special value null is a member of every domain

 The null value causes complications in the definition of
many operations
 we shall ignore the effect of null values in our main presentation

and consider their effect later

3

©Silberschatz, Korth and Sudarshan3.5Database System Concepts

Relation Schema

 A1, A2, …, An are attributes

 R = (A1, A2, …, An) is a relation schema

E.g. Customer-schema =
(customer-name, customer-street, customer-city)

 r(R) is a relation on the relation schema R

E.g. customer (Customer-schema)

©Silberschatz, Korth and Sudarshan3.6Database System Concepts

Relation Instance

 The current values (relation instance) of a relation are
specified by a table

 An element t of r is a tuple, represented by a row in a
table

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North
Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

customer

attributes
(or columns)

tuples
(or rows)

4

©Silberschatz, Korth and Sudarshan3.7Database System Concepts

Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in
an arbitrary order)

 E.g. account relation with unordered tuples

©Silberschatz, Korth and Sudarshan3.8Database System Concepts

Why Relations?

 Very simple model.

 Often a good match for the way we think about our data.

 Abstract model that underlies SQL, the most important
language in DBMS’s today.
 But SQL uses “bags” while the abstract relational model is set-

oriented.

 All ingenious ideas are simple !

5

©Silberschatz, Korth and Sudarshan3.9Database System Concepts

Database

 A database consists of multiple relations

 Information about an enterprise is broken up into parts,
with each relation storing one part of the information

E.g.: account : stores information about accounts
depositor : stores information about which customer

owns which account
customer : stores information about customers

 Storing all information as a single relation such as
bank(account-number, balance, customer-name, ..)

results in
 repetition of information (e.g. two customers own an account)

 the need for null values (e.g. represent a customer without an
account)

 Normalization theory (Chapter 7) deals with how to design
relational schemas

©Silberschatz, Korth and Sudarshan3.10Database System Concepts

The customer Relation

6

©Silberschatz, Korth and Sudarshan3.11Database System Concepts

The depositor Relation

©Silberschatz, Korth and Sudarshan3.12Database System Concepts

E-R Diagram for the Banking Enterprise

7

©Silberschatz, Korth and Sudarshan3.13Database System Concepts

Keys

 Let K  R

 K is a superkey of R if values for K are sufficient to identify
a unique tuple of each possible relation r(R)
 by “possible r” we mean a relation r that could exist in the enterprise

we are modeling.

 Example: {customer-name, customer-street} and
{customer-name}

are both superkeys of Customer, if no two customers can possibly
have the same name.

 K is a candidate key if K is minimal
Example: {customer-name} is a candidate key for Customer,
since it is a superkey (assuming no two customers can possibly
have the same name), and no subset of it is a superkey.

©Silberschatz, Korth and Sudarshan3.14Database System Concepts

Example 1

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

 {name, beersLiked} FD’s all attributes, as seen.

 Shows {name, beersLiked} is a superkey.

 name  beersLiked is false, so name is not a superkey.

 beersLiked  name also false, so beersLiked is not a superkey.

 Thus, {name, beersLiked} is a key.

 No other keys in this example.

 Neither name nor beersLiked is on the right of any observed FD, so they
must be part of any superkey.

 Important point: “key” in a relation refers to tuples, not the entities they
represent. If an entity is represented by several tuples, then entity-key will
not be the same as relation-key.

8

©Silberschatz, Korth and Sudarshan3.15Database System Concepts

Example 2

 Keys are {Lastname, Firstname} and {StudentID}

Lastname Firstname Student ID Major

Key Key

(2 attributes)

Superkey

Note: There are alternate keys

©Silberschatz, Korth and Sudarshan3.16Database System Concepts

Determining Keys from E-R Sets

 Strong entity set. The primary key of the entity set
becomes the primary key of the relation.

 Weak entity set. The primary key of the relation consists
of the union of the primary key of the strong entity set and
the discriminator of the weak entity set.

 Relationship set. The union of the primary keys of the
related entity sets becomes a super key of the relation.
 For binary many-to-one relationship sets, the primary key of the

“many” entity set becomes the relation’s primary key.

 For one-to-one relationship sets, the relation’s primary key can be
that of either entity set.

 For many-to-many relationship sets, the union of the primary keys
becomes the relation’s primary key

9

©Silberschatz, Korth and Sudarshan3.17Database System Concepts

Schema Diagram for the Banking Enterprise

©Silberschatz, Korth and Sudarshan3.18Database System Concepts

Query Languages

 Language in which user requests information
from the database.

 Categories of languages
 procedural

 non-procedural

 “Pure” languages:
 Relational Algebra

 Tuple Relational Calculus

 Domain Relational Calculus

 Pure languages form underlying basis of
query languages that people use.

10

©Silberschatz, Korth and Sudarshan3.19Database System Concepts

Relational Algebra

 Procedural language

 Six basic operators
 select

 project

 union

 set difference

 Cartesian product

 rename

 The operators take one or more relations as inputs and
give a new relation as a result.

©Silberschatz, Korth and Sudarshan3.20Database System Concepts

Select Operation – Example

• Relation r A B C D

















1

5

12

23

7

7

3

10

• A=B ^ D > 5 (r)
A B C D









1

23

7

10

11

©Silberschatz, Korth and Sudarshan3.21Database System Concepts

Select Operation

 Notation:  p(r)

 p is called the selection predicate

 Defined as:

p(r) = {t | t  r and p(t)}

Where p is a formula in propositional calculus consisting
of terms connected by :  (and),  (or),  (not)
Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of: =, , >, . <. 

 Example of selection:
 branch-name=“Perryridge”(account)

©Silberschatz, Korth and Sudarshan3.22Database System Concepts

Project Operation – Example

 Relation r: A B C









10

20

30

40

1

1

1

2

A C









1

1

1

2

=

A C







1

1

2

 A,C (r)

12

©Silberschatz, Korth and Sudarshan3.23Database System Concepts

Project Operation

 Notation:

A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained
by erasing the columns that are not listed

 Duplicate rows removed from result, since relations are
sets

 E.g. To eliminate the branch-name attribute of account
account-number, balance (account)

©Silberschatz, Korth and Sudarshan3.24Database System Concepts

Union Operation – Example

 Relations r, s:

r  s:

A B







1

2

1

A B





2

3

r
s

A B









1

2

1

3

13

©Silberschatz, Korth and Sudarshan3.25Database System Concepts

Union Operation

 Notation: r  s

 Defined as:

r  s = {t | t  r or t  s}

 For r  s to be valid.

1. r, s must have the same arity (same number of
attributes)

2. The attribute domains must be compatible (e.g., 2nd
column

of r deals with the same type of values as does the 2nd
column of s)

 E.g. to find all customers with either an account or a loan
customer-name (depositor)  customer-name (borrower)

©Silberschatz, Korth and Sudarshan3.26Database System Concepts

Set Difference Operation – Example

 Relations r, s:

r – s:

A B







1

2

1

A B





2

3

r
s

A B





1

1

14

©Silberschatz, Korth and Sudarshan3.27Database System Concepts

Set Difference Operation

 Notation r – s

 Defined as:

r – s = {t | t  r and t  s}

 Set differences must be taken between compatible
relations.
 r and s must have the same arity

 attribute domains of r and s must be compatible

©Silberschatz, Korth and Sudarshan3.28Database System Concepts

Cartesian-Product Operation-Example

Relations r, s:

r x s:

A B





1

2

A B










1
1
1
1
2
2
2
2

C D










10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

C D






10
10
20
10

E

a
a
b
br

s

15

©Silberschatz, Korth and Sudarshan3.29Database System Concepts

Cartesian-Product Operation

 Notation r x s

 Defined as:

r x s = {t q | t  r and q  s}

 Assume that attributes of r(R) and s(S) are disjoint.
(That is, R  S = ).

 If attributes of r(R) and s(S) are not disjoint, then renaming
must be used.

©Silberschatz, Korth and Sudarshan3.30Database System Concepts

Composition of Operations

 Can build expressions using multiple operations

 Example: A=C(r x s)

 r x s

 A=C(r x s)

A B










1
1
1
1
2
2
2
2

C D










10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B C D E





1
2
2





10
20
20

a
a
b

16

©Silberschatz, Korth and Sudarshan3.31Database System Concepts

Rename Operation

 Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

 Allows us to refer to a relation by more than one name.

Example:

 x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

x (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.

©Silberschatz, Korth and Sudarshan3.32Database System Concepts

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

17

©Silberschatz, Korth and Sudarshan3.33Database System Concepts

Example Queries

 Find all loans of over $1200

Find the loan number for each loan of an amount greater than

$1200

amount > 1200 (loan)

loan-number (amount > 1200 (loan))

©Silberschatz, Korth and Sudarshan3.34Database System Concepts

Example Queries

 Find the names of all customers who have a loan, an account, or
both, from the bank

Find the names of all customers who have a loan and an

account at bank.

customer-name (borrower)  customer-name (depositor)

customer-name (borrower)  customer-name (depositor)

18

©Silberschatz, Korth and Sudarshan3.35Database System Concepts

Example Queries

 Find the names of all customers who have a loan at the Perryridge
branch.

 Find the names of all customers who have a loan at the
Perryridge branch but do not have an account at any branch of
the bank.

customer-name (branch-name = “Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan))) –

customer-name(depositor)

customer-name (branch-name=“Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan)))

©Silberschatz, Korth and Sudarshan3.36Database System Concepts

Example Queries

 Find the names of all customers who have a loan at the Perryridge
branch.

 Query 2

customer-name(loan.loan-number = borrower.loan-number(
(branch-name = “Perryridge”(loan)) x borrower))

Query 1

customer-name(branch-name = “Perryridge” (
borrower.loan-number = loan.loan-number(borrower x loan)))

19

©Silberschatz, Korth and Sudarshan3.37Database System Concepts

Example Queries

Find the largest account balance

 Rename account relation as d

 The query is:

balance(account) - account.balance

(account.balance < d.balance (account x d (account)))

©Silberschatz, Korth and Sudarshan3.38Database System Concepts

Formal Definition

 A basic expression in the relational algebra consists of
either one of the following:
 A relation in the database

 A constant relation

 Let E1 and E2 be relational-algebra expressions; the
following are all relational-algebra expressions:

 E1  E2

 E1 - E2

 E1 x E2

 p (E1), P is a predicate on attributes in E1

 s(E1), S is a list consisting of some of the attributes in E1

  x (E1), x is the new name for the result of E1

20

©Silberschatz, Korth and Sudarshan3.39Database System Concepts

Additional Operations

We define additional operations that do not add any power
to the relational algebra, but that simplify common queries.

 Set intersection

 Natural join

 Division

 Assignment

©Silberschatz, Korth and Sudarshan3.40Database System Concepts

Set-Intersection Operation

 Notation: r  s

 Defined as:

 r  s ={ t | t  r and t  s }

 Assume:
 r, s have the same arity

 attributes of r and s are compatible

 Note: r  s = r - (r - s)

21

©Silberschatz, Korth and Sudarshan3.41Database System Concepts

Set-Intersection Operation - Example

 Relation r, s:

 r  s

A B





1
2
1

A B




2
3

r s

A B

 2

©Silberschatz, Korth and Sudarshan3.42Database System Concepts

 Notation: r s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively.
Then, r s is a relation on schema R  S obtained as
follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R  S, add
a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

R = (A, B, C, D)

S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

22

©Silberschatz, Korth and Sudarshan3.43Database System Concepts

Natural Join Operation – Example

 Relations r, s:

A B







1
2
4
1
2

C D







a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E







r

A B







1
1
1
1
2

C D







a
a
a
a
b

E







s

r s

©Silberschatz, Korth and Sudarshan3.44Database System Concepts

Division Operation

 Suited to queries that include the phrase “for all”.

 Let r and s be relations on schemas R and S
respectively where
 R = (A1, …, Am, B1, …, Bn)

 S = (B1, …, Bn)

The result of r  s is a relation on schema

R – S = (A1, …, Am)

r  s = { t | t   R-S(r)   u  s (tu  r) }

r  s

23

©Silberschatz, Korth and Sudarshan3.45Database System Concepts

Division Operation – Example

Relations r, s:

r  s: A

B





1

2

A B













1
2
3
1
1
1
3
4
6
1
2

r

s

©Silberschatz, Korth and Sudarshan3.46Database System Concepts

Another Division Example

A B










a
a
a
a
a
a
a
a

C D










a
a
b
a
b
a
b
b

E

1
1
1
1
3
1
1
1

Relations r, s:

r  s:

D

a
b

E

1
1

A B




a
a

C




r

s

24

©Silberschatz, Korth and Sudarshan3.47Database System Concepts

Division Operation (Cont.)

 Property
 Let q – r  s

 Then q is the largest relation satisfying q x s  r

 Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S  R

r  s = R-S (r) –R-S ((R-S (r) x s) – R-S,S(r))

To see why
 R-S,S(r) simply reorders attributes of r

 R-S(R-S (r) x s) – R-S,S(r)) gives those tuples t in

R-S (r) such that for some tuple u  s, tu  r.

©Silberschatz, Korth and Sudarshan3.48Database System Concepts

Assignment Operation

 The assignment operation () provides a convenient way
to express complex queries.
 Write query as a sequential program consisting of

 a series of assignments

 followed by an expression whose value is displayed as a result of
the query.

 Assignment must always be made to a temporary relation variable.

 Example: Write r  s as

temp1 R-S (r)

temp2  R-S ((temp1 x s) – R-S,S (r))

result = temp1 – temp2

 The result to the right of the  is assigned to the relation variable on

the left of the .

 May use variable in subsequent expressions.

25

©Silberschatz, Korth and Sudarshan3.49Database System Concepts

Example Queries

 Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.

where CN denotes customer-name and BN denotes

branch-name.

Query 1

CN(BN=“Downtown”(depositor account)) 

CN(BN=“Uptown”(depositor account))

Query 2

customer-name, branch-name (depositor account)

 temp(branch-name) ({(“Downtown”), (“Uptown”)})

©Silberschatz, Korth and Sudarshan3.50Database System Concepts

 Find all customers who have an account at all branches

located in Brooklyn city.

Example Queries

customer-name, branch-name (depositor account)

 branch-name (branch-city = “Brooklyn” (branch))

26

©Silberschatz, Korth and Sudarshan3.51Database System Concepts

Extended Relational-Algebra-Operations

 Generalized Projection

 Outer Join

 Aggregate Functions

©Silberschatz, Korth and Sudarshan3.52Database System Concepts

Generalized Projection

 Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

 F1, F2, …, Fn(E)

 E is any relational-algebra expression

 Each of F1, F2, …, Fn are are arithmetic expressions involving
constants and attributes in the schema of E.

 Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

customer-name, limit – credit-balance (credit-info)

27

©Silberschatz, Korth and Sudarshan3.53Database System Concepts

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

 Aggregate operation in relational algebra

G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)

 E is any relational-algebra expression

 G1, G2 …, Gn is a list of attributes on which to group (can be empty)

 Each Fi is an aggregate function

 Each Ai is an attribute name

©Silberschatz, Korth and Sudarshan3.54Database System Concepts

Aggregate Operation – Example

 Relation r:

A B











C

7

7

3

10

g sum(c) (r)
sum-C

27

28

©Silberschatz, Korth and Sudarshan3.55Database System Concepts

Aggregate Operation – Example

 Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700

©Silberschatz, Korth and Sudarshan3.56Database System Concepts

Aggregate Functions (Cont.)

 Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate
operation

branch-name g sum(balance) as sum-balance (account)

29

©Silberschatz, Korth and Sudarshan3.57Database System Concepts

Outer Join

 An extension of the join operation that avoids loss of information.

 Computes the join and then adds tuples form one relation that do
not match tuples in the other relation to the result of the join.

 Uses null values:

 null signifies that the value is unknown or does not exist

 All comparisons involving null are (roughly speaking) false by
definition.

Will study precise meaning of comparisons with nulls later

©Silberschatz, Korth and Sudarshan3.58Database System Concepts

Outer Join – Example

 Relation loan

 Relation borrower

customer-name loan-number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan-number amount

L-170
L-230
L-260

branch-name

Downtown
Redwood
Perryridge

30

©Silberschatz, Korth and Sudarshan3.59Database System Concepts

Outer Join – Example

 Inner Join

loan Borrower

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

Jones
Smith
null

loan-number amount

L-170
L-230
L-260

3000
4000
1700

customer-namebranch-name

Downtown
Redwood
Perryridge

 Left Outer Join

loan Borrower

©Silberschatz, Korth and Sudarshan3.60Database System Concepts

Outer Join – Example

 Right Outer Join
loan borrower

loan borrower
 Full Outer Join

loan-number amount

L-170
L-230
L-155

3000
4000
null

customer-name

Jones
Smith
Hayes

branch-name

Downtown
Redwood
null

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

branch-name

Downtown
Redwood
Perryridge
null

31

©Silberschatz, Korth and Sudarshan3.61Database System Concepts

Null Values

 It is possible for tuples to have a null value, denoted by null, for
some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values

 Is an arbitrary decision. Could have returned null as result instead.

 We follow the semantics of SQL in its handling of null values

 For duplicate elimination and grouping, null is treated like any
other value, and two nulls are assumed to be the same

 Alternative: assume each null is different from each other

 Both are arbitrary decisions, so we simply follow SQL

©Silberschatz, Korth and Sudarshan3.62Database System Concepts

Null Values

 Comparisons with null values return the special truth value
unknown
 If false was used instead of unknown, then not (A < 5)

would not be equivalent to A >= 5

 Three-valued logic using the truth value unknown:
 OR: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 In SQL “P is unknown” evaluates to true if predicate P evaluates
to unknown

 Result of select predicate is treated as false if it evaluates to
unknown

32

©Silberschatz, Korth and Sudarshan3.63Database System Concepts

Modification of the Database

 The content of the database may be modified using the following
operations:

 Deletion

 Insertion

 Updating

 All these operations are expressed using the assignment
operator.

©Silberschatz, Korth and Sudarshan3.64Database System Concepts

Deletion

 A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

 Can delete only whole tuples; cannot delete values on only
particular attributes

 A deletion is expressed in relational algebra by:

r  r – E

where r is a relation and E is a relational algebra query.

33

©Silberschatz, Korth and Sudarshan3.65Database System Concepts

Deletion Examples

 Delete all account records in the Perryridge branch.

Delete all accounts at branches located in Needham.

r1  branch-city = “Needham” (account branch)

r2  branch-name, account-number, balance (r1)

r3   customer-name, account-number (r2 depositor)

account  account – r2

depositor  depositor – r3

Delete all loan records with amount in the range of 0 to 50

loan  loan – amount 0and amount  50 (loan)

account  account – branch-name = “Perryridge” (account)

©Silberschatz, Korth and Sudarshan3.66Database System Concepts

Insertion

 To insert data into a relation, we either:

 specify a tuple to be inserted

 write a query whose result is a set of tuples to be inserted

 in relational algebra, an insertion is expressed by:

r  r  E

where r is a relation and E is a relational algebra expression.

 The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

34

©Silberschatz, Korth and Sudarshan3.67Database System Concepts

Insertion Examples

 Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

 Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account.

account  account  {(“Perryridge”, A-973, 1200)}

depositor  depositor  {(“Smith”, A-973)}

r1  (branch-name = “Perryridge” (borrower loan))

account  account  branch-name, account-number,200 (r1)

depositor  depositor  customer-name, loan-number(r1)

©Silberschatz, Korth and Sudarshan3.68Database System Concepts

Updating

 A mechanism to change a value in a tuple without charging all
values in the tuple

 Use the generalized projection operator to do this task

r  F1, F2, …, FI, (r)

 Each Fi is either

 the ith attribute of r, if the ith attribute is not updated, or,

 if the attribute is to be updated Fi is an expression, involving only
constants and the attributes of r, which gives the new value for the
attribute

35

©Silberschatz, Korth and Sudarshan3.69Database System Concepts

Update Examples

 Make interest payments by increasing all balances by 5 percent.

 Pay all accounts with balances over $10,000 6 percent interest
and pay all others 5 percent

account   AN, BN, BAL * 1.06 ( BAL  10000 (account))

 AN, BN, BAL * 1.05 (BAL  10000 (account))

account   AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

©Silberschatz, Korth and Sudarshan3.70Database System Concepts

Views

 In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database.)

 Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount. This person should see
a relation described, in the relational algebra, by

customer-name, loan-number (borrower loan)

 Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

36

©Silberschatz, Korth and Sudarshan3.71Database System Concepts

View Definition

 A view is defined using the create view statement which has the
form

create view v as <query expression

where <query expression> is any legal relational algebra query
expression. The view name is represented by v.

 Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

 View definition is not the same as creating a new relation by
evaluating the query expression

 Rather, a view definition causes the saving of an expression; the
expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan3.72Database System Concepts

View Examples

 Consider the view (named all-customer) consisting of branches
and their customers.

 We can find all customers of the Perryridge branch by writing:

create view all-customer as

branch-name, customer-name (depositor account)

 branch-name, customer-name (borrower loan)

customer-name

(branch-name = “Perryridge” (all-customer))

37

©Silberschatz, Korth and Sudarshan3.73Database System Concepts

Updates Through View

 Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

 Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as:

create view branch-loan as

branch-name, loan-number (loan)

 Since we allow a view name to appear wherever a relation name
is allowed, the person may write:

branch-loan  branch-loan  {(“Perryridge”, L-37)}

©Silberschatz, Korth and Sudarshan3.74Database System Concepts

Updates Through Views (Cont.)

 The previous insertion must be represented by an insertion into the
actual relation loan from which the view branch-loan is constructed.

 An insertion into loan requires a value for amount. The insertion
can be dealt with by either.

 rejecting the insertion and returning an error message to the user.

 inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

 Some updates through views are impossible to translate into
database relation updates

 create view v as branch-name = “Perryridge” (account))

v  v  (L-99, Downtown, 23)

 Others cannot be translated uniquely

 all-customer  all-customer  {(“Perryridge”, “John”)}

 Have to choose loan or account, and
create a new loan/account number!

38

©Silberschatz, Korth and Sudarshan3.75Database System Concepts

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation v2

if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1

depends directly to v2 or there is a path of dependencies from
v1 to v2

 A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan3.76Database System Concepts

View Expansion

 A way to define the meaning of views defined in terms of other
views.

 Let view v1 be defined by an expression e1 that may itself contain
uses of view relations.

 View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will
terminate

39

©Silberschatz, Korth and Sudarshan3.77Database System Concepts

Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form

{t | P (t) }

 It is the set of all tuples t such that predicate P is true for t

 t is a tuple variable, t[A] denotes the value of tuple t on attribute A

 t  r denotes that tuple t is in relation r

 P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.78Database System Concepts

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., , , , , , )

3. Set of connectives: and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

x  y x v y

5. Set of quantifiers:

 t r (Q(t)) ”there exists” a tuple in t in relation r
such that predicate Q(t) is true

 t r (Q(t)) Q is true “for all” tuples t in relation r

40

©Silberschatz, Korth and Sudarshan3.79Database System Concepts

Banking Example

 branch (branch-name, branch-city, assets)

 customer (customer-name, customer-street, customer-city)

 account (account-number, branch-name, balance)

 loan (loan-number, branch-name, amount)

 depositor (customer-name, account-number)

 borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan3.80Database System Concepts

Example Queries

 Find the loan-number, branch-name, and amount for loans of
over $1200

Find the loan number for each loan of an amount greater than $1200

Notice that a relation on schema [loan-number] is implicitly defined
by the query

{t |  s loan (t[loan-number] = s[loan-number]  s [amount]  1200)}

{t | t  loan  t [amount]  1200}

41

©Silberschatz, Korth and Sudarshan3.81Database System Concepts

Example Queries

 Find the names of all customers having a loan, an account, or
both at the bank

{t | s  borrower(t[customer-name] = s[customer-name])
 u  depositor(t[customer-name] = u[customer-name])

 Find the names of all customers who have a loan and an account
at the bank

{t | s  borrower(t[customer-name] = s[customer-name])
 u  depositor(t[customer-name] = u[customer-name])

©Silberschatz, Korth and Sudarshan3.82Database System Concepts

Example Queries

 Find the names of all customers having a loan at the Perryridge
branch

{t | s  borrower(t[customer-name] = s[customer-name]
 u  loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))
 not v  depositor (v[customer-name] =

t[customer-name]) }

 Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t | s  borrower(t[customer-name] = s[customer-name]
 u  loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))}

42

©Silberschatz, Korth and Sudarshan3.83Database System Concepts

Example Queries

 Find the names of all customers having a loan from the
Perryridge branch, and the cities they live in

{t | s  loan(s[branch-name] = “Perryridge”
 u  borrower (u[loan-number] = s[loan-number]

 t [customer-name] = u[customer-name])
  v  customer (u[customer-name] = v[customer-name]

 t[customer-city] = v[customer-city])))}

©Silberschatz, Korth and Sudarshan3.84Database System Concepts

Example Queries

 Find the names of all customers who have an account at all
branches located in Brooklyn:

{t |  c  customer (t[customer.name] = c[customer-name]) 

 s  branch(s[branch-city] = “Brooklyn” 
 u  account (s[branch-name] = u[branch-name]
  s  depositor (t[customer-name] = s[customer-name]

 s[account-number] = u[account-number])))}

43

©Silberschatz, Korth and Sudarshan3.85Database System Concepts

Safety of Expressions

 It is possible to write tuple calculus expressions that generate
infinite relations.

 For example, {t |  t r} results in an infinite relation if the
domain of any attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

 An expression {t | P(t)} in the tuple relational calculus is safe if
every component of t appears in one of the relations, tuples, or
constants that appear in P

 NOTE: this is more than just a syntax condition.

 E.g. { t | t[A]=5  true } is not safe --- it defines an infinite set with
attribute values that do not appear in any relation or tuples or
constants in P.

©Silberschatz, Korth and Sudarshan3.86Database System Concepts

Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple
relational calculus

 Each query is an expression of the form:

{  x1, x2, …, xn  | P(x1, x2, …, xn)}

 x1, x2, …, xn represent domain variables

 P represents a formula similar to that of the predicate calculus

44

©Silberschatz, Korth and Sudarshan3.87Database System Concepts

Example Queries

 Find the loan-number, branch-name, and amount for loans of over
$1200

{ c, a  |  l ( c, l   borrower  b( l, b, a   loan 

b = “Perryridge”))}

or { c, a  |  l ( c, l   borrower   l, “Perryridge”, a   loan)}

 Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

{ c  |  l, b, a ( c, l   borrower   l, b, a   loan  a > 1200)}

 Find the names of all customers who have a loan of over $1200

{ l, b, a  |  l, b, a   loan  a > 1200}

©Silberschatz, Korth and Sudarshan3.88Database System Concepts

Example Queries

 Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

{ c  |  s, n ( c, s, n   customer) 

 x,y,z( x, y, z   branch  y = “Brooklyn”) 
 a,b( x, y, z   account   c,a   depositor)}

 Find the names of all customers who have an account at all
branches located in Brooklyn:

{ c  |  l ({ c, l   borrower
  b,a( l, b, a   loan  b = “Perryridge”))

  a( c, a   depositor
  b,n( a, b, n   account  b = “Perryridge”))}

45

©Silberschatz, Korth and Sudarshan3.89Database System Concepts

Safety of Expressions

{  x1, x2, …, xn  | P(x1, x2, …, xn)}

is safe if all of the following hold:

1.All values that appear in tuples of the expression are values
from dom(P) (that is, the values appear either in P or in a tuple
of a relation mentioned in P).

2.For every “there exists” subformula of the form  x (P1(x)), the
subformula is true if and only if there is a value of x in dom(P1)
such that P1(x) is true.

3. For every “for all” subformula of the form x (P1 (x)), the
subformula is true if and only if P1(x) is true for all values x
from dom (P1).

This image cannot currently be displayed.

End of Chapter 3

46

©Silberschatz, Korth and Sudarshan3.91Database System Concepts

Result of  branch-name = “Perryridge” (loan)

©Silberschatz, Korth and Sudarshan3.92Database System Concepts

Loan Number and the Amount of the Loan

47

©Silberschatz, Korth and Sudarshan3.93Database System Concepts

Names of All Customers Who Have
Either a Loan or an Account

©Silberschatz, Korth and Sudarshan3.94Database System Concepts

Customers With An Account But No Loan

48

©Silberschatz, Korth and Sudarshan3.95Database System Concepts

Result of borrower  loan

©Silberschatz, Korth and Sudarshan3.96Database System Concepts

Result of  branch-name = “Perryridge” (borrower  loan)

49

©Silberschatz, Korth and Sudarshan3.97Database System Concepts

Result of customer-name

©Silberschatz, Korth and Sudarshan3.98Database System Concepts

Result of the Subexpression

50

©Silberschatz, Korth and Sudarshan3.99Database System Concepts

Largest Account Balance in the Bank

©Silberschatz, Korth and Sudarshan3.100Database System Concepts

Customers Who Live on the Same Street and In the
Same City as Smith

51

©Silberschatz, Korth and Sudarshan3.101Database System Concepts

Customers With Both an Account and a Loan
at the Bank

©Silberschatz, Korth and Sudarshan3.102Database System Concepts

Result of customer-name, loan-number, amount

(borrower loan)

52

©Silberschatz, Korth and Sudarshan3.103Database System Concepts

Result of branch-name(customer-city =

“Harrison”(customer account depositor))

©Silberschatz, Korth and Sudarshan3.104Database System Concepts

Result of branch-name(branch-city =

“Brooklyn”(branch))

53

©Silberschatz, Korth and Sudarshan3.105Database System Concepts

Result of customer-name, branch-name(depositor account)

©Silberschatz, Korth and Sudarshan3.106Database System Concepts

The credit-info Relation

54

©Silberschatz, Korth and Sudarshan3.107Database System Concepts

Result of customer-name, (limit – credit-balance) as

credit-available(credit-info).

©Silberschatz, Korth and Sudarshan3.108Database System Concepts

The pt-works Relation

55

©Silberschatz, Korth and Sudarshan3.109Database System Concepts

The pt-works Relation After Grouping

©Silberschatz, Korth and Sudarshan3.110Database System Concepts

Result of branch-name  sum(salary) (pt-works)

56

©Silberschatz, Korth and Sudarshan3.111Database System Concepts

Result of branch-name  sum salary, max(salary) as

max-salary (pt-works)

©Silberschatz, Korth and Sudarshan3.112Database System Concepts

The employee and ft-works Relations

57

©Silberschatz, Korth and Sudarshan3.113Database System Concepts

The Result of employee ft-works

©Silberschatz, Korth and Sudarshan3.114Database System Concepts

The Result of employee ft-works

58

©Silberschatz, Korth and Sudarshan3.115Database System Concepts

Result of employee ft-works

©Silberschatz, Korth and Sudarshan3.116Database System Concepts

Result of employee ft-works

59

©Silberschatz, Korth and Sudarshan3.117Database System Concepts

Tuples Inserted Into loan and borrower

©Silberschatz, Korth and Sudarshan3.118Database System Concepts

Names of All Customers Who Have a
Loan at the Perryridge Branch

60

©Silberschatz, Korth and Sudarshan3.119Database System Concepts

E-R Diagram

©Silberschatz, Korth and Sudarshan3.120Database System Concepts

The branch Relation

61

©Silberschatz, Korth and Sudarshan3.121Database System Concepts

The loan Relation

©Silberschatz, Korth and Sudarshan3.122Database System Concepts

The borrower Relation

©Silberschatz, Korth and Sudarshan4.1Database System Concepts

Chapter 7: SQL

 Basic Structure

 Simple Queries

 Nested Subqueries

 Aggregate Functions

 Set Operations

 With Clause

 Views

 Modification of the Database

 Joined Relations

 Data Definition Language

 Embedded SQL, ODBC and JDBC

©Silberschatz, Korth and Sudarshan4.2Database System Concepts

Basic Structure

 SQL is based on set and relational operations with certain
modifications and enhancements

 A typical SQL query has the form:
select A1, A2, ..., An

from r1, r2, ..., rm

where predicate

 Ais represent attributes

 ris represent relations (tables)

 predicate is any predicate.

 This query is equivalent to the relational algebra expression.
A1, A2, ..., An(P (r1 x r2 x ... x rm))

 The result of an SQL query is a relation.

 NOTE: SQL does not permit the ‘-’ character in names. SQL names are
case insensitive, i.e. you can use capital or small letters.

©Silberschatz, Korth and Sudarshan4.3Database System Concepts

Schema Used in Examples

S# P# QTY
S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City
P1 Nut Red 12 London

P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome
P4 Screw Red 14 London

P5 Cam Blue 12 Paris
P6 Cog Red 19 London

S# Sname Status City
S1 Smith 20 London

S2 Jones 10 Paris
S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

Suppliers
S (S#, Sname, Status, City)

Parts
P (P#, Pname, Color, Weight, City)

Shipments
SP (S#, P#, QTY)

©Silberschatz, Korth and Sudarshan4.4Database System Concepts

Simple Queries (1)

Get part numbers for
all parts supplied.

select P#
from SP ;

Result:
P#
P1 P1
P2 P2
P3 P2
P4 P2
P5 P4
P6 P5

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get part numbers for all parts
supplied (no duplicates).

select distinct P#
from SP ;

Result:
P#
P1
P2
P3
P4
P5
P6

Get supplier numbers from Paris with Status above 20.

select S#
from S
where City = ‘Paris’ and Status > 25;

Result:
S#
S3

©Silberschatz, Korth and Sudarshan4.5Database System Concepts

Simple Queries (2)

Get supplier numbers and
status for suppliers in Paris
in desceding order of status.

select S#, Status
from S
where City = ‘Paris’
order by Status desc ;

Result:
S# Status
S3 30
S2 10

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

For all blue parts, get
the weights in grams.

select P#, Weight454
from P
where Color = ‘Blue’
order by 2, P# ;

Result:
P# Weight
P5 5448
P3 7718

Include constatnt in select clause.
select P#, ‘Weights in grams = ‘, Weight*454
from P
where Color = ‘Blue’ ;

Result:
P#
P3 Weights in grams = 7718
P5 Weights in grams = 5448

©Silberschatz, Korth and Sudarshan4.6Database System Concepts

Simple Queries (between)

Get parts whose weight is in range 16 to 19 (inclusive).

select 
from P
where Weight between 16 and 19 ;

Result:
P# Pname Color Weight City
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P6 Cog Red 19 London

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get parts whose weight is not in range 16 to 19.

select P#, Pname, Color, Weight, City
from P
where Weight not between 16 and 19 ;

Result:
P# Pname Color Weight City
P1 Nut Red 12 London
P4 Screw Red 14 London
P5 Cam Blue 12 Paris

©Silberschatz, Korth and Sudarshan4.7Database System Concepts

Simple Queries (in)
Get parts whose weight is in range 16 to 19 (inclusive).

select 
from P
where Weight in {12, 16, 17} ;

Result:
P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P5 Cam Blue 12 Paris

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get parts whose weight is not in range 16 to 19.

select P#, Pname, Color, Weight, City
from P
where Weight not in {12, 16, 17} ;

Result:
P# Pname Color Weight City
P4 Screw Red 14 London
P6 Cog Red 19 London

©Silberschatz, Korth and Sudarshan4.8Database System Concepts

Simple Queries (like)
Get parts whose names begin with the letter C.

select 
from P
where Pname like ‘C*’ ;

Result:

P# Pname Color Weight City
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

% stands for any string, ? stands for any character

Sname like ‘?la*’ – all supplier names with second
character l and third characer a.

Pname like ‘????’ – all part names 4 character long.

City not like ‘*o*’ – all city names which does not
contain characer o.

like ‘Main*’ escape ‘\’ – match Main*

SQL supports a variety of string operations such as: con-
catenation (“||”), converting from upper to lower case (and
vice versa), finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan4.9Database System Concepts

Simple Queries (null values)
Get parts whose color is not null.

select 
from P
where Color is not null ;

Result:

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

null signifies an unknown value or that a value does not
exist.
The result of any arithmetic expression involving null is null
(E.g. 5 + null returns null).

Any comparison with null returns unknown (E.g. 5 < null
or null <> null or null = null).

©Silberschatz, Korth and Sudarshan4.10Database System Concepts

Simple Queries (natural join)
Get all combination suppliers - parts located in the
same city.

select S., P.
from S, P
where S.City = P.City ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S1 Smith 20 London P1 Nut Red 12 London
S1 Smith 20 London P4 Screw Red 14 London
S1 Smith 20 London P6 Cog Red 19 London
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S2 Jones 10 Paris P5 Cam Blue 12 Paris
S3 Blake 30 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P5 Cam Blue 12 Paris
S4 Clark 20 London P5 Nut Red 12 London
S4 Clark 20 London P5 Screw Red 14 London
S4 Clark 20 London P5 Cog Red 19 London S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

How conceptualy join is constructed:

- Form the cartesian product of the tables listed in from clause
(in our example the new table will have 56 = 30 rows)

- Eliminate from the cartesian product all those rows that do
not satisfy join predicate (where clause)

©Silberschatz, Korth and Sudarshan4.11Database System Concepts

Simple Queries (natural join)

Get all combination suppliers - parts located in the
same city, without suppliers that have status 20.

select S., P.
from S, P
where S.City = P.City and S.Status <> 20 ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S2 Jones 10 Paris P5 Cam Blue 12 Paris
S3 Blake 30 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P5 Cam Blue 12 Paris

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Same, but suplier city follows part city (alphabetically).

select S., P.
from S, P
where S.City > P.City ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P1 Nut Red 12 London
S2 Jones 10 Paris P4 Screw Red 14 London
S2 Jones 10 Paris P6 Cog Red 19 London
S3 Blake 30 Paris P1 Nut Red 12 London
S3 Blake 30 Paris P4 Screw Red 14 London
S3 Blake 30 Paris P6 Cog Red 19 London

©Silberschatz, Korth and Sudarshan4.12Database System Concepts

Simple Queries (natural join)

Get all pairs of city names such that a supplier located
in the first city supplies a part stored in the second city.

For example, supplier S1 supplies part P1; suppliers S1 is
located in London, and part P1 is stored in London; so
‘London, London’ is a pair of cities in the result.

select distinct S.City, P.City
from S, SP, P
where S.S# = SP.S# and SP.P# = P.P# ;

Result:

S.City P.City
London London
London Paris
London Rome
Paris London
Paris Paris

This example shows join of 3 tables.

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

©Silberschatz, Korth and Sudarshan4.13Database System Concepts

Simple Queries (join a table with itself)
Get all pairs of supplier numbers such that the two
suppliers are co-located.

select Sup1.S#, Sup2.S#
from S as Sup1, S as Sup2
where Sup1.City = Sup2.City ;

Result:
S# S#
S1 S1 S3 S3
S1 S4 S4 S1
S2 S2 S4 S4
S2 S3 S5 S5
S3 S2

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

This result can be cleared up as follows:

select Sup1.S#, Sup2.S#
from S as Sup1, S as Sup2
where Sup1.City = Sup2.City and Sup1.S# > Sup2.S# ;

Result:
S# S#
S1 S4
S2 S3

©Silberschatz, Korth and Sudarshan4.14Database System Concepts

SubQueries

Get suppliers names for suppliers who supplies part P2.

select S.Sname
from S
where S.S# in (select SP.S#

from SP
where SP.P# = ‘P2’) ;

Result:
Sname
Smith
Jones
Blake
Clark

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The same using join.

select S.Sname
from S, SP
where S.S# = SP.S# and SP.P# = ‘P2’ ;

The nested subqueries are evaluated first.
So, our query is equivalent to:
select S.Sname
from S
where S.S# in (‘S1’, ‘S2’, ‘S3’, ‘S4’) ;

The join of S and SP over supplier numbers
is a table of 12 rows from which we select
those 4 rows that have the part number P2.

©Silberschatz, Korth and Sudarshan4.15Database System Concepts

SubQueries (correlated)
Get suppliers names for suppliers who supplies part P2.

select Sname
from S
where ‘P2’ in (select P#

from SP
where S# = S.S#) ;

Result:
Sname
Smith
Jones
Blake
Clark

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Some people prefer to use aliases in correlated
subqueries.

select SX.Sname
from S as SX
where ‘P2’ in (select P#

from SP
where S# = SX.S#) ;

In the last line the unqualified reference S# is
implicitl qualified by SP. Here, inner subquery
cannot be evaluated once and for all before the
outher query is evaluated (variable S.S# is
uknown). Such subqueries are called correlated.
The system examines one by one rows of table S
and each time evaluate the subquery.

©Silberschatz, Korth and Sudarshan4.16Database System Concepts

SubQueries (more nesting)

Get suppliers names for suppliers who supplie at least
one red part.

select Sname
from S
where S# in (select S#

from SP
where P# in (select P#

from P
where Color = ‘Red’));

Result:
Sname
Smith
Jones
ClarkS# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The innermost subquery evaluates to the set {‘P1’,
‘P4’, ‘P6’}. The next subquery evaluates in turn to
the set {‘S1’, ‘S2’, ‘S4’}. Last, the outermost
select evaluates to the final result. In general,
subqueries can be nested to any depth.

The same using join.

select distinct S.Sname
from S, SP, P
where S.S# = SP.S# and SP.P# = P.P#

and P.Color = ‘Red’ ;

©Silberschatz, Korth and Sudarshan4.17Database System Concepts

SubQueries (with same table)

Get supplier numbers for suppliers who supply at least
one part supplied by supplier S2.

select distinct S#
from SP
where P# in (select P#

from SP
where S# = ‘S2’);

Result:
S#
S1
S2
S3
S4S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The reference SP in the subquery does not mean
the same thing as reference to SP in the outher
query. They are different variables. Using aliases
will make this fact explicit.

The same using join.

select distinct SP1.S#
from SP as SP1, SP as SP2
where SP1.P# = SP2.P#

and SP2.S# = ‘S2’ ;

©Silberschatz, Korth and Sudarshan4.18Database System Concepts

SubQueries (correlated with same table)

Get part numbers for all parts supplied by more than
one supplier.

select distinct SP1.P#
from SP as SP1
where SP1.P# in (select SP2.P#

from SP as SP2
where SP2.S# = SP1.S#);

Result:
P#
P1
P2
P4
P5

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Operation of this query: For each row in turn, SP1
of table SP, extract the P# value, iff that P# value
appears in some row SP2 of table SP whose S#
value is not that in row SP1. Note that at least one
alias must be used, but not both.

Get supplier numbers for suppliers who are located in
the same city as supplier S1.
select S#
from S
where City = (select City

from S
where S# = ‘S1’);

Result:

S#
S1
S4

©Silberschatz, Korth and Sudarshan4.19Database System Concepts

SubQueries (exists)
Get suppliers names for suppliers who supplies part P2.

select Sname
from S
where exists (select 

from SP
where S# = S.S# and P# = ‘P2’);

Result:
Sname
Smith
Jones
Blake
Clark

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Predicate exists x (predicate-involving-x) is true iff
predicate-involving-x is true for some x. For exam-
ple if x=1,2,…,10 then exists x (x<5) is true, while
exists x (x<0) is false.

Get suppliers names for suppliers who do not supply
part P2.

select Sname
from S
where not exists (select 

from SP
where S# = S.S# and P# = ‘P2’);

Result:
Sname
Adams

In general, exists is one of the most important SQL
feature. In fact, any query expresssed using in can
be formulated using exists. The converse is not true.

©Silberschatz, Korth and Sudarshan4.20Database System Concepts

SubQueries (not exists)

Get supplier names for suppliers who supply all parts.

select Sname
from S
where not exists

(select 
from P
where not exists

(select 
from SP
where S# = S.S# and P# = p.pp);

Result:
Sname
Smith

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The query can be paraphrased according to the above
SQL statement: Select supplier names for supplier such
that there does not exists a part that they do not supply.

©Silberschatz, Korth and Sudarshan4.21Database System Concepts

SubQueries (all, some)

Get the all part numbers that have greater shipment
quantity than all parts located in London.

select P#
from SP
where QTY > all

(select QTY
from SP, P
where City = ‘London’) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get the all part numbers that have greater shipment
quantity than some part located in London.

select P#
from SP
where QTY > some

(select QTY
from SP, P
where City = ‘London’) ;

Result:

P#
P3
P2
P5

Result:

P#
P1
P2
P3
P4
P5

©Silberschatz, Korth and Sudarshan4.22Database System Concepts

Definition of Some and All Clauses

0
5
6

(5< some) = true
0
5

0

) = false

5
0
5(5  some) = true (since 0  5)

(5< some

) = true(5 = some

(= some)  in. However, ( some)  not in

0
5
6

(5< all) = false
6
10) = true(5< all

4
5) = false(5 = all

4
6(5  all) = true (since 5  4 and 5  6)

( all)  not in. However, (= all)  in

©Silberschatz, Korth and Sudarshan4.23Database System Concepts

Aggregate Functions (count, sum, max)

Get the number of shipments for part P2.

select count()
from SP
where P# = ‘P2’ ;

Get the total quantity of part P2 supplied.

select sum(QTY)
from SP
where P# = ‘P2’ ;

Get supplier numbers for suppliers with status less
then current maximum status.

select S#
from S
where Status <

(select max(Status)
from S) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

4

Result:

S#
S1
S2
S4

Result:

1000

©Silberschatz, Korth and Sudarshan4.24Database System Concepts

Aggregate Functions (min, avg)

Get the all part names for parts with minimum
weights.

select Pname
from P
where Weight =

(select min(Weight)
from P) ;

Get supplier numbers, status nad city for all suppliers
whose status is greater than or equal to the average
for their city.

select S#, Status, City
from S as S1
where Status >=

(select avg(Status)
from S as S2
where S2.City = S1.City) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

Pname
Nut
Cam

Result:

S# Status City
S1 20 London
S3 30 Paris
S4 30 London
S5 30 Athens

©Silberschatz, Korth and Sudarshan4.25Database System Concepts

Aggregate Functions (group by)

Get the total quantity supplied for each part.

select P#, sum(QTY)
from SP
group by P# ;

For each part supplied, get the part number and the
total quantity supplied of that part, excluding
shipment from supplier S1.

select P#, sum(QTY)
from SP
where S# <> ‘S1’
group by P# ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:
P#
P1 600
P2 1000
P3 400
P4 500
P5 500
P6 100

Result:

P#
P1 300
P2 800
P4 300
P5 400

©Silberschatz, Korth and Sudarshan4.26Database System Concepts

Aggregate Functions (having)

Get part numbers for all parts supplied by more than
one supplier.

select P#
from SP
group by P#
having count() > 1 ;

The same without group by/having.

select P#,
from P
where 1 < (select count(S#)

from SP
where P# = P.P#);

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

P#
P1
P2
P4
P5

Having is to groups what where is to rows. (If having is
specified, group by should be also specified). Having is
used to eliminate groups just as where is used to
eliminate rows.

©Silberschatz, Korth and Sudarshan4.27Database System Concepts

Set Operations (union)

Get part numbers for parts with weight more than 16
pounds or are supplied by supplier S2.

select P#
from P
where Weight > 16 union select P#

from SP
where S# = ‘S2’ ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

P#
P1
P2
P3
P6

Since a relation is set of rows, it is possible to construct union, in-
tersection and difference between them. However, to be result a
relation the two original relation must be set-compatable:

1. to have the same number of columns.
2. the i-th column of both relations must have the same data type.

The set operations union, intersect, and except operate on
relations and correspond to the relational algebra operations


Each of the above operations automatically eliminates duplicates;
to retain all duplicates use the corresponding multiset versions
union all, intersect all and except all.

©Silberschatz, Korth and Sudarshan4.28Database System Concepts

Set Operations (intersect, except)

Get supplier numbers for suppliers who supply part
P1 and are located in London.

select S#
from SP
where P# = ‘P1’ intersect select S#

from S
where City = ‘London’ ;

Get supplier numbers for suppliers who supply part
P2 and are not located in London.

select S#
from SP
where P# = ‘P2’ except select S#

from S
where City = ‘London’ ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

S#
S1

Result:

S#
S2
S3

©Silberschatz, Korth and Sudarshan4.29Database System Concepts

A Comprehensive Example

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

For all red and blue parts such that the total quantity suppli-
ed is greater than 350 (excluding from the total all shipments
for which the quantity is less than or equal to 200), get the
part number, the weight in grams, the color, and the maxi-
mum supplied of that part. Order the result by decreasing
part number within asceding values of that maximum.

select P.P#, ‘Weight in grams = ‘, P.Weight454,
P.Color, ‘MSQuantity = ‘, max (SP.QTY)

from P, SP
where P.P# = SP.P#

and P.Color in (‘Red’, ‘Blue’)
and SP.QTY > 200

group by P.P#, P.Weight; P.Color
having sum (QTY) > 350
order by 6, P.P#, desc ;

Result:
P# Color
P1 Weight in grams = 5448 Red MSQuantity = 300
P5 Weight in grams = 5448 Blue MSQuantity = 400
P3 Weight in grams = 7718 Blue MSQuantity = 400

©Silberschatz, Korth and Sudarshan4.30Database System Concepts

With Clause
Get all supplier names with maximum status.
with maxst(value) as

select max(Status)
from S

select Sname
from S
where Status = maxst.value;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get all part numbers where the total their shipments is greater
than the average of the total supplier shipments at all
suppliers.
with ptotal(P#, value) as

select P#, sum(QTY)
from SP
group by P#

with pavg(S#, value) as
select S#, avg(QTY)
from SP
group by P#

select P#
from ptotal, pavg
where ptotal.value > pavg.value;

Result:
P#
P1
P2

With clause allows views to be defined locally to a query, rather
than globally. Analogous to procedures in a programming language.

Result:
Sname
Blake
Adams

©Silberschatz, Korth and Sudarshan4.31Database System Concepts

Derived Relations

Get the average quantity of those supplier shipments
where the average quantity is greater than 250.

select S#, AvgShip
from (select S#, avg (QTY)

from SP
group by S#)

as result (S#, AvgShip)
where AvgShip > 250

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

S# AvgShip
S2 350
S4 300

Note that we do not need to use the having clause, since
we compute the temporary (view) relation result in the
from clause, and the attributes of result can be used
directly in the where clause.

©Silberschatz, Korth and Sudarshan4.32Database System Concepts

Views

Create view from good suppliers (with status greater
than 15).

create view GoodSup
as select S#, Status,City

from S
where Status > 15 ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Provide a mechanism to hide certain data from the view of
certain users. To create a view we use the command:

create view v as <query expression>

where:
• <query expression> is any legal expression

• the view name is represented by v

S# Status City

S1 20 London

S3 30 Paris

S4 20 London
S5 30 Athens

GoodSup is in effect a “window” into real table S. The window
is dynamic because changes of S is automatically visible
through the window GoodSup. Some users may genuinely
believe that GoodSup is a “real” table.

©Silberschatz, Korth and Sudarshan4.33Database System Concepts

Views

Query on view (suppliers not located in London).

select S#, City
from GoodSup
where City <> ‘London’ ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

S# City
S3 Paris
S5 Athens

Create view of part numbers and names for parts
with weight more than 16 pounds or are supplied
by supplier S2.

select P#, Pname
from P
where Weight > 16 union

select distinct P#, Pname
from P, SP
where P.P# = SP.P#

and S# = ‘S2’ ;

Result:

P# Pname
P1 Nut
P2 Bolt
P3 Screw
P6 Cog

©Silberschatz, Korth and Sudarshan4.34Database System Concepts

Modification of the Database – Deletion

Delete all suppliers in Paris.

delete S#, City
from S
where City = ‘Paris’ ;

Delete all shipments.

delete
from SP ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Delete all shipments for suppliers in London.

delete
from SP
where ‘London’ = (select City

from S
where S.S# = SP.S#) ;

©Silberschatz, Korth and Sudarshan4.35Database System Concepts

Modification of the Database – Deletion

Problem: as we delete tuples from SP, the
average quantity changes

Solution used in SQL:

1. First, compute avg balance and find all tuples to delete
2. Next, delete all tuples found above (without

recomputing avg or retesting the tuples)

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Delete all shipments with quantity below the average.

delete
from SP
where QTY < (select avg(QTY)

from SP) ;

General form of delete statement:

delete
from table
[where predicate]

©Silberschatz, Korth and Sudarshan4.36Database System Concepts

Modification of the Database – Insertion

Add part P7 with unknown name and color.

insert
into P (P#, City, Weight)
values (‘P7’, ‘Athens’, 2) ;

Add part P8 to table P.

insert
into P
values (‘P8’, ‘Sprocket’, ‘Pink’, 14, ‘Nice’) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Add a new shipment with supplier S20, part number
p20, and quantity 1000.

insert
into SP (S#, P#, QTY)
values (‘S20’, ‘P20’, 1000) ;

Name and color will
have null values.

©Silberschatz, Korth and Sudarshan4.37Database System Concepts

Modification of the Database – Insertion

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

For each part supplied, get the part number and the
total quantity, and save the result in the database.

create table temp
(P# char(6)
TOTQTY integer) ;

insert into temp (P#, TOTQTY)
select P#, sum(QTY)
from SP
group by P# ;

General form of insert statement:

insert
into table [(field1, field2, field3, …)]
values (constant1, constant2, constant3, …) ; or

insert
into table [(field1, field2, field3, …)]
subquery ;

©Silberschatz, Korth and Sudarshan4.38Database System Concepts

Modification of the Database – Updates

Double status for all suppliers in London.

update S
set status = status  2
where city = ‘London’ ;

Change the color and weight of part P2.

update P
set color = ‘Yellow’, weight = weight + 5
where P# = ‘P2’ ;

S# P# QTY

S1 P1 300 S2 P1 0

S1 P2 200 S2 P2 0

S1 P3 400 S3 P2 0

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Yellow 22 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 40 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 40 London
S5 Adams 30 Athens

Set the shipment quantity to zero for all suppliers in
Paris.

update SP
set QTY = 0
where ‘Paris’ = (select city

from S
where S.S# = SP.S#) ;

©Silberschatz, Korth and Sudarshan4.39Database System Concepts

Modification of the Database – Updates

S# P# QTY

S1 P1 318 S2 P1 318

S1 P2 210 S2 P2 424

S1 P3 424 S3 P2 210

S1 P4 210 S4 P2 210

S1 P5 105 S4 P4 318

S1 P6 105 S4 P5 424

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Increase all shipment quantities over 200 by 6%,
and all others by 5%.

update SP
set QTY = QTY  1.06
where QTY > 200

The order is important
Can be done better using the case statement

update SP
set QTY = case

when QTY <= 200 then QTY  1.05
else QTY  1.06

end

General form of update statement:

update table
set field = expression

[, field = expression] …
where predicate ;

update account
set QTY = QTY  1.05
where QTY <= 200

©Silberschatz, Korth and Sudarshan4.40Database System Concepts

Modification of the Views

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Create a view of shipment relation (SP), hiding the
QTY attribute.

create view Ship as
select S#, P#
from SP

Add a new shipment to ship.

insert
into Ship
values (‘S5’, ‘P6’) ;

 Updates on more complex views are difficult
or impossible to translate, and hence are
disallowed.

 Most SQL implementations allow updates
only on simple views (without aggregates)
defined on a single relation

©Silberschatz, Korth and Sudarshan4.41Database System Concepts

Transactions
 A transaction is a sequence of queries and update statements

executed as a single unit

 Transactions are started implicitly and terminated by one of

 commit work: makes all updates of the transaction permanent in
the database

 rollback work: undoes all updates performed by the transaction.

 Motivating example

 Transfer of money from one account to another involves two steps:

 deduct from one account and credit to another

 If one steps succeeds and the other fails, database is in an
inconsistent state

 Therefore, either both steps should succeed or neither should

 If any step of a transaction fails, all work done by the transaction
can be undone by rollback work.

 Rollback of incomplete transactions is done automatically, in case
of system failures

©Silberschatz, Korth and Sudarshan4.42Database System Concepts

Transactions (Cont.)

 In most database systems, each SQL statement that executes
successfully is automatically committed.

 Each transaction would then consist of only a single statement

 Automatic commit can usually be turned off, allowing multi-
statement transactions, but how to do so depends on the database
system

 Another option in SQL:1999: enclose statements within

begin atomic
…

end

©Silberschatz, Korth and Sudarshan4.43Database System Concepts

Joined Relations

 Join operations take two relations and return as a result another
relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations match,
and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated.

Join Types

inner join
left outer join
right outer join
full outer join

Join Conditions

natural
on <predicate>
using (A1, A2, ..., An)

©Silberschatz, Korth and Sudarshan4.44Database System Concepts

Joined Relations – Datasets for Examples

 Relation loan

 Relation borrower

customer-name loan-number

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170

L-230

L-260

 Note: borrower information missing for L-260 and loan
information missing for L-155

©Silberschatz, Korth and Sudarshan4.45Database System Concepts

Joined Relations – Examples

 loan inner join borrower on
loan.loan-number = borrower.loan-number

 loan left outer join borrower on
loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number

Jones

Smith

L-170

L-230

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number

Jones

Smith

null

L-170

L-230

null

loan-number

L-170

L-230

L-260

©Silberschatz, Korth and Sudarshan4.46Database System Concepts

Joined Relations – Examples

 loan natural inner join borrower

 loan natural right outer join borrower

branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

null

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number

L-170

L-230

L-155

©Silberschatz, Korth and Sudarshan4.47Database System Concepts

Joined Relations – Examples

 loan full outer join borrower using (loan-number)

 Find all customers who have either an account or a loan (but
not both) at the bank.

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number

L-170

L-230

L-260

L-155

select customer-name
from (depositor natural full outer join borrower)
where account-number is null or loan-number is null

©Silberschatz, Korth and Sudarshan4.48Database System Concepts

Data Definition Language (DDL)

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Allows the specification of not only a set of relations but also
information about each relation, including:

©Silberschatz, Korth and Sudarshan4.49Database System Concepts

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum
length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

 real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n
digits.

 Null values are allowed in all the domain types. Declaring an attribute to be
not null prohibits null values for that attribute.

 create domain construct in SQL-92 creates user-defined domain types
create domain person-name char(20) not null

©Silberschatz, Korth and Sudarshan4.50Database System Concepts

Date/Time Types in SQL (Cont.)

 date. Dates, containing a (4 digit) year, month and date

 E.g. date ‘2001-7-27’

 time. Time of day, in hours, minutes and seconds.

 E.g. time ’09:00:30’ time ’09:00:30.75’

 timestamp: date plus time of day

 E.g. timestamp ‘2001-7-27 09:00:30.75’

 Interval: period of time

 E.g. Interval ‘1’ day

 Subtracting a date/time/timestamp value from another gives an interval value

 Interval values can be added to date/time/timestamp values

 Can extract values of individual fields from date/time/timestamp

 E.g. extract (year from r.starttime)

 Can cast string types to date/time/timestamp

 E.g. cast <string-valued-expression> as date

©Silberschatz, Korth and Sudarshan4.51Database System Concepts

Create Table Construct

 An SQL relation is defined using the create table
command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table S
(S# char(5) not null,
Sname char(20),
Status smallint,
City char(15)) ;

©Silberschatz, Korth and Sudarshan4.52Database System Concepts

Integrity Constraints in Create Table

 not null

 primary key (A1, ..., An)

 check (Predicate), where Predicate is a predicate

Example: Declare table P (Parts).

create table P
(P# char(6) not null,
Pname char(20)
Color char(10),
Weight smallint,
City char(15),

primary key (P#),
check (Weight >= 0))

primary key declaration on an attribute automatically
ensures not null in SQL-92 onwards, needs to be
explicitly stated in SQL-89

©Silberschatz, Korth and Sudarshan4.53Database System Concepts

Drop and Alter Table Constructs

 The drop table command deletes all information about the
dropped relation from the database.

 The alter table command is used to add attributes to an
existing relation.

alter table r add A D

where A is the name of the attribute to be added to relation r
and D is the domain of A.

 All tuples in the relation are assigned null as the value for the
new attribute.

 The alter table command can also be used to drop attributes
of a relation

alter table r drop A
where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases

13.10.2011

1

This image cannot currently be displayed.

Chapter 5: Relational Database Design

©Silberschatz, Korth and Sudarshan7.2Database System Concepts

Chapter 5: Relational Database Design

 First Normal Form

 Pitfalls in Relational Database Design

 Functional Dependencies

 Decomposition

 Boyce-Codd Normal Form

 Third Normal Form

 Multivalued Dependencies and Fourth Normal Form

 Overall Database Design Process

13.10.2011

2

©Silberschatz, Korth and Sudarshan7.3Database System Concepts

First Normal Form

 Domain is atomic if its elements are considered to be
indivisible units
 Examples of non-atomic domains:

 Set of names, composite attributes

 Identification numbers like CS101 that can be broken up into
parts

 A relational schema R is in first normal form if the domains
of all attributes of R are atomic

 Non-atomic values complicate storage and encourage
redundant (repeated) storage of data
 E.g. Set of accounts stored with each customer, set of children

stored with each person, etc.

©Silberschatz, Korth and Sudarshan7.4Database System Concepts

First Normal Form (Contd.)

 Atomicity is actually a property of how the elements of the
domain are used.
 E.g. Strings would normally be considered indivisible

 Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127

 If the first two characters are extracted to find the department, the
domain of roll numbers is not atomic.

 Doing so is a bad idea: leads to encoding of information in
application program rather than in the database.

13.10.2011

3

©Silberschatz, Korth and Sudarshan7.5Database System Concepts

Pitfalls in Relational Database Design

 Relational database design requires that we find a
“good” collection of relation schemas. A bad
design may lead to
 Repetition of Information.

 Inability to represent certain information.

 Design Goals:
 Avoid redundant data

 Ensure that relationships among attributes are
represented

 Facilitate the checking of updates for violation of
database integrity constraints.

©Silberschatz, Korth and Sudarshan7.6Database System Concepts

Example
 Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

 Redundancy:

 Data for branch-name, branch-city, assets are repeated for each loan
that a branch makes

 Wastes space

 Complicates updating, introducing possibility of inconsistency of
assets value

 Null values

 Cannot store information about a branch if no loans exist

 Can use null values, but they are difficult to handle.

13.10.2011

4

©Silberschatz, Korth and Sudarshan7.7Database System Concepts

Decomposition

 Decompose the relation schema Lending-schema into:

Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)

 All attributes of an original schema (R) must appear in
the decomposition (R1, R2):

R = R1  R2

 Lossless-join decomposition.
For all possible relations r on schema R

r = R1 (r) R2 (r)

©Silberschatz, Korth and Sudarshan7.8Database System Concepts

Example of Non Lossless-Join Decomposition

 Decomposition of R = (A, B)
R1 = (A) R2 = (B)

A B





1
2
1

A




B

1
2

r
A(r) B(r)

A (r) B (r) A B






1
2
1
2

13.10.2011

5

©Silberschatz, Korth and Sudarshan7.9Database System Concepts

Goal — Devise a Theory for the Following

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it
into a set of relations {R1, R2, ..., Rn} such that

 each relation is in good form

 the decomposition is a lossless-join decomposition

 Our theory is based on:

 functional dependencies

 multivalued dependencies

©Silberschatz, Korth and Sudarshan7.10Database System Concepts

Functional Dependencies

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.

 A functional dependency is a generalization of the notion of a
key.

13.10.2011

6

©Silberschatz, Korth and Sudarshan7.11Database System Concepts

Functional Dependencies (Cont.)

 Let R be a relation schema   R and   R

 The functional dependency

  
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

t1[] = t2 []  t1[] = t2 []

 Example: Consider r(A,B) with the following instance of r.

 On this instance, A  B does NOT hold, but B  A does
hold.

1 4
1 5
3 7

©Silberschatz, Korth and Sudarshan7.12Database System Concepts

Functional Dependencies (Cont.)

 K is a superkey for relation schema R if and only if K  R

 K is a candidate key for R if and only if
 K  R, and

 for no   K,   R

 Functional dependencies allow us to express constraints that
cannot be expressed using superkeys. Consider the schema:

Loan-info-schema = (customer-name, loan-number,
branch-name, amount).

We expect this set of functional dependencies to hold:

loan-number  amount
loan-number  branch-name

but would not expect the following to hold:

loan-number  customer-name

13.10.2011

7

©Silberschatz, Korth and Sudarshan7.13Database System Concepts

Example

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

 Reasonable FD's to assert:

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

 Sometimes, several attributes jointly determine another
attribute, although neither does by itself. Example:

beer bar  price

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud

©Silberschatz, Korth and Sudarshan7.14Database System Concepts

Functional Dependencies

 A functional dependency is trivial if it is satisfied by all instances
of a relation

 E.g.

 customer-name, loan-number  customer-name

 customer-name  customer-name

 In general,    is trivial if   

 “Nontrivial” = right-side attribute not in left side

13.10.2011

8

©Silberschatz, Korth and Sudarshan7.15Database System Concepts

Closure of a Set of Functional
Dependencies

 Given a set F set of functional dependencies, there are certain
other functional dependencies that are logically implied by F.

 E.g. If A  B and B  C, then we can infer that A  C

 The set of all functional dependencies logically implied by F is the
closure of F.

 We denote the closure of F by F+.

 We can find all of F+ by applying Armstrong’s Axioms:

 if   , then    (reflexivity)

 if   , then      (augmentation)

 if   , and   , then    (transitivity)

©Silberschatz, Korth and Sudarshan7.16Database System Concepts

Example

 R = (A, B, C, G, H, I)
F = { A  B

A  C
CG  H
CG  I

B  H}

 some members of F+

 A  H

 by transitivity from A  B and B  H

 AG  I

 by augmenting A  C with G, to get AG  CG
and then transitivity with CG  I

 CG  HI

 from CG  H and CG  I : “union rule” can be inferred from

– definition of functional dependencies, or

– Augmentation of CG  I to infer CG  CGI, augmentation of
CG  H to infer CGI  HI, and then transitivity

13.10.2011

9

©Silberschatz, Korth and Sudarshan7.17Database System Concepts

Procedure for Computing F+

 To compute the closure of a set of functional dependencies F:

F+ = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+

for each pair of functional dependencies f1and f2 in F+

if f1 and f2 can be combined using transitivity
then add the resulting functional dependency to F+

until F+ does not change any further

NOTE: We will see an alternative procedure for this task later

©Silberschatz, Korth and Sudarshan7.18Database System Concepts

Closure of Functional Dependencies
(Cont.)

 We can further simplify manual computation of F+ by using
the following additional rules.

 If    holds and    holds, then     holds (union)

 If     holds, then    holds and    holds
(decomposition)

 If    holds and     holds, then     holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

13.10.2011

10

©Silberschatz, Korth and Sudarshan7.19Database System Concepts

Closure of Attribute Sets

 Given a set of attributes  define the closure of  under F
(denoted by +) as the set of attributes that are functionally
determined by  under F:

   is in F+    +

 Algorithm to compute +, the closure of  under F
result := ;
while (changes to result) do

for each    in F do
begin

if   result then result := result  
end

©Silberschatz, Korth and Sudarshan7.20Database System Concepts

Example of Attribute Set Closure

 R = (A, B, C, G, H, I)

 F = {A  B
A  C
CG  H
CG  I
B  H}

 (AG)+

1. result = AG

2. result = ABCG (A  C and A  B)

3. result = ABCGH (CG  H and CG  AGBC)

4. result = ABCGHI (CG  I and CG  AGBCH)

 Is AG a candidate key?
1. Is AG a super key?

1. Does AG  R? == Is (AG)+  R

2. Is any subset of AG a superkey?

1. Does A  R? == Is (A)+  R

2. Does G  R? == Is (G)+  R

13.10.2011

11

©Silberschatz, Korth and Sudarshan7.21Database System Concepts

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

 Testing for superkey:

 To test if  is a superkey, we compute +, and check if + contains
all attributes of R.

 Testing functional dependencies

 To check if a functional dependency    holds (or, in other words,
is in F+), just check if   +.

 That is, we compute + by using attribute closure, and then check if
it contains .

 Is a simple and cheap test, and very useful

 Computing closure of F

 For each   R, we find the closure +, and for each S  +, we
output a functional dependency   S.

©Silberschatz, Korth and Sudarshan7.22Database System Concepts

Goals of Normalization

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it
into a set of relations {R1, R2, ..., Rn} such that

 each relation is in good form

 the decomposition is a lossless-join decomposition

 Our theory is based on:

 functional dependencies

 multivalued dependencies

13.10.2011

12

©Silberschatz, Korth and Sudarshan7.23Database System Concepts

Decomposition

 Decompose the relation schema Lending-schema into:

Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)

 All attributes of an original schema (R) must appear in the
decomposition (R1, R2):

R = R1  R2

 Lossless-join decomposition.
For all possible relations r on schema R

r = R1 (r) R2 (r)

 A decomposition of R into R1 and R2 is lossless join if and only if
at least one of the following dependencies is in F+:
 R1  R2  R1

 R1  R2  R2

©Silberschatz, Korth and Sudarshan7.24Database System Concepts

Normalization Using Functional Dependencies

 When we decompose a relation schema R with a set of
functional dependencies F into R1, R2,.., Rn we want
 Lossless-join decomposition: Otherwise decomposition would result in

information loss.

 No redundancy: The relations Ri preferably should be in either Boyce-
Codd Normal Form or Third Normal Form.

 Dependency preservation: Let Fi be the set of dependencies F+ that
include only attributes in Ri.

 Preferably the decomposition should be dependency preserving,
that is, (F1  F2  …  Fn)

+ = F+

 Otherwise, checking updates for violation of functional
dependencies may require computing joins, which is expensive.

13.10.2011

13

©Silberschatz, Korth and Sudarshan7.25Database System Concepts

Example

 R = (A, B, C)
F = {A  B, B  C)

 Can be decomposed in two different ways

 R1 = (A, B), R2 = (B, C)

 Lossless-join decomposition:

R1  R2 = {B} and B  BC

 Dependency preserving

 R1 = (A, B), R2 = (A, C)

 Lossless-join decomposition:

R1  R2 = {A} and A  AB

 Not dependency preserving
(cannot check B  C without computing R1 R2)

©Silberschatz, Korth and Sudarshan7.26Database System Concepts

Second Normal Form

    where  is a superkey for R

A relation is said to be in Second Normal Form when
every nonkey attribute is fully functionally dependent on
the primary key. (No attribute dependent on a portion of
primary key)

 That is, every nonkey attribute needs the full primary key for
unique identification

 It is important only in cases of keys containing more than
one attribute

A relation schema R is in 2NF respect to a set F of functional
dependencies if for all nonkey set of attributes  holds:

13.10.2011

14

©Silberschatz, Korth and Sudarshan7.27Database System Concepts

Example

Drinkers (name, addr, beersLiked, manf, favoriteBeer)

FD’s: name  addr, name  favoriteBeer, beersLiked  manf
violates 2NF.

Lending-schema (branch-name, branch-city, assets,
customer-name, loan-number, amount)

FD’s: branch-name branch-city  assets violates 2NF.

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud

©Silberschatz, Korth and Sudarshan7.28Database System Concepts

Boyce-Codd Normal Form

    is trivial (i.e.,   )

  is a superkey for R

R is in BCNF if for every nontrivial FD for R, say X  A,
then X is a superkey.

Follow from the idea “key  everything.”

1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one occurrence of a fact is
updated, not all.

3. Guarantees no deletion anomalies = valid fact is lost when
tuple is deleted.

A relation schema R is in BCNF with respect to a set F of functional
dependencies if for all functional dependencies in F+ of the form
 , where   R and   R, at least one of the following holds:

13.10.2011

15

©Silberschatz, Korth and Sudarshan7.29Database System Concepts

Example

 R = (A, B, C)
F = {A  B

B  C}
Key = {A}

 R is not in BCNF

 Decomposition R1 = (A, B), R2 = (B, C)

 R1 and R2 in BCNF

 Lossless-join decomposition

 Dependency preserving

©Silberschatz, Korth and Sudarshan7.30Database System Concepts

Example of Problems

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

FD’s:

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

 ???’s are redundant, since we can figure them out from the FD’s.

 Update anomalies: If Janeway gets transferred to the Intrepid,
will we change addr in each of her tuples?

 Deletion anomalies: If nobody likes Bud, we lose track of Bud’s
manufacturer.

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway ??? WickedAle Pete's ???

Spock Enterprise Bud ??? Bud

13.10.2011

16

©Silberschatz, Korth and Sudarshan7.31Database System Concepts

Each of the given FD’s is a BCNF violation:

 Key = {name, beersLiked}

 Each of the given FD’s has a left side that is a proper subset of the
key.

Another Example
Beers(name, manf, manfAddr). (Note: 2NF is satisfied)

 FD’s = name  manf, manf  manfAddr.

 Only key is name.

 manf  manfAddr violates BCNF with a left side unrelated to
any key.

©Silberschatz, Korth and Sudarshan7.32Database System Concepts

Testing for BCNF

 To check if a non-trivial dependency  causes a violation of
BCNF
1. compute + (the attribute closure of ), and

2. verify that it includes all attributes of R, that is, it is a superkey of R.

 Simplified test: To check if a relation schema R is in BCNF, it
suffices to check only the dependencies in the given set F for
violation of BCNF, rather than checking all dependencies in F+.
 If none of the dependencies in F causes a violation of BCNF, then

none of the dependencies in F+ will cause a violation of BCNF either.

 However, using only F is incorrect when testing a relation in a
decomposition of R
 E.g. Consider R (A, B, C, D), with F = { A B, B C}

 Decompose R into R1(A,B) and R2(A,C,D)

 Neither of the dependencies in F contain only attributes from
(A,C,D) so we might be mislead into thinking R2 satisfies BCNF.

 In fact, dependency A  C in F+ shows R2 is not in BCNF.

13.10.2011

17

©Silberschatz, Korth and Sudarshan7.33Database System Concepts

BCNF Decomposition Algorithm (1)

result := {R};
done := false;
compute F+;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let    be a nontrivial functional
dependency that holds on Ri

such that   Ri is not in F+,
and    = ;

result := (result – Ri)  (Ri – )  (, );
end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

©Silberschatz, Korth and Sudarshan7.34Database System Concepts

Example of BCNF Decomposition

 R = (branch-name, branch-city, assets,

customer-name, loan-number, amount)

F = {branch-name  assets branch-city

loan-number  amount branch-name}

Key = {loan-number, customer-name}

 Decomposition

 R1 = (branch-name, branch-city, assets)

 R2 = (branch-name, customer-name, loan-number, amount)

 R3 = (branch-name, loan-number, amount)

 R4 = (customer-name, loan-number)

 Final decomposition
R1, R3, R4

13.10.2011

18

©Silberschatz, Korth and Sudarshan7.35Database System Concepts

BCNF Decomposition Algorithm (2)

Setting: relation R, given FD’s F.

Suppose relation R has BCNF violation X  B.

1. Compute X+.

 Cannot be all attributes – why?

2. Decompose R into X+ and (R–X+)  X.

3. Find the FD’s for the decomposed relations.

 Project the FD’s from F = calculate all consequents of F that
involve only attributes from X+ or only from (RX+)  X.

R X+X

©Silberschatz, Korth and Sudarshan7.36Database System Concepts

Example

R = Drinkers(name, addr, beersLiked, manf, favoriteBeer)

F =

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

Pick BCNF violation name  addr.

 Close the left side: name+ = name addr favoriteBeer.
 Decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)
 Projected FD’s (skipping a lot of work that leads nowhere interesting):

 For Drinkers1: name  addr and name  favoriteBeer.

 For Drinkers2: beersLiked  manf.

13.10.2011

19

©Silberschatz, Korth and Sudarshan7.37Database System Concepts

(Repeating)

 Decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

 Projected FD’s:

 For Drinkers1: name  addr and name  favoriteBeer.

 For Drinkers2: beersLiked  manf.

 BCNF violations?

 For Drinkers1, name is key and all left sides of FD’s are
superkeys.

 For Drinkers2, {name, beersLiked} is the key, and beersLiked
 manf violates BCNF.

©Silberschatz, Korth and Sudarshan7.38Database System Concepts

Decompose Drinkers2

 First set of decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

 Close beersLiked+ = beersLiked, manf.

 Decompose Drinkers2 into:

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

 Resulting relations are all in BCNF:

Drinkers1(name, addr, favoriteBeer)

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

13.10.2011

20

©Silberschatz, Korth and Sudarshan7.39Database System Concepts

Testing Decomposition for BCNF

 To check if a relation Ri in a decomposition of R is in BCNF,

 Either test Ri for BCNF with respect to the restriction of F to Ri (that
is, all FDs in F+ that contain only attributes from Ri)

 or use the original set of dependencies F that hold on R, but with the
following test:

– for every set of attributes   Ri, check that + (the attribute
closure of ) either includes no attribute of Ri- , or includes all
attributes of Ri.

 If the condition is violated by some   in F, the dependency
 (+ - )  Ri

can be shown to hold on Ri, and Ri violates BCNF.

We use above dependency to decompose Ri

©Silberschatz, Korth and Sudarshan7.40Database System Concepts

BCNF and Dependency Preservation

 R = (J, K, L)
F = {JK  L

L  K}
Two candidate keys = JK and JL

 R is not in BCNF

 Any decomposition of R will fail to preserve

JK  L

It is not always possible to get a BCNF decomposition that is
dependency preserving

13.10.2011

21

©Silberschatz, Korth and Sudarshan7.41Database System Concepts

Third Normal Form: Motivation

 There are some situations where
 BCNF is not dependency preserving, and

 efficient checking for FD violation on updates is important

 Solution: define a weaker normal form, called Third Normal
Form
 Allows some redundancy (with resultant problems; we will see

examples later)

 But FDs can be checked on individual relations without computing a
join.

 There is always a lossless-join, dependency-preserving decomposition
into 3NF.

©Silberschatz, Korth and Sudarshan7.42Database System Concepts

Example

One FD structure causes problems:

 If you decompose, you can’t check all the FD’s only in the
decomposed relations.

 If you don’t decompose, you violate BCNF.

Abstractly: R = (A, B, C), F = {AB  C, C  B.}

Example: street city  zip, zip  city.
Keys: {A, B} and {A, C}, but C  B has a left side that is not a superkey.

 Suggests decomposition into {B, C} and {A, C}.
 But you can’t check the FD: AB  C in only these relations (requires a

join)

 Equivalent to example in book:

Banker-schema = (branch-name, customer-name, banker-name)

banker-name  branch name

branch name customer-name  banker-name

13.10.2011

22

©Silberschatz, Korth and Sudarshan7.43Database System Concepts

Third Normal Form

 A relation schema R is in third normal form (3NF) if for all:

   in F+

at least one of the following holds:

    is trivial (i.e.,   )

  is a superkey for R

 Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first
two conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure
dependency preservation (will see why later).

©Silberschatz, Korth and Sudarshan7.44Database System Concepts

Testing for 3NF

 Optimization: Need to check only FDs in F, need not check all
FDs in F+.

 Use attribute closure to check for each dependency   , if  is
a superkey.

 If  is not a superkey, we have to verify if each attribute in  is
contained in a candidate key of R

 this test is rather more expensive, since it involve finding candidate
keys

 testing for 3NF has been shown to be NP-hard

 Interestingly, decomposition into third normal form (described
shortly) can be done in polynomial time

13.10.2011

23

©Silberschatz, Korth and Sudarshan7.45Database System Concepts

3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency    in Fc do
if none of the schemas Rj, 1  j  i contains  

then begin
i := i + 1;
Ri :=  

end
if none of the schemas Rj, 1  j  i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end
return (R1, R2, ..., Ri)

©Silberschatz, Korth and Sudarshan7.46Database System Concepts

What 3NF Gives You

There are two important properties of a decomposition:

1. We should be able to recover from the decomposed relations
the data of the original.
 Recovery involves projection and join.

2. We should be able to check that the FD’s for the original relation
are satisfied by checking the projections of those FD’s in the
decomposed relations.

 Without proof, we assert that it is always possible to decompose
into BCNF and satisfy (1).

 Also without proof, we can decompose into 3NF and satisfy both
(1) and (2).

 But it is not possible to decompose into BNCF and get both (1)
and (2).

 Street-city-zip is an example of this point.

13.10.2011

24

©Silberschatz, Korth and Sudarshan7.47Database System Concepts

Example

 Relation schema:

Banker-info-schema = (branch-name, customer-name,
banker-name, office-number)

 The functional dependencies for this relation schema are:
banker-name  branch-name office-number
customer-name branch-name  banker-name

 The key is:

{customer-name, branch-name}

©Silberschatz, Korth and Sudarshan7.48Database System Concepts

Applying 3NF to Banker-info-schema

 The for loop in the algorithm causes us to include the
following schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name,
office-number)

Banker-schema = (customer-name, branch-name,
banker-name)

 Since Banker-schema contains a candidate key for
Banker-info-schema, we are done with the decomposition
process.

13.10.2011

25

©Silberschatz, Korth and Sudarshan7.49Database System Concepts

Comparison of BCNF and 3NF

 It is always possible to decompose a relation into relations in
3NF and

 the decomposition is lossless

 the dependencies are preserved

 It is always possible to decompose a relation into relations in
BCNF and

 the decomposition is lossless

 it may not be possible to preserve dependencies.

©Silberschatz, Korth and Sudarshan7.50Database System Concepts

Comparison of BCNF and 3NF (Cont.)

A

a1

a2

a3

null

B

b1

b1

b1

b2

C

c1

c1

c1

c2

A schema that is in 3NF but not in BCNF has the problems of

 repetition of information (e.g., the relationship b1, c1)

 need to use null values (e.g., to represent the relationship
b2, c2 where there is no corresponding value for A).

 Example of problems due to redundancy in 3NF

 R = (A, B, C)
F = {AB  C, C  B}

13.10.2011

26

©Silberschatz, Korth and Sudarshan7.51Database System Concepts

Design Goals

 Goal for a relational database design is:

 BCNF.

 Lossless join.

 Dependency preservation.

 If we cannot achieve this, we accept one of

 Lack of dependency preservation

 Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying
functional dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test

 Even if we had a dependency preserving decomposition, using
SQL we would not be able to efficiently test a functional
dependency whose left hand side is not a key.

©Silberschatz, Korth and Sudarshan7.52Database System Concepts

Multivalued Dependencies

 There are database schemas in BCNF that do not seem to be
sufficiently normalized

 Consider a database

classes(course, teacher, book)

such that (c,t,b)  classes means that t is qualified to teach c,
and b is a required textbook for c

 The database is supposed to list for each course the set of
teachers any one of which can be the course’s instructor, and the
set of books, all of which are required for the course (no matter
who teaches it).

13.10.2011

27

©Silberschatz, Korth and Sudarshan7.53Database System Concepts

 There are no non-trivial functional dependencies and therefore
the relation is in BCNF

 Insertion anomalies – i.e., if Sara is a new teacher that can teach
database, two tuples need to be inserted

(database, Sara, DB Concepts)
(database, Sara, Ullman)

course teacher book

database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi
Jim
Jim

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Shaw
OS Concepts
Shaw

classes

Multivalued Dependencies (Cont.)

©Silberschatz, Korth and Sudarshan7.54Database System Concepts

 Therefore, it is better to decompose classes into:

course teacher

database
database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi
Jim

teaches

course book

database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

text

We shall see that these two relations are in Fourth Normal
Form (4NF)

Multivalued Dependencies (Cont.)

13.10.2011

28

©Silberschatz, Korth and Sudarshan7.55Database System Concepts

Multivalued Dependencies Def.

The multivalued dependency X  Y holds in a relation R if
whenever we have two tuples of R that agree in all the attributes
of X, then we can swap their Y components and get two new
tuples that are also in R.

X Y others

©Silberschatz, Korth and Sudarshan7.56Database System Concepts

Example (Cont.)

 In our example:

course  teacher
course  book

 The above formal definition is supposed to formalize the
notion that given a particular value of Y (course) it has
associated with it a set of values of Z (teacher) and a set
of values of W (book), and these two sets are in some
sense independent of each other.

 Note:
 If Y  Z then Y  Z

 Indeed we have (in above notation) Z1 = Z2
The claim follows.

13.10.2011

29

©Silberschatz, Korth and Sudarshan7.57Database System Concepts

Example

Drinkers(name, addr, phones, beersLiked)

with MVD Name  phones. If Drinkers has the two tuples:

name addr phones beersLiked

sue a p1 b1

sue a p2 b2

it must also have the same tuples with phones components swapped:

name addr phones beersLiked

sue a p2 b1

sue a p1 b2

Note: we must check this condition for all pairs of tuples
that agree on name, not just one pair.

©Silberschatz, Korth and Sudarshan7.58Database System Concepts

MVD Rules

1. Every FD is an MVD.

 Because if X Y, then swapping Y’s between tuples that agree on X
doesn’t create new tuples.

 Example, in Drinkers: name  addr.

2. Complementation: if X  Y, then X  Z, where Z is all
attributes not in X or Y.

 Example: since name  phones
holds in Drinkers, so does
name  addr beersLiked.

13.10.2011

30

©Silberschatz, Korth and Sudarshan7.59Database System Concepts

Fourth Normal Form
 A relation schema R is in 4NF with respect to a set D of

functional and multivalued dependencies if for all multivalued
dependencies in D+ of the form   , where   R and   R,
at least one of the following hold:

    is trivial (i.e.,    or    = R)

  is a superkey for schema R

 If a relation is in 4NF it is in BCNF

4NF eliminates redundancy due to multiplicative effect of MVD’s.

 Formally: R is in Fourth Normal Form if whenever MVD
X  Y is nontrivial (Y is not a subset of X, and X  Y is not all
attributes), then X is a superkey.

 Remember, X  Y implies X  Y,
so 4NF is more stringent than BCNF.

 Decompose R, using NF violation X  Y,
into XY and X  (R—Y).

R YX

©Silberschatz, Korth and Sudarshan7.60Database System Concepts

4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

while (not done)
if (there is a schema Ri in result that is not in 4NF) then

begin

let    be a nontrivial multivalued dependency that holds
on Ri such that   Ri is not in Di, and ;

result := (result - Ri)  (Ri - )  (, );
end

else done:= true;

Note: each Ri is in 4NF, and decomposition is lossless-join

13.10.2011

31

©Silberschatz, Korth and Sudarshan7.61Database System Concepts

Splitting Doesn’t Hold

Sometimes you need to have several attributes on the right of an
MVD. For example:

Drinkers(name, areaCode, phones, beersLiked, beerManf)

name areaCode phones beersLiked beerManf

Sue 831 555-1111 Bud A.B.

Sue 831 555-1111 Wicked Ale Pete’s

Sue 408 555-9999 Bud A.B.

Sue 408 555-9999 Wicked Ale Pete’s

 name  areaCode phones holds, but neither

name  areaCode nor name  phones do.

©Silberschatz, Korth and Sudarshan7.62Database System Concepts

Example

Drinkers(name, addr, phones, beersLiked)

 FD: name  addr

 Nontrivial MVD’s: name  phones and
name  beersLiked.

 Only key: {name, phones, beersLiked}

 All three dependencies above violate 4NF.

 Successive decomposition yields 4NF relations:

D1(name, addr)

D2(name, phones)

D3(name, beersLiked)

13.10.2011

32

©Silberschatz, Korth and Sudarshan7.63Database System Concepts

Normalization

Boyce-

Codd

Functional
dependency
of nonkey
attributes on
the primary
key - Atomic
values only

Full
Functional
dependency
of nonkey
attributes on
the primary
key

No transitive
dependency
between
nonkey
attributes

All
determinants
are candidate
keys - Single
multivalued
dependency

4NF
No
multivalued
dependency

©Silberschatz, Korth and Sudarshan7.64Database System Concepts

Further Normal Forms

 Join dependencies generalize multivalued dependencies

 lead to project-join normal form (PJNF) (also called fifth normal
form)

 A relation is in 5NF if every join dependency in the relation is
implied by the keys of the relation

 Implies that relations that have been decomposed in previous NF
can be recombined via natural joins to recreate the original relation

 A class of even more general constraints, leads to a normal form
called domain-key normal form.

 Problem with these generalized constraints: are hard to reason
with, and no set of sound and complete set of inference rules
exists.

 Hence rarely used

 The normalized relations grows in additive way while
non-normalized relations grows in multiplicative way.

13.10.2011

33

©Silberschatz, Korth and Sudarshan7.65Database System Concepts

Overall Database Design Process

 We have assumed schema R is given
 R could have been generated when converting E-R diagram to a set of

tables.

 R could have been a single relation containing all attributes that are of
interest (called universal relation).

 Normalization breaks R into smaller relations.

 R could have been the result of some ad hoc design of relations, which
we then test/convert to normal form.

 In practice, usually we start with more relations that intuitively satisfy
some normal forms.

©Silberschatz, Korth and Sudarshan7.66Database System Concepts

ER Model and Normalization

 When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization.

 However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity

 E.g. employee entity with attributes department-number and
department-address, and an FD department-number  department-
address

 Good design would have made department an entity

 FDs from non-key attributes of a relationship set possible, but rare ---
most relationships are binary

13.10.2011

34

©Silberschatz, Korth and Sudarshan7.67Database System Concepts

Denormalization for Performance

 May want to use non-normalized schema for performance

 E.g. displaying customer-name along with account-number and
balance requires join of account with depositor

 Alternative 1: Use denormalized relation containing attributes of
account as well as depositor with all above attributes

 faster lookup

 Extra space and extra execution time for updates

 extra coding work for programmer and possibility of error in extra code

 Alternative 2: use a materialized view defined as
account depositor

 Benefits and drawbacks same as above, except no extra coding work
for programmer and avoids possible errors

©Silberschatz, Korth and Sudarshan7.68Database System Concepts

Other Design Issues

 Some aspects of database design are not caught by
normalization

 Examples of bad database design, to be avoided:

Instead of earnings(company-id, year, amount), use
 earnings-2000, earnings-2001, earnings-2002, etc., all on the

schema (company-id, earnings).

 Above are in BCNF, but make querying across years difficult and
needs new table each year

 company-year(company-id, earnings-2000, earnings-2001,
earnings-2002)

 Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.

 Is an example of a crosstab, where values for one attribute
become column names

 Used in spreadsheets, and in data analysis tools

13.10.2011

35

This image cannot currently be displayed.

End of Chapter

©Silberschatz, Korth and Sudarshan7.70Database System Concepts

Sample lending Relation

13.10.2011

36

©Silberschatz, Korth and Sudarshan7.71Database System Concepts

Sample Relation r

©Silberschatz, Korth and Sudarshan7.72Database System Concepts

The customer Relation

13.10.2011

37

©Silberschatz, Korth and Sudarshan7.73Database System Concepts

The loan Relation

©Silberschatz, Korth and Sudarshan7.74Database System Concepts

The branch Relation

13.10.2011

38

©Silberschatz, Korth and Sudarshan7.75Database System Concepts

The Relation branch-customer

©Silberschatz, Korth and Sudarshan7.76Database System Concepts

The Relation customer-loan

13.10.2011

39

©Silberschatz, Korth and Sudarshan7.77Database System Concepts

The Relation branch-customer customer-loan

©Silberschatz, Korth and Sudarshan7.78Database System Concepts

An Instance of Banker-schema

13.10.2011

40

©Silberschatz, Korth and Sudarshan7.79Database System Concepts

Tabular Representation of 

©Silberschatz, Korth and Sudarshan7.80Database System Concepts

Relation bc: An Example of Reduncy in a BCNF Relation

13.10.2011

41

©Silberschatz, Korth and Sudarshan7.81Database System Concepts

An Illegal bc Relation

©Silberschatz, Korth and Sudarshan7.82Database System Concepts

Decomposition of loan-info

13.10.2011

42

©Silberschatz, Korth and Sudarshan7.83Database System Concepts

Relation of Exercise 7.4

1

©Silberschatz, Korth and Sudarshan1.1Database System Concepts

A Form with Visual Basic

©Silberschatz, Korth and Sudarshan1.2Database System Concepts

sdob najdi

sdel najdi

kol najdi

data najdi

Cisti_Click()
Prikazi_Click()
Nov_Click()
Otvori_Click()
Brisi_Click()

Nazad_Click()

2

©Silberschatz, Korth and Sudarshan1.3Database System Concepts

sdob najdi

sdel najdi

kol najdi

data najdi

Cisti_Click()
Prikazi_Click()
Nov_Click()
Otvori_Click()
Brisi_Click()

Nazad_Click()

©Silberschatz, Korth and Sudarshan1.4Database System Concepts

3

©Silberschatz, Korth and Sudarshan1.5Database System Concepts

Procedure for a Query Building
Option Compare Database
Option Explicit
Private Sub AddToWhere(FieldValue As Variant, FieldName As String,

MyCriteria As String, ArgCount As Integer)
' Create criteria for WHERE clause.
If FieldValue <> "" Then

' Add "and" if other criterion exists.
If ArgCount > 0 Then

MyCriteria = MyCriteria & " and "
End If

' Append criterion to existing criteria.
' Enclose FieldValue and asterisk in quotation marks.
MyCriteria = (MyCriteria & FieldName & " Like " & Chr(39) & Chr(42) &

FieldValue & Chr(42) & Chr(39))

' Increase argument count.
ArgCount = ArgCount + 1

End If
End Sub

Chr(34) = “

Chr(39) = ‘

Chr(42) = *

©Silberschatz, Korth and Sudarshan1.6Database System Concepts

Procedure for Field Cleaning in a Form
Private Sub Cisti_Click()

Dim MySQL As String
Dim Tmp As Variant

MySQL = "SELECT * FROM NajdiNaracka WHERE False"
' Clear search text boxes.
Me![sdob najdi] = Null
Me![sdel najdi] = Null
Me![kol najdi] = Null
Me![data najdi] = Null
' Reset subform's RecordSource property to remove records.
Me![Naracka subform].Form.RecordSource = MySQL

' Move insertion point to Look For Company text box.
Me![sdob najdi].SetFocus

‘ Exit_Cisti_Click:
' Exit Sub

‘ Err_Cisti_Click:
' MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
' Resume Exit_Cisti_Click

End Sub

4

©Silberschatz, Korth and Sudarshan1.7Database System Concepts

Procedure for Searching in Database
Private Sub Prikazi_Click()
On Error GoTo Err_Prikazi_Click

Dim MySQL As String, MyCriteria As String, MyRecordSource As String
Dim ArgCount As Integer
Dim Tmp As Variant
' Initialize argument count.
ArgCount = 0
' Initialize SELECT statement.
MySQL = "SELECT * FROM NajdiNaracka WHERE "
MyCriteria = ""
' Use values entered in text boxes in form header to create criteria for WHERE clause.
AddToWhere [sdob najdi], "[NajdiNaracka.sdob]", MyCriteria, ArgCount
AddToWhere [sdel najdi], "[NajdiNaracka.sdel]", MyCriteria, ArgCount
AddToWhere [kol najdi], "[NajdiNaracka.kol]", MyCriteria, ArgCount
AddToWhere [data najdi], "[NajdiNaracka.data]", MyCriteria, ArgCount

' If no criterion specifed, return all records.
If MyCriteria = "" Then

MyCriteria = "True"
End If

' Create SELECT statement.
MyRecordSource = MySQL & MyCriteria & " ORDER BY sdob"

©Silberschatz, Korth and Sudarshan1.8Database System Concepts

Continues
' Set RecordSource property of Find Customers Subform.

Me![Naracka subform].Form.RecordSource = MyRecordSource

' If no records match criteria, display message.
' Move focus to Clear button.
If Me![Naracka subform].Form.RecordsetClone.RecordCount = 0 Then

MsgBox "Nema zapisi! ", 48, "Greska"
Me!Cisti.SetFocus

Else
'Enable control in detail section.

' Me.Section(acDetail).Enabled = True
'Tmp = EnableControls("Detail", True)
' Move insertion point to Find Customers Subform.
Me![Naracka subform].SetFocus

End If

Exit_Prikazi_Click: Exit Sub

Err_Prikazi_Click:
MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
Resume Exit_Prikazi_Click

End Sub

5

©Silberschatz, Korth and Sudarshan1.9Database System Concepts

Do almost Nothing

Private Sub Form_Activate()
' Used by Solutions to show toolbar that includes Show Me button.
' Hide built-in Form View toolbar.
' Show Custom Form View toolbar.
' DoCmd.ShowToolbar "Form View", A_TOOLBAR_NO
' DoCmd.ShowToolbar "Custom Form View", A_TOOLBAR_YES

End Sub

Private Sub Form_Deactivate()
' Used by Solutions to hide toolbar that includes Show Me button.
' Hide Custom Form View toolbar.
' Show built-in Form View toolbar.
' DoCmd.ShowToolbar "Custom Form View", A_TOOLBAR_NO
' DoCmd.ShowToolbar "Form View", A_TOOLBAR_WHERE_APPROP

End Sub

Private Sub Form_Open(Cancel As Integer)
' Move insertion point to sdob when form is opened.
Me![sdob najdi].SetFocus

End Sub

©Silberschatz, Korth and Sudarshan1.10Database System Concepts

Levels of Abstraction
Private Sub Nov_Click()
On Error GoTo Err_Nov_Click

Dim stDocName As String
Dim stLinkCriteria As String
stDocName = "Naracka"
DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormAdd

Exit_Nov_Click: Exit Sub
Err_Nov_Click:

MsgBox Err.Description
Resume Exit_Nov_Click

End Sub

Private Sub Otvori_Click()
On Error GoTo Err_Otvori_Click

Dim stDocName As String
Dim stLinkCriteria As String
stDocName = "Naracka"
If IsNull(Me![Naracka subform].Form![sdob]) Then
MsgBox "-->Nemate sifra za ovoj zapis!", vbInformation, "Greska"
Else
stLinkCriteria = "[sdob]='" & Me![Naracka subform].Form![sdob] & "'"
DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormEdit
End If

Exit_Otvori_Click: Exit Sub
Err_Otvori_Click:

MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
Resume Exit_Otvori_Click

End Sub

6

©Silberschatz, Korth and Sudarshan1.11Database System Concepts

Instances and Schemas

Private Sub Brisi_Click()
On Error GoTo Err_Brisi_Click

Dim MySQL As String, MyCriteria As String

MySQL = "DELETE FROM Naracka WHERE sdob LIKE "
If IsNull(Me![Naracka subform].Form![sdob]) Then
MsgBox "-->Nemate izbrano zapis!", vbInformation, "Greska"
Else
MySQL = (MySQL & Chr(34) & Me![Naracka subform].Form![sdob] & Chr(34) & " and sdel

LIKE " & Chr(34) & Me![Naracka subform].Form![sdel] & Chr(34))
DoCmd.RunSQL MySQL
Prikazi_Click
End If

Exit_Brisi_Click: Exit Sub

Err_Brisi_Click:
MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
Resume Exit_Brisi_Click

End Sub

©Silberschatz, Korth and Sudarshan1.12Database System Concepts

Procedure for Opening Form

Private Sub Nazad_Click()
On Error GoTo Err_Nazad_Click

Dim stDocName As String
Dim stLinkCriteria As String
DoCmd.Close
stDocName = "GlavnoMeni"
DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_Nazad_Click: Exit Sub

Err_Nazad_Click:
MsgBox Err.Description
Resume Exit_Nazad_Click

End Sub

	P1-Intro
	P2-ER Model
	P3-Relational Model
	P4-SQL-SP
	P5-Normalization
	P10-VB-Access

