‘ Chapter 1: Introduction

B Purpose of Database Systems

® View of Data
® Data Models
m Data Definition Language

JLOWY
ATV=IASIE

‘Database Management System (DBMS)

Collection of interrelated data
Set of programs to access the data
DBMS contains information about a particular enterprise

2,
V=TI

‘ Purpose of Database System

® In the early days, database applications were built on top
of file systems

® Drawbacks of using file systems to store data:
Data redundancy and inconsistency

I,
AR

‘ Purpose of Database Systems (Cont.)

® Drawbacks of using file systems (cont.)
Atomicity of updates

Failures may leave database in an inconsistent state with partial
updates carried out

E.qg. transfer of funds from one account to another should either

2,
AR

‘ s the WWW a DBMS?

m Fairly sophisticated search available
¥ crawler indexes pages for fast search

® But, currently

¥ data is mostly unstructured and untyped

It

‘ Is a File System a DBMS?

® Thought Experiment 1:
¥ You and your project partner are editing the same file.
¥ You both save it at the same time.
? Whose changes survive?

2,
AR

‘ Levels of Abstraction

®m Physical level describes how a record (e.g., customer) is
stored.

B |ogical level: describes data stored in database, and the
relationships among the data.

‘ View of Data

An architecture for a database system

view level

‘ Instances and Schemas

B Similar to types and variables in programming languages

B Schema — the logical structure of the database

¥ e.g., the database consists of information about a set of customers and
accounts and the relationship between them)

¥ Analogous to type information of a variable in a program
¥ Physical schema: database desi

gn at the physical level

JLOWY
ATV=IASIE

‘ Data Models

®m A collection of tools for describing
¥ data

¢ data relationships

? data semantics
? data constraints

2,
V=TI

' Entity-Relationship Model

Example of schema in the entity-relationship model

account

‘ Entity Relationship Model (Cont.)

B E-R model of real world
? Entities (objects)
E.g. customers, accounts, bank branch
? Relationships between entities
E.g. Account A-101 is held by customer Johnson

2,
AR

‘ Relational Model
Attributes
m Example of tabular data in the relational model
Customer-id customer- customer- customer- account-
name street city number
192-83-7465 Johnson Alma Palo Alto A-101
019-28-3746 Smith North Rye A-215
192-83-7465 Johnson Alma Palo Alto A-201
321-12-3123 Jones Main Harrison A-217
019-28-3746 Smith North Rye A-201

‘ A Sample Relational Database

| customer-id |customer-name| customer-street | customer-city |
192-83-7465 Johnson 12 Alma St. Palo Alto
019-28-3746 Smith 4 North St. Rye
677-89-9011 Hayes 3 Main St. Harrison
182-73-6091 Turner 123 Putnam Ave. Stamford
321-12-3123 Jones 100 Main St. Harrison
336-66-9999 Lindsay 175 Park Ave. Pittsfield
019-28-3746 Smith 72 North St. Rye
(a) The customer table

account-rumber | balance customer-id | account-number
A-101 500 192-83-7465 A-101
A-215 700 192-83-7465 A-201
A-102 400 019-28-3746 A-215
A-305 350 677-89-9011 A-102

A-201 900 182-73-6091 A-305
A-217 750 321-12-3123 A-217
A-222 700 336-66-9999 A-222
(b) The account table 019-28-3746 A-201

(c) The depositor table

‘ Data Definition Language (DDL)

B Specification notation for defining the database schema

? E.g.
create table account (
account-number char(10),
balance integer)

JLOWY
ATV=IASIE

‘ Data Manipulation Language (DML)

® Language for accessing and manipulating the data
organized by the appropriate data model

DML also known as query language

B Two classes of languages

IP D

2,
V=TI

£ SQL

/4

B SQL: widely used non-procedural language

* E.g. find the name of the customer with customer-id 192-83-7465
select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

¥ E.g. find the balances of all accounts held by the customer with
customer-id 192-83-7465
select account.balance
from depositor, account
where depositor.customer-id = ‘192-83-7465’ and
depositor.account-number = account.account-number

®m Application programs generally access databases through
" Language extensions to allow embedded SQL

© Application program interface (e.g. ODBC/JDBC) which allow 1
gueries to be sent to a database /%

Database System Concepts 117 ©Silberschatz, Korth-an

~ Database Users
\/

m Users are differentiated by the way they expect to interact
with the system

B Application programmers — interact with system through
DML calls

®m Sophisticated users — form requests in a database query
language
B Specialized users — write specialized database

applications that do not fit into the traditional data
processing framework

®m Naive users — invoke one of the permanent application
programs that have been written previously

" E.g. people accessing database over the web, bank tellers, clerica
staff i

Database System Concepts 1.18 ©Silberschatz, Korth-an

‘ Database Administrator

m Coordinates all the activities of the database
system; the database administrator has a good
understanding of the enterprise’s information
resources and needs.

I,
AR

‘ Transaction Management

® A transaction is a collection of operations that performs a
single logical function in a database application

B Transaction-management component ensures that the
database remains in a consistent (correct) state despite
system failures (e.g., power failures and operating system

2,
AR

10

‘ Storage Management

m Storage manager is a program module that provides the
interface between the low-level data stored in the database
and the application programs and queries submitted to the
system.

' Overall System Structure

= (] (] e

Sepilenend DML queries | [DDL interpreter]

query processor

v |l RS

storage manager

statistical data

11

' Application Architectures

a. two-tier architecture b. three-tier architecture

‘ Advantages of a DBMS

Data independence
Efficient data access
Data integrity & security
Data administration

2,
V=TI

12

~ DBMS vs. IRS

\/
Distribution of selected information
DBMS: The entities are '
uniquely and completely \
described by its
attributes. j% j\/: Retrieval

IRS: The number of

content identifiers can % /%
be very large and they

do not describe the Filtering

information uniquely /%/
and completely.

Users Informatio

Database System Concepts 1.25 ©Silberschatz, Ko
0 Search vs. Retrieval
~
DBMS: Strict matching between the Givemeal «— a—
query and the information abOl‘“
identifiers. Query
IRS: Degree of similarity between _Ildem'f'ers
the query and information A7 T~
identifiers. similariey estimation —_—
Content
Identifiers n
Content
Identifiers k Document n
Content
Content |f|ers 2 I

Document k
Identmers 1

~agument 2
Document 1

Database System Concepts 1.26

13

13.10.2011

‘Chapter 2. Entity-Relationship Model

B Entity Sets
B Relationship Sets
®m Design Issues

JLOWY
ARSI

‘ Entity Sets

B A database can be modeled as:
a collection of entities,
¥ relationship among entities.

B An entity is an object that exists and is distinguishable from

2,
AR

~ Entity Sets customer and loan
\/
customer-id customer- customer- customer- loan- amount
name street city number
|321-12-3123 |]ones | Main ‘Harrison ‘
|019-28-3746 [Smith | North [Rye | L-23
| 677-89-9011 [Hayes |Main |Harrison | L-15 | 1500
| 555-55-5555 |]ackson | Dupont‘Woodside‘ L-14]1500
| 244-66-8800 [Curry | North [Rye | 500
| 963-96-3963|Williams| Nassau | Princeton | L-11| 900]
| 335-57-7991 [Adams | Spring | Pittsfield |
customer loan

Database System Concepts 23 ©Silberschatz, Ko

~ Attributes
\/

B An entity is represented by a set of attributes, that is
descriptive properties possessed by all members of an
entity set.

Example:

customer = (customer-id, customer-name,
customer-street, customer-city)
loan = (loan-number, amount)

B Domain — the set of permitted values for each attribute

B Attribute types:
¥ Simple and composite attributes.
¥ Single-valued and multi-valued attributes
E.g. multivalued attribute: phone-numbers
¢ Derived attributes
Can be computed from other attributes
E.g. age, given date of birth

Database System Concepts 2.4

13.10.2011

' Composite Attributes

Composite name address
Attributes \ /
first-name middle-initial last-name street city state postal-code

Component
Attributes

street-number street-name apartment-number

‘ Relationship Sets

B A relationship is an association among several entities

Example:

Hayes depositor A-102
customer entity relationship set account entity

2,
AR

13.10.2011

~ Relationship Set borrower

| 321-12-3123 ‘ Jones

Main |Harrison I L-17 | 1000

il

| 677-89-9011 ‘Hayes Main |Harrison I L-15 | 1500

|

[019283746 [smith | North [Rye | 1-23 | 2000
| /
|

| 555-55-55655 ‘]ackson Dupont| Woodsidel

114 1500 |
| 244668800 | curry | North | Rye | / \ L-19
B

| 963-96-3963 ‘ Wil.liarns| Nassau| Princeton |/
| 335-57-7991 ‘ Adams I Spring |Pittsﬁeld i L-16 (1300
customer loan
Database System Concepts 2.7 ©Silberschatz, Korth
- Relationship Sets (Cont.)

~
® An attribute can also be property of a relationship set.

®m For instance, the depositor relationship set between entity sets
customer and account may have the attribute access-date

depositor(access-date)
account(account-number)
customer(customer-name) 24 May 1996
3 June 1996
ohnson
,‘ 21 June 1996 A-215
mit
' 10 June 1996 A-102
ayes
17 June 1996 el
28 May 1996 A-201
%
28 May 1996 =
»
‘ 24 June 1996 2217
23 May 1996
Database System Concepts 2.8 ©Silberschatz, Ko

13.10.2011

‘ Degree of a Relationship Set

B Refers to number of entity sets that participate in a
relationship set.

®m Relationship sets that involve two entity sets are binary (or
degree two). Generally, most relationship sets in a
database system are binary.

JLOWY
ATV=IASIE

‘ Mapping Cardinalities

B Express the number of entities to which another entity
can be associated via a relationship set.

® Most useful in describing binary relationship sets.

®m For a binary relationship set the mapping cardinality
must be one of the following :

2,
V=TI

13.10.2011

Mapping Cardinalities

L]

Mapping Cardinalities

13.10.2011

~ Mapping Cardinalities affect ER Design
~
® Can make access-date an attribute of account, instead of a
relationship attribute, if each account can have only one customer

m |.e., the relationship from account to customer is many to one,
or equivalently, customer to account is one to many

account (account-number, access-date)
customer (customer-name)

/ﬂ"f‘ffor/ﬂ A-101] 24 May 1996 |
— A-215| 3June 199 |
— A-102 | 10 June 1996 |
— A-305 [28 May 199 |
~ A-201 [17 June 199 |

ones
I —{ A-222 [24 June 1996 |
Lindsa

—{ A-217 | 23 May 199 |

Smith

Hayes

Turner

—
Q
=

Database System Concepts 213 ©Silberschatz, Ko

~ E-R Diagrams

customer-street loan-number

customer-name

customer-id
customer

borrower

B Rectangles represent entity sets.
® Diamonds represent relationship sets.
Em Lines link attributes to entity sets and entity sets to relationship sets.
m Ellipses represent attributes
® Double ellipses represent multivalued attributes.
m Dashed ellipses denote derived attributes.
® Underline indicates primary key attributes (will study later)

Database System Concepts 2.14 ©Silberschatz, Korth

13.10.2011

' E-R Diagram With Composite, Multivalued, and
Derived Attributes

middle-initial

apartment-number

account

13.10.2011

Roles

m Entity sets of a relationship need not be distinct

® The labels “manager” and “worker” are called roles; they specify how
employee entities interact via the works-for relationship set.

B Roles are indicated in E-R diagrams by labeling the lines that connect
diamonds to rectangles.

® Role labels are optional, and are used to clarify semantics of the
relationship

employee-id telephone-number

 manager
employee |~ Lworks-for
worker

Database System Concepts 217 ©Silberschatz, Korth

~

Database System Concepts

Cardinality Constraints
~
B We express cardinality constraints by drawing either a directed
line (=), signifying “one,” or an undirected line (—), signifying
“many,” between the relationship set and the entity set.
B E.g.: One-to-one relationship:
A customer is associated with at most one loan via the relationship
borrower
¥ Aloan is associated with at most one customer via borrower

13.10.2011

L]

One-To-Many Relationship

In the one-to-many relationship a loan is associated with at most
one customer via borrower, a customer is associated with
several (including 0) loans via borrower

customer-name

customer borrower loan

L]

Many-To-One Relationships

In a many-to-one relationship a loan is associated with several
(including 0) customers via borrower, a customer is associated
with at most one loan via borrower

13.10.2011

10

‘ Many-To-Many Relationship

Cuustomer-name Toan-numtber w
n

customer-id

customer

‘ Participation of an Entity Set in a
Relationship Set

m Total participation (indicated by double line): every entity in the entity
set participates in at least one relationship in the relationship set

B E.g. participation of loan in borrower is total
B every loan must have a customer associated to it via borrower

B Partial participation: some entities may not participate in any
relationship in the relationship set

m E.g. participation of customer in borrower is partial

loan

13.10.2011

11

Alternative Notation for Cardinality
Limits

m Cardinality limits can also express participation constraints

customer-street

customer-name

‘ Keys

m A super key of an entity set is a set of one or more

attributes whose values uniquely determine each
entity.

B A candidate key of an entity set is a minimal super key
7 Customer-id is candidate key of customer

2,
AR

13.10.2011

12

13.10.2011

‘ Keys for Relationship Sets

B The combination of primary keys of the participating entity
sets forms a super key of a relationship set.
(customer-id, account-number) is the super key of depositor

NOTE: this means a pair of entity sets can have at most one
relationship in a particular relationship set.

E.g. if we wish to track all access-dates to each account by each

A
AR

‘-R Diagram with a Ternary Relationship

13

13.10.2011

Cardinality Constraints on Ternary
Relationship

m We allow at most one arrow out of a ternary (or greater
degree) relationship to indicate a cardinality constraint

® E.g. an arrow from works-on to job indicates each employee
works on at most one job at any branch.

JLOWY
AR

‘Binary Vs. Non-Binary Relationships

B Some relationships that appear to be non-binary may be
better represented using binary relationships
E.g. A ternary relationship parents, relating a child to his/her father and
mother, is best replaced by two binary relationships, father and mother

Using two binary relationships allows partial information (e.g. only
mother being know)

2,
AR

14

L]

i Create a special identifying attribute for E

Converting Non-Binary Relationships to
Binary Form

®m |n general, any non-binary relationship can be represented using
binary relationships by creating an artificial entity set.

Replace R between entity sets A, B and C by an entity set E, and three

relationship sets:
1. Ry, relating E and A 2.Rg, relating E and B
3. R, relating E and C

I,
=Rl

Converting Non-Binary Relationships
(Cont.)

B Also need to translate constraints

Translating all constraints may not be possible

There may be instances in the translated schema that
cannot correspond to any instance of R

Exercise: add constraints to the relationships R,, Rg and R to

2,
AR

13.10.2011

15

~

Weak Entity Sets

/4

Database System Concepts 2.31

An entity set that does not have a primary key is referred to as a
weak entity set.

The existence of a weak entity set depends on the existence of a
identifying entity set

I8

¥ it must relate to the identifying entity set via a total, one-to-many
relationship set from the identifying to the weak entity set

¢ Identifying relationship depicted using a double diamond

The discriminator (or partial key) of a weak entity set is the set of
attributes that distinguishes among all the entities of a weak
entity set.

The primary key of a weak entity set is formed by the primary key
of the strong entity set on which the weak entity set is existence
dependent, plus the weak entity set's discriminator.

©Silberschatz, Ko

® We underline the discriminator of a weak entity set with a

B payment-number — discriminator of the payment entity set
B Primary key for payment — (loan-number, payment-number)

Weak Entity Sets (Cont.)

We depict a weak entity set by double rectangles.

dashed line.

payment-number payment-amount

Database System Concepts 2.32

13.10.2011

16

‘ Weak Entity Sets (Cont.)

® Note: the primary key of the strong entity set is not
explicitly stored with the weak entity set, since it is implicit
in the identifying relationship.

I,
A =TS

‘Example: Logins (Email Addresses)

Login name = user name + host name, e.g.,
ark@soe.ucsc.edu.

® A “login” entity corresponds to a user name on a particular host, but
the passwd table doesn'’t record the host, just the user name, e.g.,

ark.

2,
AR

13.10.2011

17

‘AII “Connecting” BBP

Entity Sets

Are Weak The- The-
Bar Beer

\[/

Price

LMY
A =TS

‘ Relationship To Weak Entities

B Consider a relationship, Ordered, between two entity sets,
Buyer and Product

Buyer Product

Shipment

2,
AR

13.10.2011

18

13.10.2011

‘Solution: make Ordered into a weak entity set.

Product

Buyer

B And then add Shipment.

& [El®
(Name
Ordered @
Shipment

AT TSI

‘ Design Issues

B Use of entity sets vs. attributes
Choice mainly depends on the structure of the enterprise being modeled,
and on the semantics associated with the attribute in question.

B Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an action
that occurs between entities

2, !
il

19

‘ Entity Sets Vs. Attributes

You may be unsure which concepts are worthy of being entity
sets, and which are handled more simply as attributes.

m Especially tricky for the class design project, since there is a
temptation to create needless entity sets to make project “larger.”

JLOWY
A =TS

‘ Example

The following design illustrates both points:

2,
AR

13.10.2011

20

Avoid redundancy

Beers Manfs

etting: client has (possibly vague) idea of what he/she wants. You must
design a database that represents these thoughts and only these thoughts.

Good:

I,
AR

L]

7 We

Don't Overuse Weak E.S.

B There is a tendency to feel that no E.S. has its entities uniquely
determined without following some relationships.

® However, in practice, we almost always create unique ID's to
compensate: social-security numbers, VIN's, etc.

B The only times weak E.S.'s seem necessary are when:

2,
AR

13.10.2011

21

How about doing an ER design

‘ Specialization

® Top-down design process; we designate subgroupings within an
entity set that are distinctive from other entities in the set.

B These subgroupings become lower-level entity sets that have
attributes or participate in relationships that do not apply to the
higher-level entity set.

2,
AR

13.10.2011

22

‘ Specialization Example

| teller secretary |

howrs-worked>

officer

‘ Generalization

® A bottom-up design process — combine a number of entity
sets that share the same features into a higher-level entity
set.

2,
AR

13.10.2011

23

Specialization and Generalization
(Contd.)

® Can have multiple specializations of an entity set based on
different features.

B E.g. permanent-employee vs. temporary-employee, in
addition to officer vs. secretary vs. teller

JLOWY
AR

‘ Design Constraints on a
Specialization/Generalization
B Constraint on which entities can be members of a given
lower-level entity set.

¥ condition-defined

E.g. all customers over 65 years are members of senior-
citizen entity set; senior-citizen ISA person.

2,
AR

13.10.2011

24

‘ Design Constraints on a

Specialization/Generalization (Contd.)

m Completeness constraint -- specifies whether or not an
entity in the higher-level entity set must belong to at least
one of the lower-level entity sets within a generalization.

¥ total : an entity must belong to one of the lower-level entity sets

I,
ATV=IASIE

' Aggregation

B Consider the ternary relationship works-on, which we saw earlier

B Suppose we want to record managers for tasks performed by an
employee at a branch

13.10.2011

25

‘ Aggregation (Cont.)

m Relationship sets works-on and manages represent overlapping
information

? Every manages relationship corresponds to a works-on relationship

¥ However, some works-on relationships may not correspond to any
manages relationships

So we can't discard the works-on relationship

JLOWY
A =TS

' E-R Diagram With Aggregation

job

<>

13.10.2011

26

‘ E-R Design Decisions

B The use of an attribute or entity set to represent an object.

m Whether a real-world concept is best expressed by an
entity set or a relationship set.

B The use of a ternary relationship versus a pair of binary

‘ Beers-Bars-Drinkers Example

Cname Caddr> (icense>

Bars

s o
Cname> Cmanf>) Cname) Caddr >

2,
AR

13.10.2011

27

13.10.2011

‘E-R Diagram for a Banking Enterprise

28

13.10.2011

Summary of Symbols Used in E-R

Notation
Entity Set @ Attribute
Weak Entity Set l\:tlt]:ii;zi:ed
Relationship Set L : __A__:) Derived Attribute

Identifying Total
Relationship Participation
Set for Weak of Entity Set
Entity Set in Relationship

Discriminating

& SHE

Primary Key Attribute of

' Summary of Symbols (Cont.)

Many to One
Relationship

Many to Many
Relationship

One to One

g | Cardinality
Relationship

Limits

ISA

Role Indicator \ (Specialization or
Generalization)

Total “ISA/ Disjoint

Generalization Generalization

29

13.10.2011

‘ Alternative E-R Notations

E
Entity set E with Al
attributes A1, A2, A3 A
and primary key Al 2

A3

Many to Many
Relationship

One to One
Relationship

Many to One
Relationship

r) o

® UML: Unified Modeling Language

® UML has many components to graphically model different
aspects of an entire software system

B UML Class Diagrams correspond to E-R Diagram, but

2,
AR

30

‘ Summary of UML Class Diagram Notation

customer

Customer-stree

1. Entity sets
and attributes

customer-id
customer-name
customer-street
customer-city

‘ UML Class Diagrams (Contd.)

m Entity sets are shown as boxes, and attributes are shown within the
box, rather than as separate ellipses in E-R diagrams.

m Binary relationship sets are represented in UML by just drawing a
line connecting the entity sets. The relationship set name is written
adjacent to the line.

m The role played by an entity set in a relationship set may also be
specified by writing the role name on the line, adjacent to the entity

ALY '
il

13.10.2011

31

' UML Class Diagram Notation (Cont.)

3. Cardinality 0.1 R o
constraints El :lm
—
4. Generalization and generalization) A\ /\ overlappin
Specialization NSA” T] pping
I customer | | employee |

(disjoint
generalization) A\

disjoint

I customer | | employeel

L]

can parti
m Beware:

m Cardinality constraints are specified in the form I..h, where | denotes
the minimum and h the maximum number of relationships an entity

positioning of constraints in E-R diagrams.
B The constraint 0..* on the E2 side and 0..1 on the E1 side means that

UML Class Diagrams (Contd.)

cipate in.
the positioning of the constraints is exactly the reverse of the

ALY '
il

13.10.2011

32

‘Reduction of an E-R Schema to Tables

® Primary keys allow entity sets and relationship sets to be
expressed uniformly as tables which represent the
contents of the database.

B A database which conforms to an E-R diagram can be
represented by a collection of tables.
B For each entity set and relationship set there is a unique

' Representing Entity Sets as Tables

B A strong entity set reduces to a table with the same attributes.

| customer-id | customer-name | customer-street | customer-city |

019-28-3746 Smith North Rye

182-73-6091 Turner Putnam Stamford
192-83-7465 Johnson Alma Palo Alto
244-66-8800 Curry North Rye

321-12-3123 Jones Main Harrison
335-57-7991 Adams Spring Pittsfield
336-66-9999 Lindsay Park Pittsfield
677-89-9011 Hayes Main Harrison
963-96-3963 Williams Nassau Princeton

13.10.2011

33

‘Composite and Multivalued Attributes

B Composite attributes are flattened out by creating a separate attribute
for each component attribute

¥ E.g. given entity set customer with composite attribute name with
component attributes first-name and last-name the table corresponding
to the entity set has two attributes
name.first-name and name.last-name

® A multivalued attribute M of an entity E is represented by a separate
table EM

{®

‘ Representing Weak Entity Sets

m A weak entity set becomes a table that includes a column for
the primary key of the identifying strong entity set

loan-number payment-number payment-date payment-amount
L-11 53 7 June 2001 125
L-14 69 28 May 2001 500
L-15 22 23 May 2001 300
L-16 58 18 June 2001 135
L-17 5 10 May 2001 50
L-17 6 7 June 2001 50
L-17 7 17 June 2001 100
L-23 11 17 May 2001 75
1-93 103 3 June 2001 900
1-93 104 13 June 2001 200

13.10.2011

34

Database System Concepts 2.69

Representing Relationship Sets as
/e Tables

B A many-to-many relationship set is represented as a table with
columns for the primary keys of the two participating entity sets,
and any descriptive attributes of the relationship set.

m E.g.: table for relationship set borrower

| customer-id | loan-number |

019-28-3746 L-11
019-28-3746 L-23
244-66-8800 L-93
321-12-3123 L-17
335-57-7991 L-16
555-55-5555 L-14
677-89-9011 L-15
963-96-3963 L-17

~

Database System Concepts 2.70 ©Silberschatz, Korth and-Sudars

Redundancy of Tables
\/

B Many-to-one and one-to-many relationship sets that are total
on the many-side can be represented by adding an extra
attribute to the many side, containing the primary key of the
one side

B E.g.: Instead of creating a table for relationship account-
branch, add an attribute branch to the entity set account

branch-name

account-
branch

account-number

account

13.10.2011

35

13.10.2011

‘ Redundancy of Tables (Cont.)

® For one-to-one relationship sets, either side can be chosen to act
as the “many” side

That is, extra attribute can be added to either of the tables
corresponding to the two entity sets

m |f participation is partial on the many side, replacing a table by an
extra attribut_e in the relation corresponding to the “many” side

I,
AR

‘ Representing Specialization as Tables

® Method 1:
¥ Form a table for the higher level entity

¥ Form a table for each lower level entity set, include primary key of
higher level entity set and local attributes

table table attributes

2,
AR

36

Representing Specialization as Tables
(Cont.)
® Method 2:
¥ Form a table for each entity set with all local and inherited
attributes
table | table attributes
person name, street, city _

JLOWY
ATV=IASIE

‘ Relations Corresponding to
Aggregation

® To represent aggregation, create a table containing
®m primary key of the aggregated relationship,
m the primary key of the associated entity set

2,
V=TI

13.10.2011

37

13.10.2011

' Relations Corresponding to
Aggregation (Cont.)

®m E.g. to represent aggregation manages between relationship
works-on and entity set manager, create a table
manages(employee-id, branch-name, title, manager-name)

® Table works-on is redundant provided we are willing to store
null values for attribute manager-name in table manages

38

‘ E-R Diagram for Exercise 2.10

— shopping-basket

13.10.2011

39

13.10.2011

' E-R Diagram for Exercise 2.22

X Y

ISA ISA

' E-R Diagram for Exercise 2.15

I &
(-1 m@-p—©e-&
!

(b)

(©

40

‘ Existence Dependencies

m |f the existence of entity x depends on the existence of
entity y, then x is said to be existence dependent ony.

¥ yis a dominant entity (in example below, loan)

JLOWY
ATNVIARIL

13.10.2011

41

‘ Chapter 3: Relational Model

®m Structure of Relational Databases
B Relational Algebra
m Tuple Relational Calculus

B Domain Relational Calculus

K/
AR

' Example of a Relation

account-number | branch-name | balance

A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill

‘ Basic Structure

® Formally, given sets D,, D,, D,y arelation ris a subset of

D, x D, x...xD,
Thus a relation is a set of n-tuples (a,, a,, ..., a,) where

each a, € D,
m Example: if

K/
AR

‘ Attribute Types

B Each attribute of a relation has a name

B The set of allowed values for each attribute is called the
domain of the attribute

m Attribute values are (normally) required to be atomic, that
is, indivisible

LMY
AR

‘ Relation Schema

B A, A, ..., A, are attributes
B R=(A, A, ..., A,)is arelation schema

E.g. Customer-schema =
(customer-name, customer-street, customer-city)

‘ Relation Instance

B The current values (relation instance) of a relation are
specified by a table

B An elementt of r is a tuple, represented by a row in a
table

customer-name | customer-street | customer-city

Jones Harrison
Smith Rye

Curry Rye
Lindsay Pittsfield

LMY
AR

' Relations are Unordered

® Order of tuples is irrelevant (tuples may be stored in
an arbitrary order)

B E.g. account relation with unordered tuples

| account-number | branch-name | balance |

A-101 Downtown | 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill | 350
A-201 Brighton 900
A-222 Redwood 700
A-217 Brighton 750

‘ Why Relations?

® Very simple model.
B Often a good match for the way we think about our data.

B Abstract model that underlies SQL, the most important
language in DBMS's today.

But SQL uses “bags” while the abstract relational model is set-

LMY
AR

A Database

®m A database consists of multiple relations

m Information about an enterprise is broken up into parts,
with each relation storing one part of the information

E.g.: account: stores information about accounts
depositor : stores information about which customer
owns which account
customer : stores information about customers

®m Storing all information as a single relation such as
bank(account-number, balance, customer-name, ..)
results in
' repetition of information (e.g. two customers own an account)

B

¢ the need for null values (e.g. represent a customer without an.
account)
N/ %

= Normalization theory (Chapter 7) deals with how to desig
relational schemas '

Database System Concepts 3.9 ©Silberschatz, Korth

A A The customer Relation
| customer-name | customer-street | customer-city |

Adams Spring Pittsfield
Brooks Senator Brooklyn
Curry North Rye
Glenn Sand Hill Woodside
Green Walnut Stamford
Hayes Main Harrison
Johnson Alma Palo Alto
Jones Main Harrison
Lindsay Park Pittsfield
Smith North Rye
Turner Putnam Stamford
Williams Nassau Princeton

Database System Concepts 3.10 ©Silberschatz, Korth

‘ The depositor Relation

customer-name | account-number
Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305

'—R Diagram for the Banking Enterprise

customer-natie

i)

[) Keys

m letKcR

B Kis asuperkey of R if values for K are sufficient to identify
a unique tuple of each possible relation r(R)

? by “possible r’ we mean a relation r that could exist in the enterprise
we are modeling.

LAWY
ST

‘ Example 1

Drinkers(hame, addr, beersLiked, manf, favoriteBeer)
m {name, beersLiked} FD’s all attributes, as seen.

¥ Shows {name, beersLiked} is a superkey.
= name — beersLiked is false, so name is not a superkey.

m beersLiked — name also false, so beersLiked is not a superkey.

LMY
ATV=IARIE

‘ Example 2

Lastname Firstname Student ID Major
N /

N \ﬁ/_/

Key Key

‘ Determining Keys from E-R Sets

B Strong entity set. The primary key of the entity set
becomes the primary key of the relation.

B Weak entity set. The primary key of the relation consists
of the union of the primary key of the strong entity set and
he discriminator of the weak entity se

LMY
AR

‘chema Diagram for the Banking Enterprise

branch account depositor customer
branch-name {—I_ account-number <—|_ customer-name —>{ customer-name
branch~city branch-name account-number customer—street
assets balance customer—city

loan borrower

loan—number customer-name
branch-name loan-number
amount

‘ Query Languages

®m Language in which user requests information
from the database.

B Categories of languages
? procedural

¥ non-procedural

LMY
AR

‘ Relational Algebra

® Procedural language

B Six basic operators
¥ select

LAWY
ATNV=ARI

‘ Select Operation — Example

w
(@)
O

* Relation r A

alelc]o

al|lal|l|7
L | B |23|10

LMY
ATV

10

‘ Select Operation

= Notation: o (r)
B pis called the selection predicate
m Defined as:

LAWY
il S

‘ Project Operation — Example

(@)

® Relationr: A|B

LMY
AV =IRI

11

‘ Project Operation

B Notation:

HAl, a2 . ak (D
where A,, A, are attribute names and r is a relation name.

LAWY
il S

‘ Union Operation — Example

B Relations r, s: AlB A|B

LMY
AV =IRI

12

‘ Union Operation

® Notation: ruU s
B Defined as:

rus={t|terorte s}

LAWY
il S

‘Set Difference Operation — Example

B Relations r, s: AlB A|B

A8
a |l
gl 1

LMY
AV =IRI

13

‘ Set Difference Operation

B Notationr—s
B Defined as:
r-s ={t|terandt ¢ s}

AN
ATNV=ARI

‘ Cartesian-Product Operation-Example

Relations r, s: A|B C|D|E
a |l a |10 a

L 110]| a

g2 L 120 b

¥y |10| b

o T 9 CCCO 9 Q®

a
a
a
a
B
B
B

B

LMY
ATV

14

m Notationrxs
B Defined as:

‘ Cartesian-Product Operation

rxs={tq|terandq e s}

LAWY
SRR

® Example: c,_c(r xs)

‘ Composition of Operations

B Can build expressions using multiple operations

>

B rxs

(@)

m

D WD™I™R R R R

NDNNDNPRFR PP R @

TDH™R X /R

o T Y O T 9 QD

LMY
ARSI

15

‘ Rename Operation

B Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

m Allows us to refer to a relation by more than one name.
Example:

LAWY
SRR

‘ Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

LMY
ARSI

16

‘ Example Queries

® Find all loans of over $1200

Gamount > 1200 (I0@N)

LAWY
ARSI

‘ Example Queries

B Find the names of all customers who have a loan, an account, or
both, from the bank

LMY
AT HRIC

17

‘ Example Queries

® Find the names of all customers who have a loan at the Perryridge
branch.

chstomer-name (Gbranch-name=“Perryridge"

‘ Example Queries

® Find the names of all customers who have a loan at the Perryridge
branch.

—Query 1

chstomer-name(Gbranch-name = “Perryridge” (

LMY
AR

18

‘ Example Queries

Find the largest account balance
B Rename account relation as d

B The query is:

LAWY
il S

‘ Formal Definition

B A basic expression in the relational algebra consists of
either one of the following:

A relation in the database
A constant relation

LMY
AV =IRI

19

‘ Additional Operations

We define additional operations that do not add any power
to the relational algebra, but that simplify common queries.

LAWY
ARSI

‘ Set-Intersection Operation

® Notation:rn's
B Defined as:

B rns={t|terandtes}

LMY
AT HRIC

20

‘Set-lntersection Operation - Example

A |8 |

a | 2
B |3

B Relationr, s:

Q
PNE | g

LAWY
ATNV=ARI

‘ Natural-Join Operation

= Notation: rX s

B Letr and s be relations on schemas R and S respectively.

Then, r 5 S is a relation on schema R U S obtained as
follows:

LMY
ATV

21

‘ Natural Join Operation — Example

B Relationsr, s:

O

O
w
@)
m

A|B

LAWY
il S

‘ Division Operation

r+S

B Suited to queries that include the phrase “for all”.
B Letr and s be relations on schemas R and S

LMY
AV =IRI

22

‘ Division Operation — Example

>
w

Relations r, s:

MM SR ™R R K
NFPORWRRERERPWNPR

LAWY
ARSI

‘ Another Division Example

Relations r, s: Alslclole Dl E
ala|a|al|l a|l
ala|y|lal|l b |1
alaly|b|1l
pla|yrlall
Bla|y|b|3
ylal|lylal|l
ylaly|b|1l
ylal|pg|b|1

LMY
AT HRIC

‘ Division Operation (Cont.)

B Property
P Letg-r +s
Then q is the largest relation satisfying qxs cr

LAWY
SRR

‘ Assignment Operation

B The assignment operation (<) provides a convenient way
to express complex queries.
¥ Write query as a sequential program consisting of
a series of assignments
followed by an expression whose value is displayed as a result of

LMY
ARSI

24

‘ Example Queries

B Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.

Query 1

LAWY
ATNV=ARI

‘ Example Queries

B Find all customers who have an account at all branches
located in Brooklyn city.

IT crname branchoname (0€POSItOr i account

LMY
ATV

25

‘Extended Relational-Algebra-Operations

B Generalized Projection

LAWY
ATNV=ARI

‘ Generalized Projection

m Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

H (R, (725 coon Fn(E)

LMY
ATV

26

‘ Aggregate Functions and Operations

m Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value

LAWY
il S

‘ Aggregate Operation — Example

® Relationr:

>
(o8]
@)

LMY
AV =IRI

27

‘ Aggregate Operation — Example

B Relation account grouped by branch-name:

| branch-name | account-number | balance |
Perryridge 400
Perryridge 900
Brighton 750
Brighton 750

Redwood 700

branch-name balance

Perryridge 1300
Brighton 1500
Redwood 700

LAWY
AR

‘ Aggregate Functions (Cont.)

m Result of aggregation does not have a name
Can use rename operation to give it a name

¥ For convenience, we permit renaming as part of aggregate
operation

LMY
AR

28

‘ Outer Join

® An extension of the join operation that avoids loss of information.

m Computes the join and then adds tuples form one relation that do
not match tuples in the other relation to the result of the join.

B Uses null values:

LAWY
SRR

‘ Outer Join — Example

B Relation loan

| loan-number | branch-name | amount

L-170 Downtown 3000

L-230 Redwood 4000
Perryridge

customer-name| loan-number

Jones L-170
Smith L-230

Hayes L-155

LMY
ARSI

29

‘ Outer Join — Example

® Inner Join

loan X Borrower

| loan-number | branch-name | amount |customer-name

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

X

loan-number | branch-name customer-name

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null

K/
AR

‘ Outer Join — Example

B Right Outer Join
loan [borrower

| loan-number | branch-name | amount |customer-name
L-170 Downtown 3000 | Jones

L-230 Redwood 4000 Smith
L-155 null null Hayes

X

loan-number | branch-name customer-name

Downtown
Redwood
Perryridge
null

LMY
AR

30

‘ Null Values

It is possible for tuples to have a null value, denoted by null, for
some of their attributes

null signifies an unknown value or that a value does not exist.

The result of any arithmetic expression involving null is null.

Aggregate functions simply ignore null values

K/
AR

‘ Null Values

m Comparisons with null values return the special truth value
unknown

If false was used instead of unknown, then not (A < 5)
would not be equivalent to A>=5

B Three-valued logic using the truth value unknown:
OR: (unknown or true) = true,

LMY
AR

‘ Modification of the Database

® The content of the database may be modified using the following
operations:

Deletion

Insertion

LAWY
ATNV=ARI

‘ Deletion

m A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

B Can delete only whole tuples; cannot delete values on only

LMY
ATV

32

‘ Deletion Examples

m Delete all account records in the Perryridge branch.

account «- account — G pranch-name = “Perryridge” (&ccount)

LAWY
SRR

‘ Insertion

B To insert data into a relation, we either:

i specify a tuple to be inserted

¥ write a query whose result is a set of tuples to be inserted
® in relational algebra, an insertion is expressed by:

LMY
ARSI

33

‘ Insertion Examples

m Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account < account U {(“Perryridge”, A-973, 1200)}
depositor < depositor U {(“Smith”, A-973)}

‘ Updating

® A mechanism to change a value in a tuple without charging all
values in the tuple

m Use the generalized projection operator to do this task

r<II F1,F2, ..., Fl, 0]

LMY
AR

34

L]

m Make interest payments by increasing all balances by 5 percent.

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

Update Examples

account < [T an, BN, BAL * 1.05 (&ccount)

L]

Views

B In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database.)

B Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount. This person should see

a relation described, in the relational algebra, by

LMY
AR

35

‘ View Definition

m Aview is defined using the create view statement which has the
form

create view v as <query expression

where <query expression> is any legal relational algebra query

‘ View Examples

m Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as

l_[branch-name, customer-name (depositor M account)

LMY
AR

36

‘ Updates Through View

B Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

B Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as:

K/
AR

‘ Updates Through Views (Cont.)

B The previous insertion must be represented by an insertion into the
actual relation loan from which the view branch-loan is constructed.

B An insertion into loan requires a value for amount. The insertion
can be dealt with by either.

rejecting the insertion and returning an error message to the user.

B e = ~la (4 N UDArm L=z = ~1+A thao

LMY
AR

37

‘ Views Defined Using Other Views

B One view may be used in the expression defining another view

m A view relation v, is said to depend directly on a view relation v,
if v, is used in the expression defining v,

B A view relation v, is said to depend on view relation v, if either v,

‘ View Expansion

m A way to define the meaning of views defined in terms of other
views.

m |etview v, be defined by an expression e, that may itself contain
uses of view relations.

LMY
AR

38

‘ Tuple Relational Calculus

® A nonprocedural query language, where each query is of the form

{tIP@®}

m |tis the set of all tuples t such that predicate P is true for t

LAWY
il S

‘ Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., <, <, =, #, >, 2)

3. Set of connectives: and (A), or (v), not (—)

LMY
AV =IRI

‘ Banking Example

® branch (branch-name, branch-city, assets)
B customer (customer-name, customer-street, customer-city)

B account (account-number, branch-name, balance)

LAWY
il S

‘ Example Queries

® Find the loan-number, branch-name, and amount for loans of
over $1200

{t| t € loan A t [amount] > 1200}

LMY
AV =IRI

40

‘ Example Queries

® Find the names of all customers having a loan, an account, or
both at the bank

{t | 3s e borrower(tfcustomer-name] = s[customer-name])
v Ju e depositor(tfcustomer-name] = u[customer-name])

A
ST

‘ Example Queries

® Find the names of all customers having a loan at the Perryridge
branch

{t | 3s e borrower(t[customer-name] = s[customer-name]
A Ju e loan(u[branch-name] = “Perryridge”
A U[loan-number] = s[loan-number

LMY
ATV=IARIE

41

‘ Example Queries

® Find the names of all customers having a loan from the
Perryridge branch, and the cities they live in

{t | 3s € loan(s[branch-name] = “Perryridge”
A Ju e borrower (u[loan-number] = s[loan-number

Ny
SRR

‘ Example Queries

B Find the names of all customers who have an account at all
branches located in Brooklyn:

{t| 3 c € customer (t[customer.name] = c[customer-name]) A

LMY
ARSI

42

‘ Safety of Expressions

B |tis possible to write tuple calculus expressions that generate
infinite relations.

B For example, {t | — t e r} results in an infinite relation if the
domain of any attribute of relation r is infinite

guard against the problem, we restrict the set of allowable

® To

‘ Domain Relational Calculus

m A nonprocedural query language equivalent in power to the tuple
relational calculus

B Each query is an expression of the form:

LMY
AR

43

‘ Example Queries

B Find the loan-number, branch-name, and amount for loans of over
$1200

{<l,b,a>|<I, b,a> e loan A a > 1200}

® Find the names of all customers who have a loan of over $1200

‘ Example Queries

® Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

{<c>|3l({<c,|> e borrower
A3 ball, b,a> e loan A b = “Perryridge”))

LMY
AR

44

‘ Safety of Expressions

{ < X4y Xoy ooey Xy > | P(Xq, Xp, o0y X))}

is safe if all of the following hold:

1.All values that appear in tuples of the expression are values
from dom(P) (that is, the values appear either in P or in a tuple

LAWY
ST

45

' Result of O'branch-name=“Perryridge" (Ioan)

loan-number | branch-name

amount

L-15 Perryridge
L-16 Perryridge

1500
1300

'Loan Number and the Amount of the Loan

loan-number | amount
L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

46

Names of All Customers Who Have
Either a Loan or an Account

| customer-name |

Adams
Curry
Hayes
Jackson
Jones
Smith
Williams
Lindsay
Johnson
Turner

Qstomers With An Account But No Loan

customer-name

Johnson
Lindsay
Turner

47

Result of borrower x loan

Result of oy anch-name = “Perryridger (DOTrOWer x loan)

borrower. loan.
customer-name | loan-number | loan-number | branch-name | amount
Adams L-16 L-15 Perryridge 1500
Adams L-16 L-16 Perryridge 1300
Curry L-93 L-15 Perryridge 1500
Curry L-93 L-16 Perryridge 1300
Hayes L-15 L-15 Perryridge 1500
Hayes L-15 L-16 Perryridge 1300
Jackson L-14 L-15 Perryridge 1500
Jackson L-14 L-16 Perryridge 1300
Jones L-17 L-15 Perryridge 1500
Jones L-17 L-16 Perryridge 1300
Smith L-11 L-15 Perryridge 1500
Smith L-11 L-16 Perryridge 1300
Smith L-23 L-15 Perryridge 1500
Smith L-23 L-16 Perryridge 1300
Williams L-17 L-15 Perryridge 1500
Williams L-17 L-16 Perryridge 1300

48

‘ Result of e

customer-name

Adams
Hayes

' Result of the Subexpression

balance

500
400
700
750
350

49

‘Largest Account Balance in the Bank

balance
900

'Customers Who Live on the Same Street and In the
Same City as Smith

customer-namne

Curry
Smith

50

'Customers With Both an Account and a Loan
at the Bank

customer-name

Hayes
Jones
Smith

' ReSUIt Of chstomer-name, loan-number, amount

(borrower < loan)

| customer-name | loan-number | amount |
Adams L-16 1300
Curry L-93 500
Hayes L-15 1500
Jackson L-14 1500
Jones L-17 1000
Smith L-23 2000
Smith L-11 900
Williams L-17 1000

‘ Result of I_Ibranch-name(o'customer-city =

«Harrison~ (Customer >xi account p<idepositor))

| branch-name

Brighton
Perryridge

' Result of l_Ibranch-name(o'branch-city =

“Brooklyn” (branch))

branch-name

Brighton
Downtown

52

‘esult Of IT.ystomer-name, branch-name(d€POSItOr paccount)

| customer-name | branch-name |
Hayes Perryridge
Johnson Downtown

Johnson Brighton
Jones Brighton
Lindsay Redwood
Smith Mianus

Turner Round Hill

' The credit-info Relation

customer-name | branch-name
Hayes Perryridge
Johnson Downtown
Johnson Brighton
Jones Brighton
Lindsay Redwood
Smith Mianus
Turner Round Hill

53

QESU It of chstomer-name, (limit — credit-balance) as

credit-available(C redit-i nfo).

| customer-name | credit-available

Curry
Jones
Smith
Hayes

250
5300
1600

0

L]

The pt-works Relation

| employee-name | branch-name | salary |

Adams
Brown
Gopal
Johnson
Loreena
Peterson
Rao
Sato

Perryridge
Perryridge
Perryridge
Downtown
Downtown
Downtown
Austin
Austin

1500
1300
5300
1500
1300
2500
1500
1600

54

' The pt-works Relation After Grouping

| employee-name | branch-name | salary |
Rao Austin 1500
Sato Austin 1600
Johnson Downtown | 1500
Loreena Downtown | 1300
Peterson Downtown | 2500
Adams Perryridge | 1500
Brown Perryridge | 1300
Gopal Perryridge | 5300

‘RESUH of branch-name §sum(salary) (pt-WOI‘kS)

branch-name | sum of salary

Austin 3100
Downtown 5300
Perryridge 8100

55

UGSUH of branch-name $ sum salary, max(salary) as
max-salary (pt-WOI‘kS)

branch-name | sum-salary | max-salary

Austin 3100 1600
Downtown 5300 2500

Perryridge 8100 5300

'The employee and ft-works Relations

| employee-name | street | city |
Coyote Toon Hollywood
Rabbit Tunnel | Carrotville
Smith Revolver | Death Valley
Williams | Seaview | Seattle

| employee-name | branch-name | salary |
Coyote Mesa 1500
Rabbit Mesa 1300
Gates Redmond | 5300

Williams Redmond | 1500

56

' The Result of employee ><xft-works

employee-name | street city branch-name | salary
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel | Carrotville Mesa 1300
Williams Seaview | Seattle Redmond | 1500

'The Result of employee < ft-works

| employee-name | street | city | branch-name | salary |
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300

Williams Seaview | Seattle Redmond | 1500
Smith Revolver | Death Valley null null

57

' Result of employee o<t ft-works

Williams
Gates

Seaview

null

Seattle
null

Redmond
Redmond

| employee-name | street city | branch-name | salary |
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel | Carrotville Mesa 1300

1500
5300

' Result of employee =<t ft-works

Smith
Gates

Revolver
null

Death Valley
null

null
Redmond

employee-name street city branch-name | salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500

58

‘uples Inserted Into loan and borrower

loan-number | branch-name

amount |

null null

L-11 Round Hill
L-14 Downtown
L-15 Perryridge
L-16 Perryridge
L-17 Downtown
L-23 Redwood
L-93 Mianus

900
1500
1500
1300
1000
2000

500
1900

customer-naine

loan-number

Adams
Curry
Hayes

Jackson
Jones
Smith
Smith
Williams
Johnson

L-16
L-93
L-15
L-14
L-17

Names of All Customers Who Have a
Loan at the Perryridge Branch

customer-name

Adams
Hayes

59

E-R Diagram

Z_partic I
_ damage-amount

L]

The branch Relation

| branch-name | branch-city | assets |
Brighton Brooklyn 7100000
Downtown | Brooklyn 9000000
Mianus Horseneck | 400000
North Town | Rye 3700000
Perryridge | Horseneck | 1700000
Pownal Bennington | 300000
Redwood Palo Alto 2100000

Round Hill

Horseneck

8000000

60

' The loan Relation

|loan—number branch-name | amount

L-23 Redwood
L-93 Mianus

L-11 Round Hill 900
L-14 Downtown | 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown | 1000

2000
500

' The borrower Relation

customer-name | loan-number
Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17

61

‘ Chapter 7: SQL

Basic Structure
Simple Queries
Nested Subqueries

LAWY
SRR

‘ Basic Structure

B SQL is based on set and relational operations with certain
modifications and enhancements
m A typical SQL query has the form:
select A, A, ..., A,
fromry, 1o, ..., T,

LMY
ARSI

Schema Used in Examples

Database System Concepts

~

~

S# [Sname | Status |City

S1 (Smith 20 London Suppliers

S2 (Jones 10 Paris .

S3 |Blake 30 |Paris S (S#, Sname, Status, City)

S4 |Clark 20 London

S5 |Adams 30 |Athens

St | P# | QTY

S1|P1| 300 | S2 | P1 | 300

S1| P2 | 200 | S2 | P2 | 400 Shipments

S1| P3| 400 | S3 | P2 | 200

S1| P4 | 200 | S4 | P2 | 200 SP (S#, P#! QTY)

S1|P5| 100 | S4 | P4 | 300

S1| P6| 100 | S4 | P5 | 400

P# [Pname|Color |Weight|City

P1 [Nut Red 12 |London

P2[Bolt |Green| 17 [Paris Parts

P3 |Screw |Blue 17 |Rome H :

R e = ey e P (P#, Pname, Color, Weight, lty)

P5 [Cam |Blue 12 |Paris ;I. —,

P6|Cog |Red 19 |London |
4.3 ©Silberschatz, K

Simple Queries)

-
~
S# |Sname Status |City
S1 (Smith 20 London
S2 |Jones 10 Paris
S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 |London
s# | P# | QTY
S1|P1| 300 | S2 | P1 | 300
S1|P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1|P6| 100 | S4 | P5 | 400

Database System Concepts

Get part numbers for Get part numbers for all parts
all parts supplied. supplied (no duplicates).

select P# select distinct P#
from SP ; from SP;

Result: Result:

pi# P#

P1 P1 P1

P2 P2 P2

P3 P2 P3

P4 P2 P4

P5 P4 P5

P6 P5 P6

Get supplier numbers from Paris with Status above 20.

select S#
from S
where City = ‘Paris’ and Status > 25;

Result:
S#
S3

4.4 ©Silberschatz, K

~ Simple Queries ()
\/

S# [Sname | Status |City Get supplier numbers and For all blue parts, get
S1 |Smith 20 |London | Status for suppliers in Paris the weights in grams.
S2 |Jones 10 |Paris in desceding order of status.
SO8Bkke 30 JParis | gelect S#, Status select P#, Weight «454
S4 |Clark 20 London

from S from P
S5 |Adams 30 |Athens . . ., . ,

| == where City = ‘Paris where Color = ‘Blue
P |Pnamelcolor IWeIghiCy__ | grder by Status desc ; order by 2, P#;
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris Result: Result:
P3 [Screw [Blue 17 |Rome .
S# Status

P4 |Screw [Red 14 |London S3 30 % \é\é—ei!—éht
P5|Cam [Blue | 12 [Paris S2 10 P3 7718
P6 [Cog |Red 19 [London .

Include constatnt in select clause.

s# | P [Q1Y select P#, ‘Weights in grams = *, Weight*454
S1|P1]300|s2|PL|300] "0

st[p2l200|s2[P2fa00f oo o
S1| P3| 400 | s3 | P2 | 200 | WNETE L0ION="BIUE,

s1|Pa| 200 | s4 | P2] 200 Result:
s1|ps| 100 | s4 | Pa | 300 P#
s1| p6 | 100 | s4 [p5 [400 P3 Weights in grams = 7718

P5 Weights in grams = 5448

Database System Concepts 4.5
~ Simple Queries (between)
~
S# |Sname | Status |City Get parts whose weight is in range 16 to 19 (inclusive).
S1 |Smith 20 [London | gelect #
S2 |Jones 10 Paris from P
S3 (Blake 30 Paris g .
o o oo where Weight between 16 and 19 ;
S5 |Adams 30 |Athens Result:
P# |Pname|Color (Weight|City P# Pname Color Weight City
P1[Nut |Red 12 |London P2 Bolt Green 17 Paris
P2 |Bolt [Green| 17 [Paris P3 Screw Blue 17 Rome

P3 [Screw [Blue 17 |Rome P6 Cog Red 19 London

P4 |Screw [Red 14 |London : . .
P5lcam |Blue | 12 |paris | Get parts whose weight is not in range 16 to 19.
P6|Cog |Red | 19 Jlondon] select P#, Pname, Color, Weight, City

S# | P# | QTY from P

S1[P1|300 | S2 | P1| 300 |where Weight not between 16 and 19 ;

S1| P2 | 200 | S2 | P2 | 400

S1| P3| 400 | S3 | P2 | 200 Result: N
S1| P4 | 200 | S4 | P2 | 200 P# Pname Color Weight City >
sS1| P5 | 100 sS4 P4 | 300 P1 Nut Red 12 London 1
P4 Screw Red 14 London [
S1/P6] 100 | S4 | PS5 | 400 P5 Cam Blue 12 Paris '

Database System Concepts 4.6 ©Silberschatz, Korth ane-Sudars

~ Simple Queries (in)

~

S# [Sname | Status |City Get parts whose weight is in range 16 to 19 (inclusive).
S1 [Smith 20 |London | select #*

S2 |Jones 10 |Paris from P

S3 [Blake 30 |Paris where Weight in {12, 16, 17} ;

S4 |Clark 20 London

S5 |Adams 30 |Athens Result: _ ;

P# [Pname|[Color |Weight|City % Elrlfme (Fig(ljor \1/\£e|qht (L:_clm\idon

P1|Nut |Red 12 |London P2 Bolt Green 17 Paris

P2 Bolt |[Green| 17 |Paris P3 Screw Blue 17 Rome

P3 [Screw [Blue 17 |Rome P5 Cam Blue 12 Paris

P4 |Screw |Red 14 |London
P5|Cam |Blue | 12 |Paris | Get parts whose weight is not in range 16 to 19.

P6 [Cog |Red 19 [London _ _
S| PE]QTY select P#, Pname, Color, Weight, City

si|p1|s00 sz P30 fromP _
s1l P2 | 200 | s2 | P2 | a00 | Where Weight not in {12, 16, 17} ;

S1| P3| 400 | S3 | P2 | 200

S1| P4 | 200 | S4 | P2 | 200 rzallE Col iaht Ci
P# Pname Color Weight City
SLIPS | 100] S4 | P4 | 300 P4 Screw Red 14 London
S1|P6] 100 | S4 | P5 | 400 P6 Cog Red 19 London
Database System Concepts 4.7 ©Silberschatz, K
~ Simple Queries (like)
~ -
% [Sname | Status [City Get parts whose names begin with the letter C.
S1 |Smith 20 London select *
S2 |Jones 10 |Paris from P
22 Bl 30 Pais | \vhere Pname like ‘C* ;
S4 |Clark 20 |London ’
S5 |Adams 30 |Athens Result:
P# |Pname|Color |Weight|City P# Pname Color Weight Ci
P1 [Nut Red 12 |London P5 Cam Blue 12 Paris
P2 [Bolt |Green| 17 [Paris P6 Cog Red 19 London

P3|Screw [Blue | 17 |Rome | o siands for any string, ? stands for any character
P4 |Screw [Red 14 |London

P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 |London

Sname like *?la** — all supplier names with second
character | and third characer a.

S#| P# | QTY Pname like ‘????" — all part names 4 character long.
S1|P1| 300 | S2 [P1 [300 | City not like **o* — all city names which does not
S1|P2| 200 | S2 | P2 | 400 contain characer o.

S1[P3| 400 | S8 | P2 | 200 | |ike ‘Main*’ escape ‘\’ — match Main*
S1| P4 | 200 | S4 | P2 | 200

SQL supports a variety of string operations such as: con-

SL[P5| 100 | S4 | P4 | 300 | (o¢cnation (“|I"), converting from upper to lower case (and

S1/P6| 100] S4 | PS | 400 | yjce versa), finding string length, extracting substrings, etc.“‘
| L2

Database System Concepts 4.8 ©Silberschatz,

Simple Queries (null values)

-
~
S# |Sname Status |City
S1 (Smith 20 London
S2 |Jones 10 Paris
S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 [London
st#| P# | QTY
S1|P1| 300 | S2 | P1 | 300
S1| P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1| P6| 100 | S4 | P5 | 400

Database System Concepts

Get parts whose color is not null.

select *
from P
where Color is not null ;

Result:

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

null signifies an unknown value or that a value does not
exist.

The result of any arithmetic expression involving null is null
(E.g. 5+ null returns null).

n

Any comparison with null returns unknown (E.g. 5 < null
or null<>null or null=null).

4.9 ©Silberschatz,

Simple

-
~
S# |Sname Status |City
S1 (Smith 20 London
S2 |Jones 10 Paris
S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# |[Pname|Color [Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 |London
s#| p# | QTY
S1|P1| 300 | S2 | P1 | 300
S1|P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1|P6| 100 | S4 | P5 | 400

Database System Concepts

Queries (natural join)

Get all combination suppliers - parts located in the
same city.

select S.*, P.*
from S, P
where S.City = P.City ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
ST Smith 20 London P1 Nut Red 12 London
S1 Smith 20 London P4 Screw Red 14 London
S1 Smith 20 London P6 Cog Red 19 London
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S2 Jones 10 Paris P5 Cam Blue 12 Paris
S3 Blake 30 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P5 Cam Blue 12 Paris
S4 Clark 20 London P5 Nut Red 12 London
S4 Clark 20 London P5 Screw Red 14 London
S4 Clark 20 London P5 Cog Red 19 London

How conceptualy join is constructed:

- Form the cartesian product of the tables listed in from clause
(in our example the new table will have 5-6 = 30 rows)

- Eliminate from the cartesian product all those rows that do
not satisfy join predicate (where clause)

4.10 ©Silberschatz,

Simple Queries (natural join)

-
~
S# |Sname Status |City
S1 (Smith 20 London
S2 |Jones 10 Paris
S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 [London
s#| P# | QTY
S1|P1| 300 | S2 | P1 | 300
S1| P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1| P6| 100 | S4 | P5 | 400

Database System Concepts

Same, but suplier city follows part city (alphabetically).

select S.x, P.x
from S, P
where S.City > P.City ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P1 Nut Red 12 London
S2 Jones 10 Paris P4 Screw Red 14 London
S2 Jones 10 Paris P6 Cog Red 19 London
S3 Blake 30 Paris P1 Nut Red 12 London
S3 Blake 30 Paris P4 Screw Red 14 London
S3 Blake 30 Paris P6 Cog Red 19 London

Get all combination suppliers - parts located in the
same city, without suppliers that have status 20.

select S.x, P.*
from S, P
where S.City = P.City and S.Status <> 20 ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S2 Jones 10 Paris P5 Cam Blue 12 Paris
S3 Blake 30 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P5 Cam Blue 12 Paris

cii)
4.11 ©Silberschatz, Ko an

~ Simple Queries (natural join)
~
S# [Sname Status |Cit . . .
S1 [Smith >0 Logdon Get all pairs of city names such that a supplier located
52 |Jones 10 |paris in the first city supplies a part stored in the second city.
S3 |Blake 30 _|Paris For example, supplier S1 supplies part P1; suppliers S1 is
S4 |Clark 20 [London | |ocated in London, and part P1 is stored in London; so
S5 |Adams 30 _|Athens | ¢ ondon, London’ is a pair of cities in the result.
P# [Pname|[Color |Weight|City . L. . :
PiNut Red 12 lLondon] S€lect distinct S.City, P.City
P2 [Bolt Green| 17 |Paris from S, SP, P
P3|Screw |Blue | 17 |Rome | Where S.S# = SP.S# and SP.P# = P.P# ;
P4 |Screw |Red 14 |London
P5|Cam [Blue | 12 |Paris Result:
P6 [Cog |Red 19 |London S City P.City
S# | P# | QTY London London
S1|P1| 300 | S2 | P1 | 300 tongon Eans
ondon ome
S1|P2| 200 | S2 | P2 | 400 Paris London
S1| P3| 400 | S3 | P2 | 200 Paris Paris
S1| P4 | 200 | S4 | P2 | 200
S1|P5] 100 | S4 | P4 | 300 | Thjs example shows join of 3 tables.
S1| P6| 100 | S4 | P5 | 400
Database System Concepts 4.12 ©Silberschatz, K

Simple Queries (join a table with itself)

\/
~ | |
% [Sname | Status [City Get a_II pairs of supplier numbers such that the two
T 56 London suppliers are co-located.
S2 |Jones 10 |Paris select Supl.S#, Sup2.S#
S3 |Blake 30 |Paris from S as Supl, S as Sup2
S4 [Clark 20 |London | Where Supl.City = Sup2.City ;
S5 |Adams 30 |Athens
Result:
P# [Pname|[Color |Weight|City S# S#
P1 |Nut Red 12 |London S1 S1 S3 S3
P2 [Bolt |Green| 17 [Paris S1 S4 S4 Si1
P3 [Screw [Blue 17 |Rome S2 52 S4 S4
P4 |Screw [Red 14 |London A
S3 S2
P5|Cam |Blue 12 |Paris .
P6|Cog |Red 19 ILondon This result can be cleared up as follows:
s#| p# | QTY select Supl.S#, Sup2.S#
s1|pP1] 300 | s2]P1]300]|fromSasSupl, Sas Sup2
S1| P2 | 200 | s2 | P2 | 400 | where Supl.City = Sup2.City and Supl.S# > Sup2.5# ;
S1| P3| 400 | S3 | P2 | 200
s1|Pa| 200 | s4 | P2] 200 Result:
s1|P5 | 100 [s4 | Pa] 300 % %
S1|P6 | 100 | S4 | P5 | 400 3 33
Database System Concepts 4.13
- SubQueries
~
S# [Sname | Status [City Get suppliers names for suppliers who supplies part P2.
S1 (Smith 20 Lon-don select S.Sname
S2 [Jones 10 Par!s from S
SO8Bkke 80 |Paris where S.S# in (select SP.S#
S4 |Clark 20 London from SP
S5 |Adams 30 |Athens where SP.pP# = ‘P2’) :
P# |[Pname|Color [Weight|City
P1|Nut |Red 12 |London Result: The nested subqueries are evaluated first.
P2 [Bolt |Green| 17 |Paris Sname So, our query is equivalent to:
P3 [Screw [Blue 17 |Rome Smith select S.Sname
Jones from S
P4 |Screw [Red 14 |London Blake i cons temr temy ey
P5|Cam |Blue | 12 |Paris Clark ez e T S Ten e e
PélCog IRed 19 _Itondon The same using join.
s#| p# | QTY
S1| P1] 300 | s2 | P 300 | Select S.Sname
s1| P2 | 200 | s2 | P2 | 400 | from S, SP
s1| P3| 400 | s3 | P2 | 200 | Wwhere S.5# = SP.S# and SP.P# =‘P2"; |
S1| P4 | 200 | S4 | P2 | 200 The join of S and SP over supplier numbers
S1|P5| 100 | S4 | P4 | 300 is a table of 12 rows from which we select
s1|pPe| 100 | s4 | P5 | 400 those 4 rows that have the part number P2.
7 i
Database System Concepts 4.14 ©Si|berschm

SubQueries (correlated)

-
~
S# |Sname Status |City
S1 (Smith 20 London
S2 |Jones 10 Paris
S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 [London
st#| P# | QTY
S1|P1| 300 | S2 | P1 | 300
S1| P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1| P6| 100 | S4 | P5 | 400

Database System Concepts

Get suppliers names for suppliers who supplies part P2.
select Sname

from S
where ‘P2’ in (select P#
from SP
where S# = S.S#) ;
Result: In the last line the unqualified reference S# is
ShEme implicitl qualified by SP. Here, inner subquery
Smith cannot be evaluated once and for all before the
Jones outher query is evaluated (variable S.S# is
Blake uknown). Such subqueries are called correlated.
Clark The system examines one by one rows of table S

and each time evaluate the subquery.

Some people prefer to use aliases in correlated
subqueries.

select SX.Sname

from S as SX
where ‘P2’ in (select P#
from SP
where S# = SX.S#) ;
4.15 ©Silberschatz,

~

SubQueries (more nesting)

~
S# [Sname | Status [City Get suppliers names for suppliers who supplie at least
S1 [Smith 20 |London | One red part.
S2 |Jones 10 Paris select Sname
S3 |Blake 30 Paris from S
S4 [Clark 20 [London | \where S# in (select S#
S5 |Adams 30 |Athens from SP
P# [Pname|Color |Weight|City where P# in (select P#
P1[Nut |Red 12 |London from P
P2 [Bolt [Green| 17 [Paris where Color = ‘Red’));
P3 [Screw_|Blue 17 |Rome . The innermost subquery evaluates to the set {*P1°,
P4 |Screw [Red 14 |London Result: ‘P4’ ‘PG’ i
: SEme , }. The next subquery evaluates in turn to
PS|Cam |[Blue | 12 |Paris Smith theset {*S1’, *S2’, *S4’}. Last, the outermost
P6|Cog _|Red 19 |London Jones select evaluates to the final result. In general,
S# | P# | QTY Clark subqueries can be nested to any depth.
S1|P1| 300 | S2 | P1 | 300 Th L
S1| P2 | 200 | S2 | P2 | 400 € Same using join.
s1| P3| 400 | s3 | P2 | 200 | select distinct S.Sname
S1|P4| 200 | s4|P2]|200]fromsS,SP P />
S1|P5| 100 | s4 | P4 | 300 [where S.5# = SP.S# and SP.P# = P.P#
s1|P6| 100 | S4 | P5 | 400 and P.Color = ‘Red’ ; ' -

Database System Concepts

4.16 ©Silberschatz, K

~

SubQueries (with same table)

~

S# |Sname Status |City

S1 (Smith 20 London
S2 |Jones 10 Paris

S3 |Blake 30 Paris

S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 [London
s#| p# | QTY

S1|P1| 300 | S2 | P1 | 300
S1| P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1| P6| 100 | S4 | P5 | 400

Database System Concepts

Get supplier numbers for suppliers who supply at least
one part supplied by supplier S2.

select distinct S#

from SP
where P# in (select P#
from SP
where S# ='S2’");
Result
S# The reference SP in the subquery does not mean
ST the same thing as reference to SP in the outher
S2 query. They are different variables. Using aliases
gi will make this fact explicit.

The same using join.

select distinct SP1.5#

from SP as SP1, SP as SP2

where SP1.P# = SP2.P#
and SP2.S# = ‘S2’;

& SubQueries (correlated with same table)

~
S# [Sname | Status [City Get part numbers for all parts supplied by more than
S2 |Jones 10 |Paris o
S3 |Blake 30 |Paris select distinct SP1.P#
S4 [Clark 20 |London | from SP as SP1
S5 |Adams 30 |Athens]| where SP1.P# in (select SP2.P#
P# [Pname|[Color |Weight|City from SP as SP2
P1[Nut |Red 12 |London where SP2.S# = SP1.5#);
P2 |Bolt |Green| 17 |Paris Result: . . .
P3 |Screw |Blue 17 |Rome p# Operation of this query: For each row in turn, SP1
P4 [Screw |Red 14 |London P1 of table SP, extract the P# value, iff that P# value
P5lcam |Blue 12 |Paris P2 appears in some row SP2 of table SP whose S#
P6]Cog |Red @ P4 value is not that in row SP1. Note that at least one
P5 alias must be used, but not both.
s# | P# | QTY
s1| P1| 300 | s2 | P1 | 300 | Get supplier numbers for suppliers who are located in
s1| P2 200 | s2 | P2 | 400 | the same city as supplier S1. Result:
s1| P3| 400 | s3 | P2 200] select S# o
S1{ P4 200 | s4|pP2]|200]fromS —
. . S1
s1|pP5| 100 | s4 | P4 | 300 | where City = (select City sa4
S1|P6 | 100 | S4 | P5 | 400 from S

Database System Concepts

where S# ='S1’);

4.18 ©Silberschatz, Korth and-Sudars

SubQueries (exists)

~
~
S# [Sname | Status |City Get suppliers names for suppliers who supplies part P2.
S1 [Smith 20 London Select Sname
S2 |Jones 10 |Paris from S
S3 [Blake 30 [Paris | \here exists (select *
S4 |Clark 20 |London from SP
S5 |Adams 30 |Athens
: = where S# =S.S# and P# = ‘P2");
P# [Pname|[Color |Weight|City Result:
P1|Nut |Red 12 |London s " Predicate exists x (predicate-involving-x) is true iff
: name) . - ;
P2 |Bolt |Green| 17 |Paris Smith Predicate-involving-x is true for some x. For exam-
P3 |Screw |Blue 17 _|Rome Jones ple if x=1,2,...,10 then exists x (x<5) is true, while
P4 [Screw |Red 14 |London Blake exists x (x<0) is false.
P5|Cam |Blue | 12 [Paris Clark
P6[Cog |Red 19 [London| Get suppliers names for suppliers who do not supply
S# | P# | QTY part P2. In general, exists is one of the most important SQL
S1|P1|300) S2 | P1| 300 |select Sname feature. In fact, any query expresssed using in can
S1|P2| 200 | S2 | P2 | 400 | from S be formulated using exists. The converse is not true.
S1| P3| 400} S3 | P2 | 200 f\yhere not exists (select * “
S1| P4 | 200 | S4 | P2 | 200 from SB
S1| P5 | 100 | s4 | Pa | 300 | Result: !
where S# =S.S# and;
s1|pP6 | 100 | s4 | P5 [400 | Sname £
Adams
Database System Concepts 4.19
- SubQueries (not exists)
~
S# [Sname | Status [City Get supplier names for suppliers who supply all parts.
S1 |Smith 20 London lect S
S2 |Jones 10 |Paris SElect sname
S3 |Blake 30 |Paris from S)
S4 |Clark 20 |London where not exists
S5 |Adams 30 |Athens (select *
P# [Pname|[Color |Weight|City from P .
PLNut _|Red | 12 |London where not exists
P2 |Bolt [Green| 17 [Paris (select *
P3|Screw [Blue | 17 |Rome from SP
P4 |Screw |Red 14 |London where S# =S.S# and P# = p.pp);
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 |London Result:
s# | P# | QTY SREmE
S1|P1| 300 | S2 | P1 | 300 Smith
S1| P2 | 200 | S2 | P2 | 400
SL| P3| 400 | S3 | P2 | 200 | The query can be paraphrased according to the above
SL[P4] 200]S4 | P2 | 200 | gL statement: Select supplier names for supplier such =
S1| PS5 | 100) S4 | P4 | 300 | that there does not exists a part that they do not supply.
S1|P6 | 100 | S4 | P5 | 400 v
Database System Concepts 4.20 ©Silberschatz,

‘ SubQueries (all, some)
S# |Sname | Status |City Get the all part numbers that have greater shipment
S1 [Smith 20 [London | quantity than all parts located in London.
S2 |Jones 10 Paris
S3 [Blake 30 |pais | Select P# Result:
S4 |Clark 20 London from SP p#
S5 [Adams 30 |Athens | Where QTY > all B3
p# [Pname|Color [Weight|City (select QTY P2
P1|Nut |Red 12 |London from SP,_ P P5

LAWY
AR

‘ Definition of Some and All Clauses

0 0
(5<some| 5 |) =true (b<some| § |) =false
6
0 0
(5=some[5 |)=true (5#some |5 |)=true (since 0 #5)

LMY
AR

L Aggregate Functions (count, sum, max)
\/

S# |Sname | Status [City Get the number of shipments for part P2.
S1 |Smith 20 London select count(*)

S2 |Jones 10 |Paris Result:

S3 [Blake 30 |pais | from SP

S4 [Clark 20 |London | Where P# ='P2"; =

S5 |Adams 30 Athens

P# |Pname|Color |Weight|City Get the total quantity of part P2 supplied.
P1|N R 12 L
- ed ondon select sum(QTY)

P2 |Bolt Green| 17 |Paris

Result:
P3 [Screw [Blue 17 |Rome from SP —,
P4 [Screw |Red 14 |London| Where P# = ‘P2’ 1000

P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 [London

i | P | OTY Get supplier numbers for suppliers with status less
s11 P11 300 [52 [P1 [300 | then current maximum status.
s1| P2 | 200 | s2 | P2 | 400 | select S# Result:
Ss1| P3| 400 | s3 | P2 | 200 |fromS Si
S1| P4 | 200 | S4 | P2 | 200 | where Status < S1
S1|P5 [100 | S4 | P4 | 300 (select max(Status) s2
s1|pP6 | 100 | s4 | P5 | 400 from S); S4
Database System Concepts 4.23 ©Silberschatz, Korth-ane-Sudars
~ Aggregate Functions (min, avg)
~
i | S| el |y Get the all part names for parts with minimum
S1 |Smith 20 London -
: weights.
S2 |Jones 10 Paris
S3 |Blake 30 |Paris select Pname Result:
S4 [Clark 20 |London | from P
S5 |Adams 30 |athens | where Weight = Pname
P# |Pname|Color |Weight|City (select min(Weight) gg:n
P1|Nut |Red 12 |London from P) ;

P2 |Bolt Green| 17 |Paris

P3 [Screw [Blue 17 |Rome i ity f I i
P2 [Screw |Red 14 |London Get supplier numbers, status nad city for all suppliers

P5lcam |Blue | 12 |Paris | Whose status is greater than or equal to the average
P6|Cog |Red 19 |London| fOr their city.

: Result:
S#| P# | QTY select S#, Status, City :
si[pP1|300|s2|pP1]300]fromsSasS1 S# Status City
s1| P2 | 200 [s2 | P2 [400 | where Status >= g% %8
S|P || Ao || S || P2 || 200 (select avg(Status) S4 30
S1|Pa| 200 | s4 | P2 | 200 from S as S2 S5 30
S|P || o || &8 | P || S where S2.City = S1.City) ; ‘
si|pe | 100 | s4 | P5 | 400

Database System Concepts 4.24 ©Silberschatz, Korth ane-Sudars

~

Aggregate Functions (group by)

~

S# |Sname Status |City

S1 (Smith 20 London
S2 |Jones 10 Paris
S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 [London
s#| p# | QTY

S1|P1| 300 | S2 | P1 | 300
S1| P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1| P6| 100 | S4 | P5 | 400

Database System Concepts

Get the total quantity supplied for each part.

select P#, sum(QTY) Result:

from SP P#

group by P# ; P1 600
P2 1000
P3 400
P4 500
P5 500
P6 100

For each part supplied, get the part number and the
total quantity supplied of that part, excluding
shipment from supplier S1.

select P#, sum(QTY) Result:
from SP P#
where S# <> ‘'S1’ P1 300
group by P#; 5‘21 ggg
P5 400
4.25 ©Silberschatz, Ko

~

Aggregate Functions (having)

~
S# [Sname | Status [City Get part numbers for all parts supplied by more than
S1 |Smith 20 |London one supplier.
S2 |Jones 10 |Paris Result:
S3 [Blake 30 Jparis | Select P# o
S4 [Clark 20 |London | from SP P1
S5 [Adams | 30 |Athens | group by P# P2
P# [Pname|[Color |Weight|City haVing count(*) >1; R
P1 |Nut Red 12 |London =
P2 Bolt |Green| 17 |Paris Having is to groups what where is to rows. (If having is
P3|Screw |Blue | 17 [Rome | gpecified, group by should be also specified). Having is
P4 [Screw Red | 14 Jlondon] 64 to eliminate groups just as where is used to
P5|Cam |Blue 12 |Paris eliminate rows.
P6 [Cog |Red 19 |London
2’: ::j 2;; s2 [P [300 | The same without group by/having.
S1| P2 | 200 | s2 | P2 | 400 | select P#,
s1| P3| 400 | s3 | P2 | 200 | from P
S1| P4 | 200 | S4 | P2 | 200 | where 1 < (select count(S#)
S1|P5 | 100 | sS4 | P4 | 300 from SP
S1|P6 | 100 | S4 | P5 | 400 where P# = P.P#);

Database System Concepts

4.26

Set Operations (union)

-
~
S# [Sname | Status |City Get part numbers for parts with weight more than 16
S1 |Smith 20 |London | pounds or are supplied by supplier S2.
S2 |Jones 10 |Paris Result:
S3 [Blake 30 fpais | SEl€Ct P# pi
S4 |Clark 20 London from P ﬁ
S5 |Adams 30 |athens | Where Weight > 16 union select P# P2
P# [Pname|[Color |Weight|City from SP P3
PL|Nut |Red | 12 |London where S# = 's2"; P6
P2 |Bolt Green| 17 |Paris
P3 |Screw |Blue 17 |Rome | Since a relation _is set of rows, it is possible to construct union, in-
P4 [Screw |Red 14 |London terse_ctlon and dlff(_ere_:nce betV_/een them. However, to be result a
P5lcam |Blue 12 |Paris relation the two original relation must be set-compatable:
P6|Cog |Red 19 |London| 1.to have the same number of columns.
SE| PR QTY 2. the i-th column of both relations must have the same data type.
S1|P1| 300 | S2 | P1 | 300 | The set operations union, intersect, and except operate on
S1| P2 | 200 | S2 | P2 | 400 | relations and correspond to the relational algebra operations
S1|P3|400 | S3 |P2|200] Y.
S1| P4 | 200 | S4 | P2 [200 | Each of the above operations automatically eliminates duplicates; =
S1|P5| 100 | S4 | P4 | 300 | to retain all duplicates use the corresponding multiset versions |
s1|P6 | 100 | s2 | P5 | 200 | union all, intersect all and except all. A\
Database System Concepts 4.27 ©Silberschatz,
~ Set Operations (intersect, except)
~
S# [Sname | Status |City Get supplier numbers for suppliers who supply part
S1 [Smith 20 |London | P1 and are located in London.
S S
S4 |Clark 20 London from SP St
S5 |Adams 30 |Athens | Where P# = ‘P1’ intersect select S# S1
P# [Pname|[Color |Weight|City from S .
PL|Nut |Red | 12 |London where City = ‘London’ ;
P2 |Bolt Green| 17 |Paris
P3|Screw [Blue | 17 |Rome | Get supplier numbers for suppliers who supply part
P4iScrew |Red | 14 lLondon] by ang are not located in London.
P5|Cam |Blue 12 |Paris
P6|Cog [Red 19 |London| select S#
s# | P# | QTY from SP
S1|P1| 300 | s2 | P1 | 300 | where P# ='P2’" except select S#
s1|pP2| 200 | s2 | P2 | 400 from S
s1| P3| 400 | s3 | P2 | 200 | Result: where City = ‘L
S1| P4 | 200 | S4 | P2 | 200 S#
S1|P5| 100 | S4 | P4 | 300 | s2
S1|P6| 100 | S4 | P5 | 400 | S3
Database System Concepts 4.28 ©Silberschatz, K

~ A Comprehensive Example

~

S# |Sname | Status [City For all red and blue parts such that the total quantity suppli-

S1 [Smith 20 [London | ed is greater than 350 (excluding from the total all shipments

S2 |Jones 10 |Paris for which the quantity is less than or equal to 200), get the

53 |Blake 30 |Paris part number, the weight in grams, the color, and the maxi-

52 [Clark 20 lLondon | Mum supplied of that part. Order the result by decreasing
part number within asceding values of that maximum.

S5 |Adams 30 |Athens

P# [Pname|Color [Weight|City select P.P#, ‘Weight in grams = *, P.Weight 454,

P1|Nut |Red 12 |London P.Color, ‘MSQuantity = ‘, max (SP.QTY)

P2 |Bolt |Green| 17 [Paris from P, SP
P3 |Screw |Blue 17 [Rome | where P.P# = SP.P#

P4 [Screw |Red 14 |London and P.Color in (‘Red’, ‘Blue’)
P5[Cam |Blue 12 |Paris and SP.QTY > 200

P6iCog |Red | 19 |london] group by P.P#, P.Weight; P.Color

S# [P# [QTY having sum (QTY) > 350

S1|P1)300|S2|P1|300|(order by 6, P.P# desc ;
s1|pP2| 200 | s2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200 Result:

P#
S1|P4] 200) S4 | P2 | 200 | 53 Weight in grams = 5448
S1|P5| 100 | S4 | P4 | 300 | P5 Weight in grams = 5448

s1|pP6e| 100 | sa | p5 | 400 | P3 Weight in grams = 7718

Database System Concepts 4.29

- With Clause

~ Get all supplier names with maximum status.

S# |Sname | Status |City with maxst(value) as

S1 |Smith 20 |London select max(Status) Result:
S2 [Jones 10 |Paris from S

S3 [Blake 30 |Paris select Sname Sname
S4 |Clark 20 |London | from S Blake
S5 |Adams 30 |Athens | where Status = maxst.value; A

P# [Pname|Color [Weight|City With clause allows views to be defined locally to a query, rather
P1|Nut |Red 12 |London]| than globally. Analogous to procedures in a programming language.
P2 Bolt |Green| 17 |Paris | Get all part numbers where the total their shipments is greater
P3 |Screw [Blue 17 |Rome | than the average of the total supplier shipments at all

P4 |Screw [Red 14 |London| suppliers.

P5|Cam |Blue 12 |Paris | with ptotal(P#, value) as

P6 |Cog _ |Red 19 |London select P#, sum(QTY) Result:
s#| P# | QTY from SP P#
s1[P1|300[s2|P1]300]| . group by P# P1
S11 P2 | 200 [s2 | P2 | a00 | With pavg(S#, value) as p2
s1| P3| 400 | s3 | P2 200 select S#, avg(QTY)
SL| P4 | 200 | S4 | P2 | 200 s

group by P#

S1|P5| 100 | S4 | P4 | 300 select P#
S1|P6 | 100 | S4 | P5 | 400 | from ptotal, pavg
where ptotal.value > pavg.value;

Database System Concepts 4.30 ©Silberschatz, K

-~ Derived Relations

~

S# |Sname | Status |City Get the average quantity of those supplier shipments
S1 [Smith 20 |London | where the average quantity is greater than 250.

S2 (Jones 10 Paris

S3 |Blake 30 Paris select S#, Anghip Result:
il 20 |London from (select S#, avg (QTY _

S5 |Adams 30 |Athens (from SP 9() % /ggogShlg
P# |[Pname|Color [Weight|City group by S#) sS4 300
P1 [Nut Red 12 |London as result (S#, AvgShip)
P2 (Bolt Green| 17 |Paris where Anghip > 250

P3 [Screw [Blue 17 |Rome

Eg icre"" ;ed 1‘2‘ 'F'f’”_do” Note that we do not need to use the having clause, since
am e aris = A .
“ we compute the temporary (view) relation result in the
P6 [Cog |Red 19 [London .
from clause, and the attributes of result can be used

s# | P# | QTY - .
Q directly in the where clause.
s1|pP1| 300 | s2]|P1| 300

S1|P2| 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1| P6 | 100 | S4 | P5 | 400

Database System Concepts 4.31
~ Views
~
S# [Sname | Status |City Create view from good suppliers (with status greater
S1 |Smith 20 |london | than 15).
S2 (Jones 10 Paris = o cit
N . atus |
S3 |Blake 30 |Paris create view GoodSup = = y "
S4 |Clark 20 London i 1 Lemeler
as select S#, Status,City & B o
S5 |Adams 30 |Athens omis BT

- - S4 20 London
P# |Pname|Color (Weight|City where Status > 15 ; S5 30 Athens
P1 [Nut Red 12 |London

G2alBoham|Green| st s Ratis GoodSup is in effect a “window” into real table S. The window
P3 [Screw Blue | 17 Rome | s gynamic because changes of S is automatically visible

P4 |Screw |Red 14 Jrondon| ,ough the window GoodSup. Some users may genuinely
PS|Cam [Blue | 12 |Paris | pefieve that GoodSup is a “real” table.

P6 [Cog |Red 19 |London
S# | P# | QTY Provide a mechanism to hide certain data from the view of
S1|P1) 300 | S2 | P1 | 300 | certain users. To create a view we use the command:

S1| P2 | 200 | S2 | P2 | 400 : f
reate view v as <query expression>
<1 s 00 55 Tpa 200 | Create view v as <query expressio

S1| P4 | 200 | S4 | P2 | 200 | where: e
S1|P5| 100 | S4 | P4 | 300 * <query expression> is any legal expression
s1|{pP6| 100 | s4 | P5 | 400 « the view name is represented by v

Database System Concepts 4.32 ©Silberschatz,

¥ Views

~

S# |Sname | Status |City Query on view (suppliers not located in London).
S1 |Smith 20 |London Result:

S2 |Jones 10 Par?s select S#, City S# City

22 E'Iz'r‘ke 28 E::;on from GoodSup S3 Paris

S5 |Adams 30 |Athens Bl eh = e S5 Athens

P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 [Bolt Green| 17 |Paris
P3|Screw [Blue | 17 [Rome | Create view of part numbers and names for parts
P4 |Screw [Red | 14 |London| with weight more than 16 pounds or are supplied

P5 [Cam Blue 12 |Paris by Supplier S2.
P6 [Cog |Red 19 [London

s#| P# | QTY select P#, Pname Result:
si|pP1| 300 | s2|pP1|a300]| fromP P#
s1|pP2| 200 | s2 | P2 | 400 | where Weight > 16 union P1
S1| P3| 400 | S3 | P2 | 200 select distinct P#, Pname Eg
S1|P4| 200 | S4 | P2 | 200 from P, SP P6
S1|P5 | 100 | S4 | P4 | 300 where P.P# = SP.P#
S1|P6| 100 | S4 | P5 | 400 and S# ='S2’;

Database System Concepts 4.33 ©Silberschatz, K

£ Modification of the Database — Deletion

~

S# [Sname | Status [City Delete all suppliers in Paris.
S1 |Smith 20 |London

S2 [Jones 10 |Paris delete S#, City

S3 |Blake 30 Paris from S

S4 |Clark 20 |London | where City = ‘Paris’ ;

S5 |Adams 30 |Athens

P# |Pname|Color |Weight|City Delete all shipments.
P1 [Nut Red 12 |London

P2 |Bolt |Green| 17 [Paris delete

P3 [Screw [Blue 17 |Rome | from SP ;
P4 |Screw |Red 14 |London
P5|Cam |Blue 12 |Paris
P6|Cog [Red 19 |London
s# | P# | QTY Delete all shipments for suppliers in London.

Si|P1| 300 | s2 | P1| 300
Si| P2 | 200 | s2 | P2 | 400 | delete

Si| P3| 400 | s3 | P2 | 200 | from SP _
S1|Pa| 200 | sa | P2 | 200 | Where ‘London’ = (select City

S1| P5 | 100 | s4 | P4 | 300 from S
s1|p6 | 100 | s4 | P5 [400 where S.S# = SP.S#

Database System Concepts 4.34 ©Silberschatz, K

~

S# |Sname Status |City

S1 (Smith 20 London
S2 |Jones 10 Paris

S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 [London
s#| p# | Q1Y

S1|P1| 300 | S2 | P1 | 300
S1| P2 | 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1|P5| 100 | S4 | P4 | 300
S1| P6 | 100 | S4 | P5 | 400

Database System Concepts

£ Modification of the Database — Deletion

General form of delete statement:

delete
from table
[where predicate]

Delete all shipments with quantity below the average.

delete

from SP

where Q1Y < (select avg(QTY)
from SP) ;

Problem: as we delete tuples from SP, the
average quantity changes

Solution used in SQL:

1. First, compute avg balance and find all tuples to delete .
2. Next, delete all tuples found above (without |
recomputing avg or retesting the tuples) N

4.35 ©Silberschatz, Ko an

L Modification of the Database — Insertion

Add part P7 with unknown name and color.

insert
into P (P#, City, Weight) Name and color will
values (‘P7’, ‘Athens’, 2) ; have null values.

Add part P8 to table P.

insert
into P
values (‘P8’, ‘Sprocket’, ‘Pink’, 14, ‘Nice’) ;

Add a new shipment with supplier S20, part number
p20, and quantity 1000.

insert
into SP (S#, P#, QTY)
values (‘S20’, ‘P20’, 1000) ;

~
S# |Sname Status |City
S1 (Smith 20 London
S2 |Jones 10 Paris
S3 |Blake 30 Paris
S4 |Clark 20 London
S5 |Adams 30 |Athens
P# [Pname|[Color |Weight|City
P1 [Nut Red 12 |London
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London
P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 |London
S#| P# | QTY
S1|P1| 300 | S2 | P1 | 300
S1| P2 | 200 | S2 | P2 | 400
S1| P3| 400 | S3 | P2 | 200
S1| P4 | 200 | S4 | P2 | 200
S1| P5| 100 | S4 | P4 | 300
S1| P6| 100 | S4 | P5 | 400
Database System Concepts

4.36

L Modification of the Database — Insertion

~
S# [Sname | Status |City General form of insert statement:
S1 |Smith 20 London Iy~
S2 |Jones 10 |Paris . .]]
- into table [(field,, field,, fields, ...)]
S Blake 30 Paris values (constant;, constant,, constant.); or
S4 |Clark 20 |London & 2 & e J
S5 |Adams 30 |Athens insert
P# |Pname|Color |Weight|City into table [(field,, field,, fields, ...)]

P1|Nut |Red | 12 |London| Subquery ;
P2 |Bolt Green| 17 |Paris

P3 [Screw [Blue 17 |Rome
P4 |Screw [Red 14 |London

P5|Cam |Blue 12 |Paris
P6|Cog |Red | 19 |London| Create table temp

S#] P# | QTY (P# char(6)
S1|PL| 300 | S2 | PL | 300 TOTQTY integer) ;

s1| P2 | 200 | s2 | P2 | 400
S1| P3| 400 | s3 | P2 | 200 | insert into temp (P#, TOTQTY)

si|Pa| 200 [s4|P2]200] select P# sum(QTY)
si|p5 | 100 | sa | Pa]300]| fromSP
s1|p6] 100 | sa|p5]400]| group by P#;

For each part supplied, get the part number and the
total quantity, and save the result in the database.

Database System Concepts 4.37

£ Modification of the Database — Updates

~

S# |Sname | Status |City Double status for all suppliers in London.
S1 |Smith 40 London

S2 [Jones 10 |Paris update S

S3 [Blake 30 |Paris set status = status #* 2

S4 [Clark 40 |London | where city = ‘London’ ;

S5 |Adams 30 Athens

P# [Pname|Color [Weight|City Change the color and weight of part P2.
P1 [Nut Red 12 |London
P2 [Bolt [Yellow| 22 |paris | update P

P3|Screw [Blue | 17 |Rome | set color = ‘Yellow’, weight = weight + 5
P4 |Screw |Red 14 |London| where P# = ‘P2’ ;

P5|Cam |Blue 12 |Paris
P6 [Cog |Red 19 |London
s# | P# | QTY Paris.
si1|{P1|300]|s2|pPL| O

S1| P2 | 200 | S2 | P2 update SP

S1| P3| 400 |s3|P2| 0 | setQTY=0

S1|P4| 200 | s4 | P2 | 200 | where ‘Paris’ = (select city

S1|P5 | 100 | S4 | P4 | 300 from S

S1|P6 | 100 | S4 | P5 | 400 where S.5# = SP.5#) ;

Set the shipment quantity to zero for all suppliers in

o

Database System Concepts 4.38 ©Silberschatz, K

£ Modification of the Database — Updates

~
=it [EIETE || SEHTE | TE7 General form of update statement:
S1 (Smith 20 London
S2 |Jones 10 Paris upda.te tabls .
S3 |Blake 30 |Paris S Bl = GTarEsson
S4 |Clark 20 |London Whe[r;eﬂperlgdi_cz;((fressmn]
S5 |Adams 30 |Athens '
P# [Pname|Color [Weight|City Increase all shipment quantities over 200 by 6%,
P1|Nut |Red 12 |London| and all others by 5%.
P2 |Bolt Green| 17 |Paris
P3 [Screw [Blue 17 |Rome update SP update account
P4 [Screw |Red 14 |London| SEtQTY =0QTY *1.06 get QTY =QTY *1.05
P5|Cam |Blue | 12 |pais | Where QTY >200 where QTY <= 200
P61Gog [Red | 19 Londonl the order is important
S s (ROURG Can be done better using the case statement

SL|PL| 318 | S2 | P1 | 318
S1| P2 | 210 | s2 | P2 | 424 | Update SP
S1| P3| 424 | 53 | P2 | 210 | SEt QTY = case

S1|P4| 210 | S4 | P2 | 210 when QTY <= 200 then QTY * 1.05 />
S1|pP5[105 | s4 | P4 318 ;

S1|P6| 105 | S4 | P5 | 424 end
Database System Concepts 4.39
0 Modification of the Views

~

S# |Sname | Status [City Create a view of shipment relation (SP), hiding the

S1 |Smith 20 |London QTY attribute.

S2 (Jones 10 Paris) .

S3 [Blake 30 |Paris create view Ship as

S4 |Clark 20 |London select S#, P#

S5 |Adams 30 |Athens from SP

P# |[Pname|Color [Weight|City Add a new shipment to ship.
P1 |Nut Red 12 |London

P2 |Bolt |Green| 17 [|Paris insert

P3 |Screw |Blue 17 |Rome into Ship

P4 |Screw |Red 14 |London| yalues (‘55', ‘PG’) :
P5|Cam |Blue 12 |Paris
P6 [Cog Red 19 |London) .
S| pE] Oty m Updates on more complex views are difficult
S1|P1| 300 | s2 | P 300 or impossible to translate, and hence are

si| P2 | 200 [s2 | P2 | 400 disallowed.

S1| P3| 400 | S3 | P2 | 200 . .
® Most SQL implementations allow updates

S1| P4 | 200 | S4 | P2 | 200 - . -
s P5 [100 |52 [P2 1 300 only on simple views (without aggregates)

S1|P6 | 100 | S4 | P5 | 400 defined on a single relation

Database System Concepts 4.40 ©Silberschatz, Ko

Transactions

A transaction is a sequence of queries and update statements
executed as a single unit

Transactions are started implicitly and terminated by one of

commit work: makes all updates of the transaction permanent in
the database

rollback work: undoes all updates performed by the transaction.

K/
V=TI

‘ Transactions (Cont.)

B In most database systems, each SQL statement that executes
successfully is automatically committed.

Each transaction would then consist of only a single statement

¥ Automatic commit can usually be turned off, allowing multi-
statement transactions, but how to do so depends on the database

LMY
ATV=IARIE

‘ Joined Relations

®m Join operations take two relations and return as a result another
relation.

B These additional operations are typically used as subquery
expressions in the from clause

® Join condition — defines which tuples in the two relations match,
and what attributes are present in the result of the join.

Join Types Join Conditions

inner join natural

left outer join on <predicate>
right outer join using (A, A, ..., A)
full outer join

A
AR

'Joined Relations — Datasets for Examples

B Relation loan

| loan-number | branch-name | amount |
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

customer-name | loan-number

L-170
L-230
L-155

LMY
AR

~
~

B [oan inner join borrower on
loan.loan-number = borrower.loan-number

Joined Relations — Examples

loan-number branch-name amount customer-name | loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
B |oan left outer join borrower on
loan.loan-number = borrower.loan-number
loan-number branch-name amount customer-name | loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230 3
L-260 Perryridge 1700 null

Database System Concepts

~

- Joined Relations — Examples

B |oan natural inner join borrower

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

B |oan natural right outer join borrower

loan-number branch-name amount customer-name ‘
L-170 Downtown 3000
L-230 Redwood 4000
L-155 null null

Database System Concepts 4.46

‘ Joined Relations — Examples

®m |oan full outer join borrower using (loan-number)

| loan-number | branch-name | amount |customer-name|
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

L-260 Perryridge 1700 null
null

‘ Data Definition Language (DDL)

Allows the specification of not only a set of relations but also
information about each relation, including:

B The schema for each relation.

B The domain of values associated with each attribute.

LMY
AR

‘ Domain Types in SQL

m char(n). Fixed length character string, with user-specified length n.

®m varchar(n). Variable length character strings, with user-specified maximum
length n.

m int. Integer (a finite subset of the integers that is machine-dependent).

® smallint. Small integer (a machine-dependent subset of the integer
domain type).

A
AR

‘ Date/Time Types in SQL (Cont.)

m date. Dates, containing a (4 digit) year, month and date
¥ E.g. date ‘2001-7-27’

® time. Time of day, in hours, minutes and seconds.
¢ E.g. time '09:00:30’ time '09:00:30.75’

B timestamp: date plus time of day

¥ E.g. timestamp ‘2001-7-27 09:00:30.75’

LMY
AR

‘ Create Table Construct

B An SQL relation is defined using the create table
command:
create table r (A, D;, A, D,, ..., A, D,
(integrity-constraint,),

LAWY
SRR

‘Integrity Constraints in Create Table

® not null
B primary key (A, ..., A,)
m check (Predicate), where Predicate is a predicate

Example: Declare table P (Parts).

LMY
ARSI

‘ Drop and Alter Table Constructs

B The drop table command deletes all information about the
dropped relation from the database.

B The alter table command is used to add attributes to an
existing relation.

‘ Chapter 5: Relational Database Design

First Normal Form
Pitfalls in Relational Database Design

]
]

® Functional Dependencies
® Decomposition

2,
AR

13.10.2011

‘ First Normal Form

® Domain is atomic if its elements are considered to be
indivisible units
Examples of non-atomic domains:
Set of names, composite attributes

Identification numbers like CS101 that can be broken up into

I,
ATV

‘ First Normal Form (Contd.)

m Atomicity is actually a property of how the elements of the
domain are used.
E.g. Strings would normally be considered indivisible

¥ Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127

13.10.2011

¥ Inability to represent certain information.

‘ Pitfalls in Relational Database Design

®m Relational database design requires that we find a
“good” collection of relation schemas. A bad
design may lead to

Repetition of Information.

I,
AR

branch-name

Example

B Consider the relation schema:
Lending-schema = (branch-name, branch-city, assets,

customer-name, loan-number, amount)

branch-city

assets

loan-
number | amount

Downtown
Redwood
Perryridge
Downtown

Brooklyn
Palo Alto
Horseneck
Brookl

9000000
2100000
1700000
9000000

L-17
L-23
L-15
L-14

2,
AR

13.10.2011

13.10.2011

‘ Decomposition

m Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount

N
il =

‘Example of Non Lossless-Join Decomposition

® Decomposition of R = (A, B)
Ri=(A) R;=(B)

2,
AV

Qoal — Devise a Theory for the Following

®m Decide whether a particular relation R is in “good” form.

m In the case that a relation R is not in “good” form, decompose it
into a set of relations {R;, R,, ..., R} such that

each relation is in

good form

JLOWY
ATNV=ARI

‘ Functional Dependencies

B Constraints on the set of legal relations.

B Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.

2,
ATNV=TARI

13.10.2011

‘ Functional Dependencies (Cont.)

B LetR be arelationschema acR and fc<R

® The functional dependency

o—>p
holds on R if and only if for any legal relations r(R), whenever any
two tuples t, and t, of r agree on the attributes a, they also agree
on the attributes g. That is,

I,
ATV

‘ Functional Dependencies (Cont.)

m K is a superkey for relation schema R if and only if K > R
m K is a candidate key for R if and only if
¥ K-> R, and
¥ fornoacK,a—>R
= Functional dependencies allow us to express constraints that

13.10.2011

L]

Example

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

name addr beersLiked |[manf |favoriteBeer
Janeway |Voyager Bud A.B. WickedAle
Janeway |Voyager WickedAle |Pete's | WickedAle
Spock Enterprise | Bud A.B. Bud

of a relation
7 E.g.

‘ Functional Dependencies

m A functional dependency is trivial if it is satisfied by all instances

customer-name, loan-number — customer-name

2,
AR

13.10.2011

Closure of a Set of Functional
Dependencies

B Given a set F set of functional dependencies, there are certain
other functional dependencies that are logically implied by F.

? E.g. If A>Band B — C, then we can infer that A — C

® The set of all functional dependencies logically implied by F is the

‘ Example

m R=(AB,C,G,H,I
F={A—>B
A—-C
CG—>H
CG -1
B — H}

2,
AR

13.10.2011

‘ Procedure for Computing F*

B To compute the closure of a set of functional dependencies F:

Ft=F
repeat
for each functional dependency fin F*

Closure of Functional Dependencies
(Cont.)

® We can further simplify manual computation of F* by using
the following additional rules.

¥ If o — B holds and o — v holds, then o — By holds (union)

If &« > By holds, then a — £ holds and o — y holds

2,
AR

13.10.2011

13.10.2011

‘ Closure of Attribute Sets

m Given a set of attributes o, define the closure of a under F
(denoted by a*) as the set of attributes that are functionally
determined by o under F:

a—BisinF" & pcat

JLOWY
il =

‘ Example of Attribute Set Closure

m R=(AB,C G H,I

2,
AV

10

13.10.2011

‘ Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

B Testing for superkey:

7 To testif o is a superkey, we compute o and check if o* contains
all attributes of R.

‘ Goals of Normalization

B Decide whether a particular relation R is in “good” form.

B In the case that a relation R is not in “good” form, decompose it
into a set of relations {R;, R,, ..., R.} such that

¥ each relation is in good form

2,
AR

11

‘ Decomposition

m Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)

m All attributes of an original schema (R) must appear in the
decomposition (R :

I,
ATV

‘Normalization Using Functional Dependencies

® When we decompose a relation schema R with a set of
functional dependencies F into R, R,,.., R,, we want

¥ Lossless-join decomposition: Otherwise decomposition would result in
information loss.

¥ No redundancy: The relations R; preferably should be in either Boyce-

13.10.2011

12

‘ Example

m R=(A B, C)
F={A>B,B—>C)

¥ Can be decomposed in two different ways
u Rl = (A’ B), RZ = (B! C)

JLOWY
A TARIS

‘ Second Normal Form

A relation schema R is in 2NF respect to a set F of functional
dependencies if for all nonkey set of attributes g holds:

B o — S where o is a superkey for R

2,
AR

13.10.2011

13

L]

Example

Drinkers (name, addr, beersL iked, manf, favoriteBeer)

name | addr | beersLiked | manf | favoriteBeer
Janeway |Voyager Bud A.B. WickedAle
Janeway |Voyager WickedAle [Pete's |WickedAle
Spock Enterprise |Bud A.B. Bud

L]

Boyce-Codd Normal Form

B o —> gistrivial (i.e., fc a)
® o is a superkey for R

A relation schema R is in BCNF with respect to a set F of functional
dependencies if for all functional dependencies in F* of the form
o — S, where o R and fc R, at least one of the following holds:

2,
AR

13.10.2011

14

‘ Example

= R=(A B, C)
F={A>B
B— C}
Key = {A}

JLOWY
il =

‘ Example of Problems

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

name | addr | beersLiked | manf | favoriteBeer
Janeway |Voyager Bud A.B. WickedAle
Janeway |[??? WickedAle |Pete's |???

Spock Enterprise | Bud ??77? Bud

13.10.2011

15

Each of the given FD’s is a BCNF violation:
m Key = {name, beersLiked}

Each of the given FD’s has a left side that is a proper subset of the
key.

I,
AR

‘ Testing for BCNF

B To check if a non-trivial dependency o — causes a violation of
BCNF

1. compute o* (the attribute closure of), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

m Simplified test: To check if a relation schema R is in BCNF, it
suffices to check only the dependencies in the given set F for

2,
AR

13.10.2011

16

‘ BCNF Decomposition Algorithm ()

result := {R};
done := false;
compute F;
while (not done) do
if (there is a schema R; in result that is not in BCNF)
then begin

JLOWY
A TARIS

‘ Example of BCNF Decomposition

B R = (branch-name, branch-city, assets,
customer-name, loan-number, amount)
F = {branch-name — assets branch-city

loan-number — amount branch-name}

2,
AR

13.10.2011

17

‘ BCNF Decomposition Algorithm ¢

Setting: relation R, given FD’s F.
Suppose relation R has BCNF violation X — B.
1. Compute X*.

¥ Cannot be all attributes — why?
2. Decompose R into X* and (R-X*) U X.

I,
ATV

Example

R = Drinkers(name, addr, beersLiked, manf, favoriteBeer)
F=

1. name — addr

2. name — favoriteBeer

3. beersLiked — manf

13.10.2011

18

epeating)
® Decomposed relations:
Drinkers1(name, addr, favoriteBeer)
Drinkers2(name, beersLiked, manf)

B Projected FD's:
(i Nrinke

‘ Decompose Drinkers2

m First set of decomposed relations:
Drinkers1(name, addr, favoriteBeer)
Drinkers2(name, beersLiked, manf)

2,
AR

13.10.2011

19

‘ Testing Decomposition for BCNF

B To check if a relation R; in a decomposition of R is in BCNF,

¢ Either test R, for BCNF with respect to the restriction of F to R; (that
is, all FDs in F* that contain only attributes from R))

? or use the original set of dependencies F that hold on R, but with the

JLOWY
A TARIS

‘ BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is
dependency preserving

® R=(J,K, L)

2,
AR

13.10.2011

20

‘ Third Normal Form: Motivation

B There are some situations where
BCNF is not dependency preserving, and
i efficient checking for FD violation on updates is important

B Solution: define a weaker normal form, called Third Normal

I,
ATV

Example

One FD structure causes problems:

m |f you decompose, you can't check all the FD’s only in the
decomposed relations.

m |f you don’t decompose, you violate BCNF.
Abstractly: R = (A, B, C), F={AB > C, C —> B.}
Example: street city — zip, zip — city.

13.10.2011

21

‘ Third Normal Form

m A relation schema R is in third normal form (3NF) if for all:

o — gin F*
at least one of the following holds:

¥ o — pistrivial (i.e., B € a)
? o is a superkey for R

I,
ATV

‘ Testing for 3NF

m Optimization: Need to check only FDs in F, need not check all
FDs in F*.

B Use attribute closure to check for each dependency a — B, if o is
a superkey.

® [f o is not a superkey, we have to verify if each attribute in 8 is

13.10.2011

22

‘ 3NF Decomposition Algorithm

Let F. be a canonical cover for F;
i:=0;
for each functional dependency a — gin F; do
if none of the schemas R;, 1 <j <icontains o S
then begin
i=i+1;
2,

I,
ATV

‘ What 3NF Gives You

There are two important properties of a decomposition:

1. We should be able to recover from the decomposed relations
the data of the original.

¥ Recovery involves projection and join.

2. We should be able to check that the FD’s for the original relation

13.10.2011

23

‘ Example

B Relation schema:

Banker-info-schema = (branch-name, customer-name,
banker-name, office-number)

JLOWY
A TARIS

‘ Applying 3NF to Banker-info-schema

B The for loop in the algorithm causes us to include the
following schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name,
office-number)

2,
AR

13.10.2011

24

‘ Comparison of BCNF and 3NF

m |tis always possible to decompose a relation into relations in
3NF and

the decomposition is lossless

¥ the dependencies are preserved

‘ Comparison of BCNF and 3NF (Cont.)

® Example of problems due to redundancy in 3NF

¢ R=(A B,C)
F={AB > C,C — B}

null | by

2,
AR

13.10.2011

25

‘ Design Goals

B Goal for a relational database design is:
? BCNF.
Lossless join.

¥ Dependency preservation.
m If we cannot achieve this, we accept one of

I,
AR

‘ Multivalued Dependencies

B There are database schemas in BCNF that do not seem to be
sufficiently normalized

B Consider a database
classes(course, teacher, book)

2,
AR

13.10.2011

26

‘ Multivalued Dependencies (Cont.)

operating systems | Avi
operating systems | Jim
operating systems | Jim

| course | teacher | book |
database Avi DB Concepts
database Avi Ullman
database Hank DB Concepts
database Hank Ullman
database Sudarshan DB Concepts
database Sudarshan Ullman
operating systems | Avi OS Concepts

Shaw
OS Concepts
Shaw

‘ Multivalued Dependencies (Cont.)

m Therefore, it is better to decompose classes into:

| course | teacher |
database Avi
database Hank
database Sudarshan
operating systems Avi
operating systems Jim

course book

database
database
operating systems
operating systems

DB Concepts
Ullman

OS Concepts
Shaw

A
mﬂ“im.

13.10.2011

27

‘ Multivalued Dependencies Def.

The multivalued dependency X —-— Y holds in a relation R if
whenever we have two tuples of R that agree in all the attributes
of X, then we can swap their Y components and get two new
tuples that are also in R.

Ny
A TARIS

‘ Example (Cont.)

H |n our example:

course »— teacher
course »— book

2,
AR

13.10.2011

28

L]

name

addr

Example

Drinkers(hame, addr, phones, beersLiked)
with MVD Name ——> phones. If Drinkers has the two tuples:

phones beersLiked

sue

a

pl bl

JLOWY
il =

L]

1. Every FD is an MVD.

¥ Because if X —Y, then swapping Y’s between tuples that agree on X
doesn’t create new tuples.

? Example, in Drink

MVD Rules

2,
AV

13.10.2011

29

Fourth Normal Form

m A relation schema R is in 4NF with respect to a set D of
functional and multivalued dependencies if for all multivalued
dependencies in D* of the form a -— 3, where a c R and f c R,
at least one of the following hold:

¥ o > Bistrivial (i.e., fcaoraup=R)
? o is a superkey for schema R

I,
A =TR

‘ ANF Decomposition Algorithm

result: = {R};
done ;= false;
compute D¥;

Let D; denote the restriction of D* to R;

while (not done)
if (there is a schema R. in result that is not in 4NF) then

2,
AR

13.10.2011

30

‘ Splitting Doesn’t Hold

Sometimes you need to have several attributes on the right of an
MVD. For example:

Drinkers(name, areaCode, phones, beersLiked, beerManf)

LMY
A TARIS

‘ Example

Drinkers(name, addr, phones, beersLiked)
B FD: name — addr

® Nontrivial MVD'’s: name —— phones and
name —— beersLiked.

2,
AR

13.10.2011

31

No transitive
dependency
between
nonkey
attributes

No
multivalued
dependency

All
determinants
are candidate
keys - Single
multivalued
dependency

Database System Concepts

Normalization

7.63

Functional
dependency
of nonkey
attributes on
the primary
key - Atomic
values only

Full
Functional
dependency
of nonkey
attributes on
the primary
k

~

~

Further Normal Forms

® Join dependencies generalize multivalued dependencies

¢ lead to project-join normal form (PJNF) (also called fifth normal

form)

¥ Arelation is in 5NF if every join dependency in the relation is
implied by the keys of the relation

=

Implies that relations that have been decomposed in previous NF

can be recombined via natural joins to recreate the original relation

m A class of even more general constraints, leads to a normal form
called domain-key normal form.

® Problem with these generalized constraints: are hard to reason
with, and no set of sound and complete set of inference rules

exists.

® Hence rarely used

® The normalized relations grows in additive way while
non-normalized relations grows in multiplicative way.

Database System Concepts

7.64 ©Silberschatz, Korth

13.10.2011

32

‘ Overall Database Design Process

® We have assumed schema R is given

¥ R could have been generated when converting E-R diagram to a set of
tables.

¥ R could have been a single relation containing all attributes that are of
interest (called universal relation).

I,
AR

‘ ER Model and Normalization

B When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization.

m However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity

2,
AR

13.10.2011

33

Database System Concepts 7.67

Denormalization for Performance
~

B May want to use non-normalized schema for performance

B E.g. displaying customer-name along with account-number and
balance requires join of account with depositor
m Alternative 1: Use denormalized relation containing attributes of
account as well as depositor with all above attributes
¢ faster lookup
" Extra space and extra execution time for updates

¥ extra coding work for programmer and possibility of error in extra code

m Alternative 2: use a materialized view defined as
account X depositor

¥ Benefits and drawbacks same as above, except no extra cod|ng work
for programmer and avoids possible errors N

~

Database System Concepts 7.68

Other Design Issues
\/

B Some aspects of database design are not caught by
normalization

® Examples of bad database design, to be avoided:

Instead of earnings(company-id, year, amount), use
¥ earnings-2000, earnings-2001, earnings-2002, etc., all on the
schema (company-id, earnings).

Above are in BCNF, but make querying across years difficult and
needs new table each year

¥ company-year(company-id, earnings-2000, earnings-2001,
earnings-2002)

Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.

@ Is an example of a crosstab, where values for one attribute
become column names

g Used in spreadsheets, and in data analysis tools

13.10.2011

34

]

Sample lending Relation

customer- | loan-
branch-name | branch-city assets name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge | Horseneck | 1700000 | Hayes L-15 1500
Downtown | Brooklyn 9000000 | Jackson L-14 1500
Mianus Horseneck 400000 | Jones L-93 500
Round Hill Horseneck | 8000000 | Turner L-11 900
Pownal Bennington 300000 | Williams L-29 1200
North Town | Rye 3700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Johnson L-18 2000
Perryridge Horseneck | 1700000 | Glenn L-25 2500
Brighton Brooklyn 7100000 | Brooks L-10 2200

13.10.2011

35

L]

Sample Relation r

L]

The customer Relation

[customer-name | customer-street | customer-city |

Jones
Smith
Hayes
Curry
Lindsay
Turner
Williams
Adams
Johnson
Glenn
Brooks
Green

Main
North
Main
North
Park
Putnam
Nassau
Spring
Alma
Sand Hill
Senator
Walnut

Harrison
Rye
Harrison
Rye
Pittsfield
Stamford
Princeton
Pittsfield
Palo Alto
Woodside
Brooklyn
Stamford

13.10.2011

36

L]

The loan Relation

[loan-number | branch-name | amount

L-17
L-23
L-15
L-14
L-93
L-11
L-29
L-16
L-18
L-25
L-10

Downtown
Redwood
Perryridge
Downtown
Mianus
Round Hill
Pownal
North Town
Downtown
Perryridge
Brighton

1000
2000
1500
1500

500

900
1200
1300
2000
2500

2200

L]

The branch Relation

| branch-name | branch-city | assets |

Downtown
Redwood
Perryridge
Mianus
Round Hill
Pownal
North Town
Brighton

Brooklyn
Palo Alto
Horseneck
Horseneck
Horseneck
Bennington
Rye
Brooklyn

9000000
2100000
1700000

400000
8000000

300000
3700000
7100000

13.10.2011

37

The Relation branch-customer

branch-name branch-city assets customer-name |
Downtown Brooklyn 9000000 Jones
Redwood Palo Alto 2100000 Smith
Perryridge Horseneck 1700000 Hayes
Downtown Brooklyn 9000000 Jackson
Mianus Horseneck 400000 Jones
Round Hill Horseneck 8000000 Turner
Pownal Bennington 300000 Williams
North Town | Rye 3700000 Hayes
Downtown Brooklyn 9000000 Johnson
Perryridge Horseneck 1700000 Glenn
Brighton Brooklyn 7100000 Brooks

L]

The Relation customer-loan

| customer-name | loan-number | amount |

Jones
Smith
Hayes
Jackson
Jones
Turner
Williams
Hayes
Johnson
Glenn
Brooks

L-17
L-23
L-15
L-14
L-93
L-11
L-29
L-16
L-18
L-25
L-10

1000
2000
1500
1500

500

900
1200
1300
2000
2500
2200

13.10.2011

38

The Relation branch-customer b<icustomer-loan
customer- | loan-
branch-name | branch-city assets | name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Downtown | Brooklyn 9000000 | Jones L-93 500
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck | 1700000 | Hayes L-15 1500
Perryridge | Horseneck | 1700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Jackson L-14 1500
Mianus Horseneck 400000 | Jones L-17 1000
Mianus Horseneck 400000 | Jones L-93 500

Round Hill | Horseneck | 8000000 | Turner L-11 900
Pownal Bennington | 300000 | Williams L-29 1200
North Town | Rye 3700000 | Hayes L-15 1500
North Town | Rye 3700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Johnson L-18 2000
Perryridge | Horseneck | 1700000 | Glenn L-25 2500
Brighton Brooklyn 7100000 | Brooks L-10 2200

An Instance of Banker-schema

| customer-name | banker-name | branch-name |
Jones Johnson Perryridge
Smith Johnson Perryridge
Hayes Johnson Perryridge
Jackson Johnson Perryridge
Curry Johnson Perryridge
Turner Johnson Perryridge

13.10.2011

39

' Tabular Representation of @ »— g

’ation bc: An Example of Reduncy in a BCNF Relation

| loan-number | customer-name | customer-street | customer-city |

L-23 Smith North Rye
L-23 Smith Main Manchester
L-93 Curry Lake Horseneck

13.10.2011

40

13.10.2011

An lllegal bc Relation

L]

| loan-number | customer-name | customer-street | customer-city |

L-23 Smith North Rye
L-27 Smith Main

Manchester

Decomposition of loan-info

branch-name

loan-number

Round Hill

L-58

loan-number

amount

loan-number

customer-name

L-58

Johnson

41

Relation of Exercise 7.4

13.10.2011

42

sdob najdi
sdel najdi
kol najdi

data najdi

‘(@ Ele Edit View Insert Format Tools Window Help Adobe PDF -8 x
B-HR(ESRY | nBS o~ |@BR|T|aEND?2
Fom - e ruj===|A-|L- =

K/
ATV=IASI

N O R O N A I R O T R O =
& Form Header

| Naracki IEEE

i L

et I ow [

: = S T T T

b ﬁm
\ﬁch\ — > Naracka
== ===l —

2| |dalse kor{stat ddokeri 1. 2. [..] kako kriterimi

: jie|na bazata PRIKAZI)

5 s Brisi

& Nazad L Naracka

& I T T T T T
Detal

—r—1— — —Tr—T—T—

D O O R = —Eh’."“‘!!"

B 2gpis. a
1 —[|| % Form Header —[pot Im
|| K= sdkate da i
HnBEES =2 T e
- . tvori
R Jfsder i za |
HmH = iisi
- fEDle] okq za
‘__? Data ___hmu;%.
g & Form Fackar ' ~| | |zapisi e kdpceto
54 | » Noya Narack
{5 55

Form Footer

[Trorhaza febota fo tabflatampRaRfCR | [[[.
) T L} T Ll T T L 1
<« | »

Design View

Cisti_Click()
Prikazi_Click()
Nov_Click()

Otvori_Click()
/

Brisi_Click()
Nazad_Click()

Ed Microsoft Access - [Naracki : Form]

File Edit View Insert Format Tools Window Help Adobe PDF -8 X
BR(@RAY|i{iRAY o-o- Q|0 R|T|y|EDN D2
Fam -] JC_ s rujE=ss|A-|L- 2
| O T R T R K T R O - S R) '_il/v Cisti_Click()
sdob najdi - :l‘ﬂ'"”“" ki | ‘ ‘ | v Prikazi_Click(
sdel najdi snNarackl] | | Nov_Click()
kol najdi : B2 JHGE Osn /I: N /Ot.\/(.)n_(.:hcko
- 2 S T e e / T Brisi_Click()
gatanal i Nazad_Click()

K Microsoft Access - [Naracki] - | O)X
‘B File Edit Yiew Insert Format Records Tools Window Help AdobePDF - & X
I —)) p U2 [A LT
- E8(ERY|ima(-|@[AU[FUT (M) x @S 2

Naracki

Sifra - dobavuvac [Orstr | My |

Sitra - del

Sifta- dob.
51
51
st
51
st
51
= B .
52 P2 h e
record: M| [T (MPE oz Nova Naracka.

Forma za rabota so tabelata na NARACKI

Procedure for a Query Building

Option Compare Database
Option Explicit
Private Sub AddToWhere(FieldValue As Variant, FieldName As String,
MyCriteria As String, ArgCount As Integer)
' Create criteria for WHERE clause.
If FieldValue <> " Then
' Add "and" if other criterion exists. Chr(34) =

Chr(39) = *
Chr(42) = *

rocedure for Field Cleaning in a Form

Private Sub Cisti_Click()
Dim MySQL As String
Dim Tmp As Variant
MySQL = "SELECT * FROM NajdiNaracka WHERE False"
' Clear search text boxes.
Me![sdob najdi] = Null
Me![sdel najdi] = Null
Mel[kol najdi] = Null

LMY
AR

Procedure for Searching in Database

Private Sub Prikazi_Click()

On Error GoTo Err_Prikazi_Click
Dim MySQL As String, MyCriteria As String, MyRecordSource As String
Dim ArgCount As Integer
Dim Tmp As Variant

' Initialize argument count.

ArgCount =0

' Initialize SELECT statement.

Continues

' Set RecordSource property of Find Customers Subform.
Mel![Naracka subform].Form.RecordSource = MyRecordSource

' If no records match criteria, display message.
' Move focus to Clear button.

If Me![Naracka subform].Form.RecordsetClone.RecordCount = 0 Then
MsgBox "Nema zapisi! *, 48, "Greska"
Me!Cisti.SetFocus

Do almost Nothing

Private Sub Form_Activate()
' Used by Solutions to show toolbar that includes Show Me button.
' Hide built-in Form View toolbar.
' Show Custom Form View toolbar.
' DoCmd.ShowToolbar "Form View", A_TOOLBAR_NO
' DoCmd.ShowToolbar "Custom Form View", A_TOOLBAR_YES
End Sub

Levels of Abstraction

Private Sub Nov_Click()
On Error GoTo Err_Nov_Click
Dim stDocName As String
Dim stLinkCriteria As String
stDocName = "Naracka"
DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormAdd
Exit_Nov_Click: Exit Sub
Err_Nov_Click:

Instances and Schemas

Private Sub Brisi_Click()
On Error GoTo Err_Brisi_Click

Dim MySQL As String, MyCriteria As String

MySQL = "DELETE FROM Naracka WHERE sdob LIKE "

LAWY
ATNVIARI

Procedure for Opening Form

Private Sub Nazad_Click()
On Error GoTo Err_Nazad_Click

Dim stDocName As String
Dim stLinkCriteria As String

LMY
ATNV=TARI

	P1-Intro
	P2-ER Model
	P3-Relational Model
	P4-SQL-SP
	P5-Normalization
	P10-VB-Access

