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Chapter 1:  Introduction

 Purpose of Database Systems

 View of Data

 Data Models 

 Data Definition Language 

 Data Manipulation Language

 Transaction Management 

 Storage Management

 Database Administrator

 Database Users

 Overall System Structure

 DBMS Vs. IRS
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Database Management System (DBMS)

 Collection of interrelated data

 Set of programs to access the data 

 DBMS contains information about a particular enterprise

 DBMS provides an environment that is both convenient
and efficient to use.

 Database Applications:
 Banking: all transactions

 Airlines: reservations, schedules

 Universities:  registration, grades

 Sales: customers, products, purchases

 Manufacturing: production, inventory, orders, supply chain

 Human resources:  employee records, salaries, tax deductions

 Databases touch all aspects of our lives
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Purpose of Database System

 In the early days, database applications were built on top 
of file systems

 Drawbacks of using file systems to store data:
 Data redundancy and inconsistency

Multiple file formats, duplication of information in different files

 Difficulty in accessing data 

 Need to write a new program to carry out each new task

 Data isolation — multiple files and formats

 Integrity problems

 Integrity constraints  (e.g. account balance > 0) become part 
of program code

 Hard to add new constraints or change existing ones
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Purpose of Database Systems (Cont.)

 Drawbacks of using file systems (cont.) 
 Atomicity of updates

 Failures may leave database in an inconsistent state with partial 
updates carried out

 E.g. transfer of funds from one account to another should either 
complete or not happen at all

 Concurrent access by multiple users

 Concurrent accessed needed for performance

 Uncontrolled concurrent accesses can lead to inconsistencies

– E.g. two people reading a balance and updating it at the same 
time

 Security problems

 Database systems offer solutions to all the above problems
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Is the WWW a DBMS?

 Fairly sophisticated search available
 crawler indexes pages for fast search

 But, currently
 data is mostly unstructured and untyped

 can’t manipulate the data

 few guarantees provided for freshness of data,

consistency across data items, fault tolerance, …

 Web sites typically have a DBMS in the 
background to provide these functions.

 The picture is quickly changing
 New standards like XML can help data modeling

 Research groups are working on providing some of this functionality 
across multiple web sites.
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Is a File System a DBMS?

 Thought Experiment 1:
 You and your project partner are editing the same file.

 You both save it at the same time.

 Whose changes survive?

A) Yours B) Partner’s C) Both D) Neither E) ???

 Thought Experiment 2:
 You’re updating a file.

 The power goes out.

 Which of your changes survive?

A) All B) None C) All Since last save D) ???
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Levels of Abstraction

 Physical level describes how a record (e.g., customer) is 
stored.

 Logical level: describes data stored in database, and the 
relationships among the data.

type customer = record
name : string;
street : string;
city : integer;

end;

 View level: application programs hide details of data types.  
Views can also hide information (e.g., salary) for security 
purposes. 
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View of Data

An architecture for a database system
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Instances and Schemas

 Similar to types and variables in programming languages

 Schema – the logical structure of the database
 e.g., the database consists of information about a set of customers and 

accounts and the relationship between them)

 Analogous to type information of a variable in a program

 Physical schema: database design at the physical level

 Logical schema: database design at the logical level

 Instance – the actual content of the database at a particular point 
in time 
 Analogous to the value of a variable

 Physical Data Independence – the ability to modify the physical 
schema without changing the logical schema
 Applications depend on the logical schema

 In general, the interfaces between the various levels and components should 
be well defined so that changes in some parts do not seriously influence others.
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Data Models

 A collection of tools for describing
 data 
 data relationships
 data semantics
 data constraints

 Entity-Relationship model

 Relational model

 Other models: 
 object-oriented model
 semi-structured data models

 Older models: network model and hierarchical model
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Entity-Relationship Model

Example of schema in the entity-relationship model
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Entity Relationship Model (Cont.)

 E-R model of real world
 Entities (objects) 

 E.g. customers, accounts, bank branch

 Relationships between entities

 E.g. Account A-101 is held by customer Johnson

 Relationship set depositor associates customers with accounts

 Widely used for database design
 Database design in E-R model usually converted to design in the 

relational model (coming up next) which is used for storage and 
processing
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Relational Model

 Example of tabular data in the relational model

customer-
name

Customer-id customer-
street

customer-
city

account-
number

Johnson

Smith

Johnson

Jones

Smith

192-83-7465

019-28-3746

192-83-7465

321-12-3123

019-28-3746

Alma

North

Alma

Main

North

Palo Alto

Rye

Palo Alto

Harrison

Rye

A-101

A-215

A-201

A-217

A-201

Attributes
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A Sample Relational Database
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Data Definition Language (DDL)

 Specification notation for defining the database schema
 E.g.  

create table account (
account-number char(10),
balance integer)

 DDL compiler generates a set of tables stored in a data 
dictionary

 Data dictionary contains metadata (i.e., data about data)
 database schema 

 Data storage and definition language 

 language in which the storage structure and access methods 
used by the database system are specified

 Usually an extension of the data definition language
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Data Manipulation Language (DML)

 Language for accessing and manipulating the data 
organized by the appropriate data model
 DML also known as query language

 Two classes of languages
 Procedural – user specifies what data is required and how to get 

those data 

 Nonprocedural – user specifies what data is required without 
specifying how to get those data

 SQL is the most widely used query language
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SQL

 SQL: widely used non-procedural language
 E.g. find the name of the customer with customer-id 192-83-7465

select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

 E.g. find the balances of all accounts held by the customer with 
customer-id 192-83-7465

select account.balance
from depositor, account
where depositor.customer-id = ‘192-83-7465’ and

depositor.account-number = account.account-number

 Application programs generally access databases through 
 Language extensions to allow embedded SQL

 Application program interface (e.g. ODBC/JDBC) which allow SQL 
queries to be sent to a database
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Database Users

 Users are differentiated by the way they expect to interact 
with the system

 Application programmers – interact with system through 
DML calls

 Sophisticated users – form requests in a database query 
language

 Specialized users – write specialized database 
applications that do not fit into the traditional data 
processing framework

 Naïve users – invoke one of the permanent application 
programs that have been written previously
 E.g. people accessing database over the web, bank tellers, clerical 

staff
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Database Administrator

 Coordinates all the activities of the database 
system; the database administrator has a good 
understanding of the enterprise’s information 
resources and needs.

 Database administrator's duties include:

 Schema definition

 Storage structure and access method definition

 Schema and physical organization modification

 Granting user authority to access the database

 Specifying integrity constraints

 Acting as liaison with users

 Monitoring performance and responding to changes in 
requirements
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Transaction Management

 A transaction is a collection of operations that performs a 
single logical function in a database application

 Transaction-management component ensures that the 
database remains in a consistent (correct) state despite 
system failures (e.g., power failures and operating system 
crashes) and transaction failures.

 Concurrency-control manager controls the interaction 
among the concurrent transactions, to ensure the 
consistency of the database.
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Storage Management

 Storage manager is a program module that provides the 
interface between the low-level data stored in the database 
and the application programs and queries submitted to the 
system.

 The storage manager is responsible to the following tasks:
 interaction with the file manager 

 efficient storing, retrieving and updating of data
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Overall System Structure 
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Application Architectures

Two-tier architecture:  E.g. client programs using ODBC/JDBC to  
communicate with a database
Three-tier architecture: E.g. web-based applications, and 
applications built using “middleware”
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Advantages of a DBMS

 Data independence

 Efficient data access

 Data integrity & security

 Data administration

 Concurrent access, crash recovery

 Reduced application development time

 So why not use them always?

 Expensive/complicated to set up & maintain

 This cost & complexity must be offset by need

 General-purpose, not suited for special-purposetasks (e.g. text 
search!)
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DBMS vs. IRS

 

Filtering 

Retrieval 

Distribution of selected information 

Users Information 

DBMS: The entities are 
uniquely and completely 
described by its 
attributes.

IRS: The number of 
content identifiers can 
be very large and they 
do not describe the 
information uniquely 
and completely.
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Search vs. Retrieval

 Give me all 
about  ... 

Content 
Identifiers 2

Content 
Identifiers k

Content 
Identifiers n 

Document 2 

Document k 

Document n 

Content 
Identifiers 1 

Query  
Identifiers

similariey estimation 

Document 1 . . 
. 

. . 
. 

DBMS: Strict matching between the 
query and the information 
identifiers.

IRS: Degree of similarity between 
the query and information 
identifiers.
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Chapter 2:  Entity-Relationship Model

 Entity Sets

 Relationship Sets

 Design Issues 

 Mapping Constraints 

 Keys

 E-R Diagram

 Extended E-R Features

 Design of an E-R Database Schema

 Reduction of an E-R Schema to Tables
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Entity Sets

 A database can be modeled as:
 a collection of entities,

 relationship among entities.

 An entity is an object that exists and is distinguishable from 
other objects.

 Example:  specific person, company, event, plant

 Entities have attributes
 Example: people have names and addresses

 An entity set is a set of entities of the same type that share 
the same properties.
 Example: set of all persons, companies, trees, holidays
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Entity Sets customer and loan

customer-id   customer- customer- customer- loan- amount
name     street         city                    number
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Attributes

 An entity is represented by a set of attributes, that is 
descriptive properties possessed by all members of an 
entity set.

 Domain – the set of permitted values for each attribute 

 Attribute types:
 Simple and composite attributes.

 Single-valued and multi-valued attributes

 E.g. multivalued attribute: phone-numbers

 Derived attributes

 Can be computed from other attributes

 E.g.  age, given date of birth

Example: 

customer = (customer-id, customer-name, 
customer-street, customer-city)

loan = (loan-number, amount)
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Composite Attributes
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Relationship Sets

 A relationship is an association among several entities

Example:
Hayes depositor A-102

customer entity relationship set account entity

 A relationship set is a mathematical relation among n  2 
entities, each taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship

 Example: 

(Hayes, A-102)  depositor
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Relationship Set borrower
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Relationship Sets (Cont.)

 An attribute can also be property of a relationship set.

 For instance, the depositor relationship set between entity sets 
customer and account may have the attribute access-date
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Degree of a Relationship Set

 Refers to number of entity sets that participate in a 
relationship set.

 Relationship sets that involve two entity sets are binary (or 
degree two).  Generally, most relationship sets in a 
database system are binary.

 Relationship sets may involve more than two entity sets. 

 Relationships between more than two entity sets are rare.  
Most relationships are binary. (More on this later.)

E.g.  Suppose employees of a bank may have jobs 
(responsibilities) at multiple branches, with different jobs at 
different branches.  Then there is a ternary relationship set 
between entity sets employee,  job and branch
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Mapping Cardinalities

 Express the number of entities to which another entity 
can be associated via a relationship set.

 Most useful in describing binary relationship sets.

 For a binary relationship set the mapping cardinality 
must be one of the following types:

 One to one

 One to many

 Many to one

 Many to many



13.10.2011

6

©Silberschatz, Korth and Sudarshan2.11Database System Concepts

Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any 
elements in the other set
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Mapping Cardinalities 

Many to one Many to many

Note: Some elements in A and B may not be mapped to any 
elements in the other set
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Mapping Cardinalities affect ER Design

 Can make access-date an attribute of account, instead of a 
relationship attribute, if each account can have only one customer 

 I.e., the relationship from account to customer is many to one, 
or equivalently, customer to account is one to many
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E-R Diagrams

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets and entity sets to relationship sets.

 Ellipses represent attributes

 Double ellipses represent multivalued attributes.

 Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes (will study later)
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E-R Diagram With Composite, Multivalued, and 
Derived Attributes
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Relationship Sets with Attributes
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Roles

 Entity sets of a relationship need not be distinct
 The labels “manager” and “worker” are called roles; they specify how 

employee entities interact via the works-for relationship set.

 Roles are indicated in E-R diagrams by labeling the lines that connect 
diamonds to rectangles.

 Role labels are optional, and are used to clarify semantics of the 
relationship
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Cardinality Constraints

 We express cardinality constraints by drawing either a directed 
line (), signifying “one,” or an undirected line (—), signifying 
“many,” between the relationship set and the entity set.

 E.g.: One-to-one relationship:

 A customer is associated with at most one loan via the relationship 
borrower

 A loan is associated with at most one customer via borrower
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One-To-Many Relationship

 In the one-to-many relationship a loan is associated with at most 
one customer via borrower, a customer is associated with 
several (including 0) loans via borrower
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Many-To-One Relationships

 In a many-to-one relationship a loan is associated with several 
(including 0) customers via borrower, a customer is associated 
with at most one loan via borrower
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Many-To-Many Relationship

 A customer is associated with several (possibly 0) loans 
via borrower

 A loan is associated with several (possibly 0) customers 
via borrower
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Participation of an Entity Set in a 
Relationship Set

 Total participation (indicated by double line):  every entity in the entity 
set participates in at least one relationship in the relationship set

 E.g. participation of loan in borrower is total

 every loan must have a customer associated to it via borrower

 Partial participation:  some entities may not participate in any 
relationship in the relationship set

 E.g. participation of customer in borrower is partial
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Alternative Notation for Cardinality 
Limits

 Cardinality limits can also express participation constraints
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Keys

 A super key of an entity set is a set of one or more 
attributes whose values uniquely determine each 
entity.

 A candidate key of an entity set is a minimal super key

 Customer-id is candidate key of customer

 account-number is candidate key of account

 Although several candidate keys may exist, one of the 
candidate keys is selected to be the primary key.
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Keys for Relationship Sets

 The combination of primary keys of the participating entity 
sets forms a super key of a relationship set.
 (customer-id, account-number) is the super key of depositor

 NOTE:  this means a pair of entity sets can have at most one 
relationship in a particular relationship set.  

 E.g. if we wish to track all access-dates to each account by each 
customer, we cannot assume a relationship for each access.  
We can use a multivalued attribute though

 Must consider the mapping cardinality of the relationship 
set when deciding the what are the candidate keys 

 Need to consider semantics of relationship set in selecting 
the primary key  in case of more than one candidate key
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E-R Diagram with a Ternary Relationship



13.10.2011

14

©Silberschatz, Korth and Sudarshan2.27Database System Concepts

Cardinality Constraints on Ternary 
Relationship

 We allow at most one arrow out of a ternary (or greater 
degree) relationship to indicate a cardinality constraint

 E.g. an arrow from works-on to job indicates each employee 
works on at most one job at any branch.

 If there is more than one arrow, there are two ways of defining 
the meaning.  
 E.g a ternary relationship R between A, B and C with arrows to B and C 

could mean

 1.  each A entity is associated with a unique entity from B and C or 

 2.  each pair of entities from (A, B) is associated with a unique C entity, 
and each pair (A, C) is associated with a unique B

 Each alternative has been used in different formalisms

 To avoid confusion we outlaw more than one arrow
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Binary Vs. Non-Binary Relationships

 Some relationships that appear to be non-binary may be 
better represented using binary relationships
 E.g.  A ternary relationship parents, relating a child to his/her father and 

mother, is best replaced by two binary relationships,  father and mother

 Using two binary relationships allows partial information (e.g. only 
mother being know)

 But there are some relationships that are naturally non-binary

 E.g. works-on
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Converting Non-Binary Relationships to 
Binary Form

 In general, any non-binary relationship can be represented using 
binary relationships by creating an artificial entity set.
 Replace R between entity sets A, B and C by an entity set E, and three 

relationship sets: 

1. RA, relating E and A 2.RB, relating E and B

3. RC, relating E and C
 Create a special identifying attribute for E

 Add any attributes of R to E 

 For each relationship (ai , bi , ci) in R, create 

1. a new entity ei in the entity set E       2. add (ei , ai ) to RA

3. add (ei , bi ) to RB 4. add (ei , ci ) to RC
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Converting Non-Binary Relationships 
(Cont.)

 Also need to translate constraints

 Translating all constraints may not be possible

 There may be instances in the translated schema that
cannot correspond to any instance of R

 Exercise:  add constraints to the relationships RA, RB and RC to 
ensure that a newly created entity corresponds to exactly one entity 
in each of entity sets A, B and C

 We can avoid creating an identifying attribute by making E a weak 
entity set (described shortly) identified by the three relationship sets 
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Weak Entity Sets

 An entity set that does not have a primary key is referred to as a 
weak entity set.

 The existence of a weak entity set depends on the existence of a 
identifying entity set

 it must relate to the identifying entity set via a total, one-to-many 
relationship set from the identifying to the weak entity set

 Identifying relationship depicted using a double diamond

 The discriminator (or partial key) of a weak entity set is the set of 
attributes that distinguishes among all the entities of a weak 
entity set.

 The primary key of a weak entity set is formed by the primary key 
of the strong entity set on which the weak entity set is existence 
dependent, plus the weak entity set’s discriminator.
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Weak Entity Sets (Cont.)

 We depict a weak entity set by double rectangles.

 We underline the discriminator of a weak entity set  with a 
dashed line.

 payment-number – discriminator of the payment entity set 

 Primary key for payment – (loan-number, payment-number) 
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Weak Entity Sets (Cont.)

 Note: the primary key of the strong entity set is not 
explicitly stored with the weak entity set, since it is implicit 
in the identifying relationship.

 If loan-number were explicitly stored, payment could be 
made a strong entity, but then the relationship between 
payment and loan would be duplicated by an implicit 
relationship defined by the attribute loan-number common 
to payment and loan
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Example: Logins (Email Addresses)

Login name = user name + host name, e.g., 
ark@soe.ucsc.edu.

 A “login” entity corresponds to a user name on a particular host, but 
the passwd table doesn’t record the host, just the user name, e.g., 
ark.

 Key for a login = the user name at the host (which is unique for that 
host only) + the IP address of the host (which is unique globally).

 Design issue: Under what circumstances could we simply make 
login-name and host-name be attributes of logins, and dispense 
with the weak E.S.?

Logins Hosts@@

name name
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All “Connecting”
Entity Sets
Are Weak

 In this special case, where bar and beer determine a price, we can 
omit price from the key, and remove the double diamond from 
ThePrice.

 Better: price is attribute of BBP.

Bars Beers

The-
Bar

Price

The-
Beer

The-
Price

BBPBBP

The-
Bar

The-
Beer

The-
Price

name manfname addr price
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Relationship To Weak Entities

 Consider a relationship, Ordered, between two entity sets, 
Buyer and Product

 How can we add Shipments to the mix?

This is wrong.  Why?

Buyer ProductOrdered

Qty

Buyer ProductOrdered

Qty
Shipment

Name

UPC

Name

UPC

ID
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 Solution: make Ordered into a weak entity set.

 And then add Shipment.

Buyer Product

Qty

Buyer Product

Shipment

Name

UPC

Name

UPC

ID

OrderedOBOB OPOP

Qty
Ordered

OrderedOBOB OPOP

Part of
Qty

Shipped

Part-of is
many-many 
and not a weak 
relationship!

©Silberschatz, Korth and Sudarshan2.38Database System Concepts

Design Issues

 Use of entity sets vs. attributes
Choice mainly depends on the structure of the enterprise being modeled, 
and on the semantics associated with the attribute in question.

 Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an action 
that occurs between entities

 Binary versus n-ary relationship sets
Although it is possible to replace any nonbinary (n-ary, for n > 2) 
relationship set by a number of distinct binary relationship sets, a n-ary 
relationship set shows more clearly that several entities participate in a 
single relationship.

 Avoid redundancy
Redudancy wastes space and encourages inconsistency.

 Don't overuse weak entity sets
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You may be unsure which concepts are worthy of being entity 
sets, and which are handled more simply as attributes.

 Especially tricky for the class design project, since there is a 
temptation to create needless entity sets to make project “larger.”

Wrong:

Right:

Entity Sets Vs. Attributes 

Beers ManfsManfBy

namename

Beers

name manf
Make an entity set only if it either:

Is more than a name of something; i.e., it 
has nonkey attributes or relationships 
with a number of different entity sets, 

or
Is the “many” in a many-one relationship.
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Example 

The following design illustrates both points:

 Manfs deserves to be an E.S. because we record  addr, a nonkey 
attribute.

 Beers deserves to be an E.S. because it is at the “many” end.

 If not, we would have to make “set of beers” an attribute of  Manfs –
something we avoid doing, although some may tell you it is OK in E/R 
model.

Beers ManfsManfBy

name addrname
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Avoid redundancy
Setting: client has (possibly vague) idea of what he/she wants. You must 
design a database that represents these thoughts and only these thoughts.

Good:

Bad:

Bad:

Beers ManfsManfBy

name addrname

Beers

name manf

Manf
addr

Repeats manufacturer 
address for each beer 
they manufacture.

Beers ManfsManfBy

name addrname manf Manufacturer’s 
name said twice.
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Don't Overuse Weak E.S.

 There is a tendency to feel that no E.S. has its entities uniquely 
determined without following some relationships.

 However, in practice, we almost always create unique ID's to 
compensate: social-security numbers, VIN's, etc.

 The only times weak E.S.'s seem necessary are when:
 We can't easily create such ID's; e.g., no one is going to accept a 

“species ID” as part of the standard nomenclature (species is a 
weak E.S. supported by membership in a genus).

 There is no global authority to create them, e.g., crews and 
studios.
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This image cannot currently be displayed.

How about doing an ER design 
interactively on the board?

Suggest an application to be modeled.
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Specialization

 Top-down design process; we designate subgroupings within an 
entity set that are distinctive from other entities in the set.

 These subgroupings become lower-level entity sets that have 
attributes or participate in relationships that do not apply to the 
higher-level entity set.

 Depicted by a triangle component labeled ISA (E.g. customer “is 
a” person).

 Attribute inheritance – a lower-level entity set inherits all the 
attributes and relationship participation of the higher-level entity 
set to which it is linked.
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Specialization Example

©Silberschatz, Korth and Sudarshan2.46Database System Concepts

Generalization

 A bottom-up design process – combine a number of entity 
sets that share the same features into a higher-level entity 
set.

 Specialization and generalization are simple inversions of 
each other; they are represented in an E-R diagram in the 
same way.

 The terms specialization and generalization are used 
interchangeably.
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Specialization and Generalization 
(Contd.)

 Can have multiple specializations of an entity set based on 
different features.  

 E.g. permanent-employee vs. temporary-employee, in 
addition to officer vs. secretary vs. teller

 Each particular employee would be
 a member of one of permanent-employee or temporary-employee, 

 and also a member of one of officer, secretary, or teller

 The ISA relationship also referred to as superclass -
subclass relationship
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Design Constraints on a 
Specialization/Generalization

 Constraint on which entities can be members of a given 
lower-level entity set.
 condition-defined

 E.g. all customers over 65 years are members of senior-
citizen entity set; senior-citizen ISA  person.

 user-defined

 Constraint on whether or not entities may belong to more than 
one lower-level entity set within a single generalization.
 Disjoint

 an entity can belong to only one lower-level entity set

 Noted in E-R diagram by writing disjoint next to the ISA 
triangle

 Overlapping

 an entity can belong to more than one lower-level entity set
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Design Constraints on a 
Specialization/Generalization (Contd.)

 Completeness constraint -- specifies whether or not an 
entity in the higher-level entity set must belong to at least 
one of the lower-level entity sets within a generalization.
 total : an entity must belong to one of the lower-level entity sets

 partial: an entity need not belong to one of the lower-level entity 
sets
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Aggregation

 Consider the ternary relationship works-on, which we saw earlier

 Suppose we want to record managers for tasks performed by an   
employee at a branch
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Aggregation (Cont.)

 Relationship sets works-on and manages represent overlapping 
information

 Every manages relationship corresponds to a works-on relationship

 However, some works-on relationships may not correspond to any 
manages relationships 

 So we can’t discard the works-on relationship

 Eliminate this redundancy via aggregation

 Treat relationship as an abstract entity

 Allows relationships between relationships 

 Abstraction of relationship into new entity

 Without introducing redundancy, the following diagram represents:

 An employee works on a particular job at a particular branch 

 An employee, branch, job combination may have an associated manager
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E-R Diagram With Aggregation
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E-R Design Decisions

 The use of an attribute or entity set to represent an object.

 Whether a real-world concept is best expressed by an 
entity set or a relationship set.

 The use of a ternary relationship versus a pair of binary 
relationships.

 The use of a strong or weak entity set.

 The use of specialization/generalization – contributes to 
modularity in the design.

 The use of aggregation – can treat the aggregate entity set 
as a single unit without concern for the details of its 
internal structure.
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Beers-Bars-Drinkers Example

name addr license

name manf name addr

Beers Drinkers

BarsServes Frequents

Likes
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E-R Diagram for a Banking Enterprise

This image cannot currently be displayed.

How about doing another ER design 
interactively on the board?
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Summary of Symbols Used in E-R 
Notation

©Silberschatz, Korth and Sudarshan2.58Database System Concepts

Summary of Symbols (Cont.)
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Alternative E-R Notations

©Silberschatz, Korth and Sudarshan2.60Database System Concepts

UML

 UML: Unified Modeling Language

 UML has many components to graphically model different 
aspects of an entire software system

 UML Class Diagrams correspond to E-R Diagram, but 
several differences.
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Summary of UML Class Diagram Notation
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UML Class Diagrams (Contd.)

 Entity sets are shown as boxes, and attributes are shown within  the 
box, rather than as separate ellipses in E-R diagrams.

 Binary relationship sets are represented in UML by just drawing a 
line connecting the entity sets. The relationship set name is written 
adjacent to the line.  

 The role played by an entity set in a relationship set may also be 
specified by writing the role name on the line, adjacent to the entity 
set. 

 The relationship set name may alternatively be written in a box, 
along with attributes of the relationship set, and the box is 
connected, using a dotted line, to the line depicting the  relationship 
set.

 Non-binary relationships drawn using diamonds, just as in ER 
diagrams
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UML Class Diagram Notation (Cont.)

*Note reversal of position in cardinality constraint depiction
*Generalization can use merged or separate arrows independent
of disjoint/overlapping

overlapping

disjoint
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UML Class Diagrams (Contd.)

 Cardinality constraints are specified in the form l..h,  where l denotes 
the minimum and h the maximum number of relationships an entity 
can participate in.

 Beware: the positioning of the constraints is exactly the reverse of the 
positioning of constraints in E-R diagrams.

 The constraint 0..* on the E2 side and 0..1 on the E1 side means that 
each E2 entity can participate in at most one relationship, whereas 
each E1 entity can participate in many relationships; in other words, 
the relationship is many to one from E2 to E1.

 Single values, such as 1 or * may be written on edges; The single 
value 1 on an edge is treated as equivalent to 1..1, while * is 
equivalent to 0..*.
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Reduction of an E-R Schema to Tables

 Primary keys allow entity sets and relationship sets to be 
expressed uniformly as tables which represent the 
contents of the database.

 A database which conforms to an E-R diagram can be 
represented by a collection of tables.

 For each entity set and relationship set there is a unique 
table which is assigned the name of the corresponding 
entity set or relationship set.

 Each table has a number of columns (generally 
corresponding to attributes), which have unique names.

 Converting an E-R diagram to a table format is the basis 
for deriving a relational database design from an E-R 
diagram.
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Representing Entity Sets as Tables

 A strong entity set reduces to a table with the same attributes.
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Composite and Multivalued Attributes

 Composite attributes are flattened out by creating a separate attribute 
for each component attribute
 E.g. given entity set customer with composite attribute name with 

component attributes first-name and last-name the table corresponding 
to the entity set has two attributes

name.first-name and name.last-name

 A multivalued attribute M of an entity E is represented by a separate 
table EM
 Table EM has attributes corresponding to the primary key of E and an 

attribute corresponding to multivalued attribute M

 E.g.  Multivalued attribute dependent-names of employee is represented 
by a table

employee-dependent-names( employee-id, dname)

 Each value of the multivalued attribute maps to a separate row of the 
table EM

 E.g.,  an employee entity with primary key  John and 
dependents  Johnson and Johndotir maps to two rows:   

(John, Johnson) and (John, Johndotir) 
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Representing Weak Entity Sets

 A weak entity set becomes a table that includes a column for 
the primary key of the identifying strong entity set
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Representing Relationship Sets as 
Tables

 A many-to-many relationship set is represented as a table with 
columns for the primary keys of the two participating entity sets, 
and any descriptive attributes of the relationship set. 

 E.g.: table for relationship set borrower
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Redundancy of Tables

 Many-to-one and one-to-many relationship sets that are total 
on the many-side can be represented by adding an extra 
attribute to the many side, containing the primary key of the 
one side

 E.g.: Instead of creating a table for relationship account-
branch, add an attribute branch to the entity set account
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Redundancy of Tables (Cont.)

 For one-to-one relationship sets, either side can be chosen to act 
as the “many” side
 That is, extra attribute can be added to either of the tables 

corresponding to the two entity sets 

 If participation is partial on the many side, replacing a table by an 
extra attribute in the relation corresponding to the “many” side 
could result in null values

 The table corresponding to a relationship set linking a weak 
entity set to its identifying strong entity set is redundant.
 E.g. The payment table already contains the information that would 

appear in the loan-payment table (i.e., the columns loan-number 
and payment-number).

©Silberschatz, Korth and Sudarshan2.72Database System Concepts

Representing Specialization as Tables
 Method 1: 
 Form a table for the higher level entity 

 Form a table for each lower level entity set, include primary key of 
higher level entity set and local attributes

table table attributes
person name, street, city  
customer name, credit-rating
employee name, salary

 Drawback:  getting information about, e.g., employee requires 
accessing two tables



13.10.2011

37

©Silberschatz, Korth and Sudarshan2.73Database System Concepts

Representing Specialization as Tables 
(Cont.)

 Method 2:  
 Form a table for each entity set with all local and inherited 

attributes
table table attributes

person name, street, city
customer name, street, city, credit-rating
employee name, street, city, salary

 If specialization is total, table for generalized entity (person) not 
required to store information

Can be defined as a “view” relation containing union of 
specialization tables

But explicit table may still be needed for foreign key constraints

 Drawback:  street and city may be stored redundantly for persons 
who are both customers and employees
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Relations Corresponding to 
Aggregation

 To represent aggregation, create a table containing

 primary key of the aggregated relationship,

 the primary key of the associated entity set

 Any descriptive attributes
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Relations Corresponding to 
Aggregation (Cont.)

 E.g. to represent aggregation manages between relationship 
works-on and entity set manager, create a table
manages(employee-id, branch-name, title, manager-name)

 Table works-on is redundant provided we are willing to store 
null values for attribute manager-name in table manages

This image cannot currently be displayed.

End of Chapter 2
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E-R Diagram for Exercise 2.10
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E-R Diagram for Exercise 2.15
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E-R Diagram for Exercise 2.22
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E-R Diagram for Exercise 2.15
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Existence Dependencies

 If the existence of entity x depends on the existence of 
entity y, then x is said to be existence dependent on y.

 y is a dominant entity (in example below, loan)

 x is a subordinate entity (in example below, payment)

loan-payment paymentloan

If a loan entity is deleted, then all its associated payment entities 
must be deleted also.
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Chapter 3:  Relational Model

 Structure of Relational Databases

 Relational Algebra

 Tuple Relational Calculus

 Domain Relational Calculus

 Extended Relational-Algebra-Operations

 Modification of the Database

 Views
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Example of a Relation
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Basic Structure

 Formally, given sets D1, D2, …. Dn a relation r is a subset of 
D1 x  D2 x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where 
each ai  Di

 Example:  if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = {   (Jones, Main, Harrison), 
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)}

is a relation over customer-name x customer-street x customer-city
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Attribute Types

 Each attribute of a relation has a name

 The set of allowed values for each attribute is called the 
domain of the attribute

 Attribute values are (normally) required to be atomic, that 
is, indivisible
 E.g. multivalued attribute values are not atomic

 E.g. composite attribute values are not atomic

 The special value null is a member of every domain

 The null value causes complications in the definition of 
many operations
 we shall ignore the effect of null values in our main presentation 

and consider their effect later
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Relation Schema

 A1, A2, …, An are attributes

 R = (A1, A2, …, An ) is a relation schema

E.g.  Customer-schema =
(customer-name, customer-street, customer-city)

 r(R) is a relation on the relation schema R

E.g. customer (Customer-schema)
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Relation Instance

 The current values (relation instance) of a relation are 
specified by a table

 An element t of r is a tuple, represented by a row in a 
table

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North
Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

customer

attributes
(or columns)

tuples
(or rows)
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Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in                
an arbitrary order)

 E.g. account relation with unordered tuples
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Why Relations?

 Very simple model.

 Often a good match for the way we think about our data.

 Abstract model that underlies SQL, the most important 
language in DBMS’s today.
 But SQL uses “bags” while the abstract relational model is set-

oriented.

 All ingenious ideas are simple !
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Database

 A database consists of multiple relations

 Information about an enterprise is broken up into parts, 
with each relation storing one part of the information

E.g.:   account :    stores information about accounts
depositor : stores information about which customer

owns which account 
customer : stores information about customers

 Storing all information as a single relation such as 
bank(account-number, balance, customer-name, ..)

results in
 repetition of information (e.g. two customers own an account)

 the need for null values  (e.g. represent a customer without an 
account)

 Normalization theory (Chapter 7) deals with how to design 
relational schemas
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The customer Relation
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The depositor Relation

©Silberschatz, Korth and Sudarshan3.12Database System Concepts

E-R Diagram for the Banking Enterprise
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Keys

 Let K  R

 K is a superkey of R if values for K are sufficient to identify 
a unique tuple of each possible relation r(R)
 by “possible r” we mean a relation r that could exist in the enterprise 

we are modeling.

 Example:  {customer-name, customer-street} and
{customer-name} 

are both superkeys of Customer, if no two customers can possibly 
have the same name.

 K is a candidate key if K is minimal
Example:  {customer-name} is a candidate key for Customer, 
since it is a superkey (assuming no two customers can possibly 
have the same name), and no subset of it is a superkey.
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Example 1

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

 {name, beersLiked} FD’s all attributes, as seen.

 Shows {name, beersLiked} is a superkey.

 name  beersLiked is false, so name is not a superkey.

 beersLiked  name also false, so beersLiked is not a superkey.

 Thus, {name, beersLiked} is a key.

 No other keys in this example.

 Neither name nor beersLiked is on the right of any observed FD, so they 
must be part of any superkey.

 Important point: “key” in a relation refers to tuples, not the entities they 
represent.  If an entity is represented by several tuples, then entity-key will 
not be the same as relation-key.
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Example 2

 Keys are {Lastname, Firstname} and {StudentID}

Lastname    Firstname           Student ID         Major

Key            Key

(2 attributes)

Superkey

Note: There are alternate keys

©Silberschatz, Korth and Sudarshan3.16Database System Concepts

Determining Keys from E-R Sets

 Strong entity set.  The primary key of the entity set 
becomes the primary key of the relation.

 Weak entity set.  The primary key of the relation consists 
of the union of the primary key of the strong entity set and 
the discriminator of the weak entity set.

 Relationship set.  The union of the primary keys of the 
related entity sets becomes a super key of the relation.
 For binary many-to-one relationship sets, the primary key of the 

“many” entity set becomes the relation’s primary key.

 For one-to-one relationship sets, the relation’s primary key can be 
that of either entity set.

 For many-to-many relationship sets, the union of the primary keys 
becomes the relation’s primary key
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Schema Diagram for the Banking Enterprise
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Query Languages

 Language in which user requests information 
from the database.

 Categories of languages
 procedural

 non-procedural

 “Pure” languages:
 Relational Algebra

 Tuple Relational Calculus

 Domain Relational Calculus

 Pure languages form underlying basis of                     
query languages that people use.
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Relational Algebra

 Procedural language

 Six basic operators
 select

 project

 union

 set difference

 Cartesian product

 rename

 The operators take one or more relations as inputs and 
give a new relation as a result.
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Select Operation – Example

• Relation r A B C D

















1

5

12

23

7

7

3

10

• A=B ^ D > 5 (r)
A B C D









1

23

7

10
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Select Operation

 Notation:   p(r)

 p is called the selection predicate

 Defined as:

p(r) = {t | t  r and p(t)}

Where p is a formula in propositional calculus consisting 
of terms connected by :  (and),  (or),  (not)
Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of:  =, , >, . <. 

 Example of selection:
 branch-name=“Perryridge”(account)
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Project Operation – Example

 Relation r: A B C









10

20

30

40

1

1

1

2

A C









1

1

1

2

=

A C







1

1

2

 A,C (r)
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Project Operation

 Notation:

A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained 
by erasing the columns that are not listed

 Duplicate rows removed from result, since relations are 
sets

 E.g. To eliminate the branch-name attribute of account
account-number, balance (account) 
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Union Operation – Example

 Relations r, s:

r  s:

A B







1

2

1

A B





2

3

r
s

A B









1

2

1

3
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Union Operation

 Notation:  r  s

 Defined as: 

r  s = {t | t  r or t  s}

 For r  s to be valid.

1.  r, s must have the same arity (same number of 
attributes)

2.  The attribute domains must be compatible (e.g., 2nd 
column 

of r deals with the same type of values as does the 2nd 
column of s)

 E.g. to find all customers with either an account or a loan
customer-name (depositor)    customer-name (borrower)
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Set Difference Operation – Example

 Relations r, s:

r – s:

A B







1

2

1

A B





2

3

r
s

A B





1

1
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Set Difference Operation

 Notation r – s

 Defined as:

r – s = {t | t  r and t  s}

 Set differences must be taken between compatible
relations.
 r and s must have the same arity

 attribute domains of r and s must be compatible
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Cartesian-Product Operation-Example

Relations r, s:

r x s:

A B





1

2

A B










1
1
1
1
2
2
2
2

C D










10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

C D






10
10
20
10

E

a
a
b
br

s
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Cartesian-Product Operation

 Notation r x s

 Defined as:

r x s = {t q | t  r and q  s}

 Assume that attributes of r(R) and s(S) are disjoint.      
(That is, R  S = ).

 If attributes of r(R) and s(S) are not disjoint, then renaming 
must be used.
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Composition of Operations

 Can build expressions using multiple operations

 Example:  A=C(r x s)

 r x s

 A=C(r x s)

A B










1
1
1
1
2
2
2
2

C D










10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B C D E





1
2
2





10
20
20

a
a
b
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Rename Operation

 Allows us to name, and therefore to refer to, the results of 
relational-algebra expressions.

 Allows us to refer to a relation by more than one name.

Example:

 x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then 

x (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.
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Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)
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Example Queries

 Find all loans of over $1200

Find the loan number for each loan of an amount greater than                    

$1200

amount > 1200 (loan)

loan-number (amount > 1200 (loan))
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Example Queries

 Find the names of all customers who have a loan, an account, or 
both, from the bank

Find the names of all customers who have a loan and an 

account at bank.

customer-name (borrower)  customer-name (depositor)

customer-name (borrower)  customer-name (depositor)
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Example Queries

 Find the names of all customers who have a loan at the Perryridge 
branch.

 Find the names of all customers who have a loan at the 
Perryridge branch but do not have an account at any branch of   
the bank.

customer-name (branch-name = “Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan)))  –

customer-name(depositor)

customer-name (branch-name=“Perryridge”

(borrower.loan-number = loan.loan-number(borrower x loan)))
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Example Queries

 Find the names of all customers who have a loan at the Perryridge 
branch.

 Query 2

customer-name(loan.loan-number = borrower.loan-number(
(branch-name = “Perryridge”(loan)) x  borrower))

Query 1

customer-name(branch-name = “Perryridge” (
borrower.loan-number = loan.loan-number(borrower x loan)))
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Example Queries

Find the largest account balance

 Rename account relation as d

 The query is:

balance(account) - account.balance

(account.balance < d.balance (account x d (account)))
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Formal Definition

 A basic expression in the relational algebra consists of 
either one of the following:
 A relation in the database

 A constant relation

 Let E1 and E2 be relational-algebra expressions; the 
following are all relational-algebra expressions:

 E1  E2

 E1 - E2

 E1 x E2

 p (E1), P is a predicate on attributes in E1

 s(E1), S is a list consisting of some of the attributes in E1

  x (E1), x is the new name for the result of E1
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Additional Operations

We define additional operations that do not add any power 
to the relational algebra, but that simplify common queries.

 Set intersection

 Natural join

 Division

 Assignment
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Set-Intersection Operation

 Notation: r  s

 Defined as:

 r  s ={ t | t  r and t  s }

 Assume: 
 r, s have the same arity

 attributes of r and s are compatible

 Note: r  s = r - (r - s)
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Set-Intersection Operation - Example

 Relation r, s:

 r  s

A       B





1
2
1

A       B




2
3

r s

A       B

 2
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 Notation:  r     s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively. 
Then,  r     s  is a relation on schema R  S obtained as 
follows:

 Consider each pair of tuples tr from r and ts from s.  

 If tr and ts have the same value on each of the attributes in R  S, add 
a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

R = (A, B, C, D)

S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x  s))
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Natural Join Operation – Example

 Relations r, s:

A B







1
2
4
1
2

C D







a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E







r

A B







1
1
1
1
2

C D







a
a
a
a
b

E







s

r     s
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Division Operation

 Suited to queries that include the phrase “for all”.

 Let r and s be relations on schemas R and S 
respectively where
 R = (A1, …, Am, B1, …, Bn)

 S = (B1, …, Bn)

The result of  r  s is a relation on schema

R – S = (A1, …, Am)

r  s = { t |  t   R-S(r)   u  s ( tu  r ) } 

r  s
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Division Operation – Example

Relations r, s:

r  s: A

B





1

2

A B













1
2
3
1
1
1
3
4
6
1
2

r

s
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Another Division Example

A B










a
a
a
a
a
a
a
a

C D










a
a
b
a
b
a
b
b

E

1
1
1
1
3
1
1
1

Relations r, s:

r  s:

D

a
b

E

1
1

A B




a
a

C




r

s
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Division Operation (Cont.)

 Property 
 Let q – r  s

 Then q is the largest relation satisfying q x s  r

 Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S  R

r  s = R-S (r) –R-S ( (R-S (r) x s) – R-S,S(r))

To see why
 R-S,S(r) simply reorders attributes of r

 R-S(R-S (r) x s) – R-S,S(r)) gives those tuples t in 

R-S (r) such that for some tuple u  s, tu  r.
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Assignment Operation

 The assignment operation () provides a convenient way 
to express complex queries.
 Write query as a sequential program consisting of

 a series of assignments 

 followed by an expression whose value is displayed as a result of 
the query.

 Assignment must always be made to a temporary relation variable.

 Example:  Write r  s as 

temp1 R-S (r)

temp2  R-S ((temp1 x s) – R-S,S (r))

result = temp1 – temp2

 The result to the right of the  is assigned to the relation variable on 

the left of the .

 May use variable in subsequent expressions.
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Example Queries

 Find all customers who have an account from at least the 
“Downtown” and the Uptown” branches.

where CN denotes customer-name and BN denotes 

branch-name.

Query 1

CN(BN=“Downtown”(depositor account)) 

CN(BN=“Uptown”(depositor account))

Query 2

customer-name, branch-name (depositor account)

 temp(branch-name) ({(“Downtown”), (“Uptown”)})
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 Find all customers who have an account at all branches 

located in Brooklyn city.

Example Queries

customer-name, branch-name (depositor account)

 branch-name (branch-city = “Brooklyn” (branch))
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Extended Relational-Algebra-Operations

 Generalized Projection

 Outer Join

 Aggregate Functions
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Generalized Projection

 Extends the projection operation by allowing arithmetic functions 
to be used in the projection list.

 F1, F2, …, Fn(E)

 E is any relational-algebra expression

 Each of F1, F2, …, Fn are are arithmetic expressions involving 
constants and attributes in the schema of E.

 Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend: 

customer-name, limit – credit-balance (credit-info)
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Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a 
single value as a result.

avg:  average value
min:  minimum value
max:  maximum value
sum:  sum of values
count:  number of values

 Aggregate operation in relational algebra 

G1, G2, …, Gn g F1( A1), F2( A2),…, Fn( An) (E)

 E is any relational-algebra expression

 G1, G2 …, Gn is a list of attributes on which to group (can be empty)

 Each Fi is an aggregate function

 Each Ai is an attribute name
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Aggregate Operation – Example

 Relation r:

A B











C

7

7

3

10

g sum(c) (r)
sum-C

27
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Aggregate Operation – Example

 Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700
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Aggregate Functions (Cont.)

 Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate 
operation

branch-name g sum(balance) as sum-balance (account)
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Outer Join

 An extension of the join operation that avoids loss of information.

 Computes the join and then adds tuples form one relation that do 
not match tuples in the other relation to the result of the join. 

 Uses null values:

 null signifies that the value is unknown or does not exist 

 All comparisons involving null are (roughly speaking) false by 
definition.

Will study precise meaning of comparisons with nulls later

©Silberschatz, Korth and Sudarshan3.58Database System Concepts

Outer Join – Example

 Relation loan

 Relation borrower

customer-name loan-number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan-number amount

L-170
L-230
L-260

branch-name

Downtown
Redwood
Perryridge
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Outer Join – Example

 Inner Join

loan     Borrower

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

Jones
Smith
null

loan-number amount

L-170
L-230
L-260

3000
4000
1700

customer-namebranch-name

Downtown
Redwood
Perryridge

 Left Outer Join

loan          Borrower
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Outer Join – Example

 Right Outer Join
loan borrower

loan borrower
 Full Outer Join

loan-number amount

L-170
L-230
L-155

3000
4000
null

customer-name

Jones
Smith
Hayes

branch-name

Downtown
Redwood
null

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

branch-name

Downtown
Redwood
Perryridge
null
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Null Values

 It is possible for tuples to have a null value, denoted by null, for 
some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values

 Is an arbitrary decision.  Could have returned null as result instead.

 We follow the semantics of SQL in its handling of null values

 For duplicate elimination and grouping, null is treated like any 
other value, and two nulls are assumed to be  the same

 Alternative: assume each null is different from each other

 Both are arbitrary decisions,  so we simply follow SQL
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Null Values

 Comparisons with null values return the special truth value 
unknown
 If false was used instead of unknown, then    not (A < 5)

would not be equivalent to               A >= 5

 Three-valued logic using the truth value unknown:
 OR: (unknown or true)         = true, 

(unknown or false)        = unknown
(unknown or unknown) = unknown

 AND: (true and unknown)         = unknown,   
(false and unknown)        = false,
(unknown and unknown) = unknown

 NOT:  (not unknown) = unknown

 In SQL “P is unknown” evaluates to true if predicate P evaluates 
to unknown

 Result of select predicate is treated as false if it evaluates to 
unknown
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Modification of the Database

 The content of the database may be modified using the following 
operations:

 Deletion

 Insertion

 Updating

 All these operations are expressed using the assignment 
operator.
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Deletion

 A delete request is expressed similarly to a query, except instead 
of displaying tuples to the user, the selected tuples are removed 
from the database.

 Can delete only whole tuples; cannot delete values on only 
particular attributes

 A deletion is expressed in relational algebra by:

r  r – E

where r is a relation and E is a relational algebra query.
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Deletion Examples

 Delete all account records in the Perryridge branch.

Delete all accounts at branches located in Needham.

r1  branch-city = “Needham” (account      branch)

r2  branch-name, account-number, balance (r1)

r3   customer-name, account-number (r2 depositor)

account  account – r2

depositor  depositor – r3

Delete all loan records with amount in the range of 0 to 50

loan  loan – amount 0and amount  50 (loan)

account  account – branch-name = “Perryridge” (account)
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Insertion

 To insert data into a relation, we either:

 specify a tuple to be inserted

 write a query whose result is a set of tuples to be inserted

 in relational algebra, an insertion is expressed by:

r  r  E

where r is a relation and E is a relational algebra expression.

 The insertion of a single tuple is expressed by letting E be a 
constant relation containing one tuple. 
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Insertion Examples

 Insert information in the database specifying that Smith has 
$1200 in account A-973 at the Perryridge branch.

 Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account.  Let the loan number serve
as the account number for the new savings account.

account  account  {(“Perryridge”, A-973, 1200)}

depositor  depositor  {(“Smith”, A-973)}

r1  (branch-name = “Perryridge” (borrower    loan))

account  account  branch-name, account-number,200 (r1)

depositor  depositor  customer-name, loan-number(r1)
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Updating

 A mechanism to change a value in a tuple without charging all
values in the tuple

 Use the generalized projection operator to do this task

r  F1, F2, …, FI, (r)

 Each Fi is either 

 the ith attribute of r, if the ith attribute is not updated, or,

 if the attribute is to be updated Fi is an expression, involving only 
constants and the attributes of r, which gives the new value for the 
attribute
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Update Examples

 Make interest payments by increasing all balances by 5 percent.

 Pay all accounts with balances over $10,000 6 percent interest 
and pay all others 5 percent 

account   AN, BN, BAL * 1.06 ( BAL  10000 (account))

 AN, BN, BAL * 1.05 (BAL  10000 (account))

account   AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.
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Views

 In some cases, it is not desirable for all users to see the entire 
logical model (i.e., all the actual relations stored in the database.)

 Consider a person who needs to know a customer’s loan number 
but has no need to see the loan amount.  This person should see 
a relation described, in the relational algebra, by 

customer-name, loan-number (borrower    loan)

 Any relation that is not of the conceptual model but is made 
visible to a user as a “virtual relation” is called a view.



36

©Silberschatz, Korth and Sudarshan3.71Database System Concepts

View Definition

 A view is defined using the create view statement which has the 
form

create view v as <query expression

where <query expression> is any legal relational algebra query 
expression.  The view name is represented by v.

 Once a view is defined, the view name can be used to refer to 
the virtual relation that the view generates.

 View definition is not the same as creating a new relation by 
evaluating the query expression  

 Rather, a view definition causes the saving of an expression; the 
expression is substituted into queries using the view.
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View Examples

 Consider the view (named all-customer) consisting of branches 
and their customers.

 We can find all customers of the Perryridge branch by writing:

create view all-customer as

branch-name, customer-name (depositor    account)

 branch-name, customer-name (borrower loan)

customer-name

(branch-name = “Perryridge” (all-customer))



37

©Silberschatz, Korth and Sudarshan3.73Database System Concepts

Updates Through View

 Database modifications expressed as views must be translated 
to modifications of the actual relations in the database.

 Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as: 

create view branch-loan as

branch-name, loan-number (loan)

 Since we allow a view name to appear wherever a relation name 
is allowed, the person may write:

branch-loan  branch-loan  {(“Perryridge”, L-37)}
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Updates Through Views (Cont.)

 The previous insertion must be represented by an insertion into the 
actual relation loan from which the view branch-loan is constructed.

 An insertion into loan requires a value for amount. The insertion 
can be dealt with by either.

 rejecting the insertion and returning an error message to the user.

 inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

 Some updates through views are impossible to translate into 
database relation updates

 create view v as branch-name = “Perryridge” (account))

v  v  (L-99, Downtown, 23)

 Others cannot be translated uniquely

 all-customer  all-customer  {(“Perryridge”, “John”)}

 Have to choose loan or account, and 
create a new loan/account number!



38

©Silberschatz, Korth and Sudarshan3.75Database System Concepts

Views Defined Using Other Views

 One view may be used in the expression defining another view 

 A view relation v1 is said to depend directly on a view relation v2

if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1 

depends directly to v2 or there is a path of dependencies from 
v1 to v2

 A view relation v is said to be recursive if it depends on itself.
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View Expansion

 A way to define the meaning of views defined in terms of other 
views.

 Let view v1 be defined by an expression e1 that may itself contain 
uses of view relations.

 View expansion of an expression repeats the following 
replacement step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will 
terminate
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Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form

{t | P (t) }

 It is the set of all tuples t such that predicate P is true for t

 t is a tuple variable, t[A] denotes the value of tuple t on attribute A

 t  r denotes that tuple t is in relation r

 P is a formula similar to that of the predicate calculus
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Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators:  (e.g., , , , , , )

3. Set of connectives:  and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

x  y x v y

5. Set of quantifiers:

 t r (Q(t)) ”there exists” a tuple in t in relation r
such that predicate Q(t) is true

 t r (Q(t)) Q is true “for all” tuples t in relation r
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Banking Example

 branch (branch-name, branch-city, assets) 

 customer (customer-name, customer-street, customer-city) 

 account (account-number, branch-name, balance) 

 loan (loan-number, branch-name, amount)

 depositor (customer-name, account-number)

 borrower (customer-name, loan-number)
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Example Queries

 Find the loan-number, branch-name, and amount for loans of 
over $1200

Find the loan number for each loan of an amount greater than $1200

Notice that a relation on schema [loan-number] is implicitly defined 
by the query

{t |  s loan (t[loan-number] = s[loan-number]  s [amount]  1200)}

{t | t  loan  t [amount]  1200}
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Example Queries

 Find the names of all customers having a loan, an account, or 
both at the bank

{t | s  borrower( t[customer-name] = s[customer-name])
 u  depositor( t[customer-name] = u[customer-name])

 Find the names of all customers who have a loan and an account 
at the bank

{t | s  borrower( t[customer-name] = s[customer-name])
 u  depositor( t[customer-name] = u[customer-name])
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Example Queries

 Find the names of all customers having a loan at the Perryridge 
branch

{t | s  borrower( t[customer-name] = s[customer-name]
 u  loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))
 not v  depositor (v[customer-name] = 

t[customer-name]) }

 Find the names of all customers who have a loan at the 
Perryridge branch, but no account at any branch of the bank

{t | s  borrower(t[customer-name] = s[customer-name] 
 u  loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))}
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Example Queries

 Find the names of all customers having a loan from the 
Perryridge branch, and the cities they live in

{t | s  loan(s[branch-name] = “Perryridge”
 u  borrower (u[loan-number] = s[loan-number]

 t [customer-name] = u[customer-name])
  v  customer (u[customer-name] = v[customer-name]

 t[customer-city] = v[customer-city])))}
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Example Queries

 Find the names of all customers who have an account at all 
branches located in Brooklyn:

{t |  c  customer (t[customer.name] = c[customer-name]) 

 s  branch(s[branch-city] = “Brooklyn” 
 u  account ( s[branch-name] = u[branch-name]
  s  depositor (  t[customer-name] = s[customer-name]

 s[account-number] = u[account-number] )) )}
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Safety of Expressions

 It is possible to write tuple calculus expressions that generate 
infinite relations.

 For example, {t |  t r} results in an infinite relation if the 
domain of any attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable 
expressions to safe expressions.

 An expression {t | P(t)} in the tuple relational calculus is safe if 
every component of t appears in one of the relations, tuples, or 
constants that appear in P

 NOTE: this is more than just a syntax condition. 

 E.g. { t | t[A]=5  true } is not safe --- it defines an infinite set with 
attribute values that do not appear in any relation or tuples or 
constants in P. 
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Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple 
relational calculus

 Each query is an expression of the form:

{  x1, x2, …, xn  | P(x1, x2, …, xn)}

 x1, x2, …, xn represent domain variables

 P represents a formula similar to that of the predicate calculus
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Example Queries

 Find the loan-number, branch-name, and amount for loans of over 
$1200

{ c, a  |  l ( c, l   borrower  b( l, b, a   loan 

b = “Perryridge”))}

or { c, a  |  l ( c, l   borrower   l, “Perryridge”, a   loan)}

 Find the names of all customers who have a loan from the 
Perryridge branch and the loan amount:

{ c  |  l, b, a ( c, l   borrower   l, b, a   loan  a > 1200)}

 Find the names of all customers who have a loan of over $1200

{ l, b, a  |  l, b, a   loan  a > 1200}
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Example Queries

 Find the names of all customers having a loan, an account, or 
both at the Perryridge branch:

{ c  |  s, n ( c, s, n   customer) 

 x,y,z( x, y, z   branch  y = “Brooklyn”) 
 a,b( x, y, z   account   c,a   depositor)} 

 Find the names of all customers who have an account at all 
branches located in Brooklyn:

{ c  |  l ({ c, l   borrower 
  b,a( l, b, a   loan  b = “Perryridge”))

  a( c, a   depositor
  b,n( a, b, n   account  b = “Perryridge”))}
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Safety of Expressions

{  x1, x2, …, xn  | P(x1, x2, …, xn)}

is safe if all of the following hold:

1.All values that appear in tuples of the expression are values 
from dom(P) (that is, the values appear either in P or in a tuple 
of a relation mentioned in P).

2.For every “there exists” subformula of the form  x (P1(x)), the 
subformula is true if and only if there is a value of x in dom(P1)
such that P1(x) is true.

3. For every “for all” subformula of the form x (P1 (x)), the      
subformula is true if and only if P1(x) is true for all values x
from dom (P1).

This image cannot currently be displayed.

End of Chapter 3
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Result of  branch-name = “Perryridge” (loan)

©Silberschatz, Korth and Sudarshan3.92Database System Concepts

Loan Number and the Amount of the Loan
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Names of All Customers Who Have 
Either a Loan or an Account
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Customers With An Account But No Loan
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Result of borrower  loan
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Result of  branch-name = “Perryridge” (borrower  loan)
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Result of customer-name
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Result of the Subexpression
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Largest Account Balance in the Bank
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Customers Who Live on the Same Street and In the 
Same City as Smith
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Customers With Both an Account and a Loan 
at the Bank
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Result of customer-name, loan-number, amount

(borrower      loan)
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Result of branch-name(customer-city = 

“Harrison”(customer account      depositor))
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Result of branch-name(branch-city = 

“Brooklyn”(branch))
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Result of customer-name, branch-name(depositor     account)
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The credit-info Relation
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Result of customer-name, (limit – credit-balance) as 

credit-available(credit-info).
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The pt-works Relation
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The pt-works Relation After Grouping
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Result of branch-name  sum(salary) (pt-works)
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Result of branch-name  sum salary, max(salary) as 

max-salary (pt-works)
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The employee and ft-works Relations 
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The Result of employee     ft-works
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The Result of employee ft-works
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Result of employee       ft-works 
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Result of employee       ft-works
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Tuples Inserted Into loan and borrower
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Names of All Customers Who Have a 
Loan at the Perryridge Branch
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E-R Diagram
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The branch Relation
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The loan Relation
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The borrower Relation
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Chapter 7:  SQL

 Basic Structure 

 Simple Queries

 Nested Subqueries

 Aggregate Functions

 Set Operations

 With Clause

 Views

 Modification of the Database 

 Joined Relations

 Data Definition Language 

 Embedded SQL, ODBC and JDBC
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Basic Structure 

 SQL is based on set and relational operations with certain 
modifications and enhancements

 A typical SQL query has the form:
select A1, A2, ..., An

from r1, r2, ..., rm

where predicate

 Ais represent attributes

 ris represent relations (tables)

 predicate is any predicate.

 This query is equivalent to the relational algebra expression.
A1, A2, ..., An(P (r1 x r2    x  ...  x  rm))

 The result of an SQL query is a relation.

 NOTE:  SQL does not permit the ‘-’ character in names. SQL names are 
case insensitive, i.e. you can use capital or small letters.  
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Schema Used in Examples

S# P# QTY
S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City
P1 Nut Red 12 London

P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome
P4 Screw Red 14 London

P5 Cam Blue 12 Paris
P6 Cog Red 19 London

S# Sname Status City
S1 Smith 20 London

S2 Jones 10 Paris
S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

Suppliers
S (S#, Sname, Status, City)

Parts
P (P#, Pname, Color, Weight, City)

Shipments
SP (S#, P#, QTY)
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Simple Queries (1)

Get part numbers for 
all parts supplied.

select P#
from SP ;

Result:
P#
P1 P1
P2 P2
P3 P2
P4 P2
P5 P4
P6 P5

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get part numbers for all parts 
supplied (no duplicates). 

select distinct P#
from SP ;

Result:
P#
P1
P2
P3
P4
P5
P6

Get supplier numbers from Paris with Status above 20.

select S#
from S
where City = ‘Paris’ and Status > 25;

Result:
S#
S3
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Simple Queries (2)

Get supplier numbers and 
status for suppliers in Paris  
in desceding order of status.

select S#, Status
from S
where City = ‘Paris’
order by Status desc ;

Result:
S# Status
S3 30
S2 10

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

For all blue parts, get 
the weights in grams. 

select P#, Weight454
from P
where Color = ‘Blue’
order by 2, P# ; 

Result:
P# Weight
P5 5448
P3 7718

Include constatnt in select clause.
select P#, ‘Weights in grams = ‘, Weight*454
from P
where Color = ‘Blue’ ; 

Result:
P#
P3 Weights in grams = 7718
P5 Weights in grams = 5448
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Simple Queries (between)

Get parts whose weight is in range 16 to 19 (inclusive).

select 
from P
where Weight between 16 and 19 ;

Result:
P# Pname Color Weight City
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P6 Cog Red 19 London

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get parts whose weight is not in range 16 to 19.

select P#, Pname, Color, Weight, City
from P
where Weight not between 16 and 19 ;

Result:
P# Pname Color Weight City
P1 Nut Red 12 London
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
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Simple Queries (in)
Get parts whose weight is in range 16 to 19 (inclusive).

select 
from P
where Weight in {12, 16, 17} ;

Result:
P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P5 Cam Blue 12 Paris

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get parts whose weight is not in range 16 to 19.

select P#, Pname, Color, Weight, City
from P
where Weight not in {12, 16, 17} ;

Result:
P# Pname Color Weight City
P4 Screw Red 14 London
P6 Cog Red 19 London
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Simple Queries (like)
Get parts whose names begin with the letter C.

select 
from P
where Pname like ‘C*’ ;

Result:

P# Pname Color Weight City
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

% stands for any string, ? stands for any character

Sname like ‘?la*’ – all supplier names with second 
character l and third characer a.

Pname like ‘????’ – all part names 4 character long.

City not like ‘*o*’ – all city names which does not 
contain characer o.

like ‘Main\*’ escape  ‘\’ – match Main*

SQL supports a variety of string operations such as: con-
catenation (“||”), converting from upper to lower case (and 
vice versa), finding string length, extracting substrings, etc.
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Simple Queries (null values)
Get parts whose color is not null.

select 
from P
where Color is not null ;

Result:

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London 
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

null signifies an unknown value or that a value does not 
exist. 
The result of any arithmetic expression involving null is null 
(E.g. 5 + null  returns null).

Any comparison with null returns unknown (E.g. 5 < null   
or null <> null    or null = null).
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Simple Queries (natural join)
Get all combination suppliers - parts located in the 
same city.

select S., P.
from S, P
where S.City = P.City ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S1 Smith 20 London P1 Nut Red 12 London
S1 Smith 20 London P4 Screw Red 14 London
S1 Smith 20 London P6 Cog Red 19 London 
S2 Jones 10 Paris P2 Bolt Green 17 Paris 
S2 Jones 10 Paris P5 Cam Blue 12 Paris 
S3 Blake 30 Paris P2 Bolt Green 17 Paris 
S3 Blake 30 Paris P5 Cam Blue 12 Paris 
S4 Clark 20 London P5 Nut Red 12 London 
S4 Clark 20 London P5 Screw Red 14 London 
S4 Clark 20 London P5 Cog Red 19 London S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

How conceptualy join is constructed:

- Form the cartesian product of the tables listed in from clause
(in our example the new table will have 56 = 30 rows)

- Eliminate from the cartesian product all those rows that do 
not satisfy join predicate (where clause)
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Simple Queries (natural join)

Get all combination suppliers - parts located in the 
same city, without suppliers that have status 20.

select S., P.
from S, P
where S.City = P.City and S.Status <> 20 ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P2 Bolt Green 17 Paris 
S2 Jones 10 Paris P5 Cam Blue 12 Paris 
S3 Blake 30 Paris P2 Bolt Green 17 Paris 
S3 Blake 30 Paris P5 Cam Blue 12 Paris

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Same, but suplier city follows part city (alphabetically).

select S., P.
from S, P
where S.City > P.City ;

Result:
S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P1 Nut Red 12 London 
S2 Jones 10 Paris P4 Screw Red 14 London 
S2 Jones 10 Paris P6 Cog Red 19 London 
S3 Blake 30 Paris P1 Nut Red 12 London 
S3 Blake 30 Paris P4 Screw Red 14 London 
S3 Blake 30 Paris P6 Cog Red 19 London 
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Simple Queries (natural join)

Get all pairs of city names such that a supplier located 
in the first city supplies a part stored in the second city.

For example, supplier S1 supplies part P1; suppliers S1 is 
located in London, and part P1 is stored in London; so 
‘London, London’ is a pair of cities in the result.

select distinct S.City, P.City
from S, SP, P
where S.S# = SP.S# and SP.P# = P.P# ;

Result:

S.City P.City
London London
London Paris
London Rome
Paris London
Paris Paris

This example shows join of 3 tables.

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens
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Simple Queries (join a table with itself)
Get all pairs of supplier numbers such that the two 
suppliers are co-located.

select Sup1.S#, Sup2.S# 
from S as Sup1, S as Sup2
where Sup1.City = Sup2.City ;

Result:
S# S#
S1 S1 S3  S3
S1 S4 S4  S1
S2 S2 S4  S4
S2 S3    S5  S5
S3 S2

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

This result can be cleared up as follows:

select Sup1.S#, Sup2.S# 
from S as Sup1, S as Sup2
where Sup1.City = Sup2.City and Sup1.S# > Sup2.S# ;

Result:
S# S#
S1 S4
S2 S3
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SubQueries

Get suppliers names for suppliers who supplies part P2.

select S.Sname
from S 
where S.S#  in ( select SP.S#

from SP
where SP.P# = ‘P2’ ) ;

Result:
Sname
Smith
Jones
Blake
Clark

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The same using join.

select S.Sname 
from S, SP
where S.S# = SP.S# and SP.P# = ‘P2’ ;

The nested subqueries are evaluated first. 
So, our query is equivalent to:
select S.Sname
from S 
where S.S#  in ( ‘S1’, ‘S2’, ‘S3’, ‘S4’ ) ;

The join of S and SP over supplier numbers 
is a table of 12 rows from which we select 
those 4 rows that have the part number P2.
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SubQueries (correlated)
Get suppliers names for suppliers who supplies part P2.

select Sname
from S 
where ‘P2’ in ( select P#

from SP
where S# = S.S# ) ;

Result:
Sname
Smith
Jones
Blake
Clark

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Some people prefer to use aliases in correlated 
subqueries.

select SX.Sname
from S  as SX
where ‘P2’ in ( select P#

from SP
where S# = SX.S# ) ;

In the last line the unqualified reference S# is 
implicitl qualified by SP. Here, inner subquery 
cannot be evaluated once and for all before the 
outher query is evaluated (variable S.S# is 
uknown). Such subqueries are called correlated. 
The system examines one by one rows of table S
and each time evaluate the subquery.
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SubQueries (more nesting)

Get suppliers names for suppliers who supplie at least 
one red part.

select Sname
from S 
where S#  in ( select S#

from SP
where P# in ( select P#

from P
where Color = ‘Red’ ) );

Result:
Sname
Smith
Jones
ClarkS# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The innermost subquery evaluates to the set {‘P1’, 
‘P4’, ‘P6’}. The next subquery evaluates in turn to 
the set {‘S1’, ‘S2’, ‘S4’}. Last, the outermost 
select evaluates to the final result. In general, 
subqueries can be nested to any depth. 

The same using join.

select distinct S.Sname 
from S, SP, P
where S.S# = SP.S#  and SP.P# = P.P#

and P.Color = ‘Red’ ;
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SubQueries (with same table)

Get supplier numbers for suppliers who supply at least 
one part supplied by supplier S2.

select distinct S#
from SP 
where P#  in ( select P#

from SP
where S# = ‘S2’ );

Result:
S#
S1
S2
S3
S4S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The reference SP in the subquery does not mean 
the same thing as reference to SP in the outher 
query. They are different variables. Using aliases 
will make this fact explicit.

The same using join.

select distinct SP1.S# 
from SP as SP1, SP as SP2
where SP1.P# = SP2.P#  

and SP2.S# = ‘S2’ ;
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SubQueries (correlated with same table)

Get part numbers for all parts supplied by more than 
one supplier.

select distinct SP1.P#
from SP as SP1 
where SP1.P#  in ( select SP2.P#

from SP as SP2
where SP2.S# = SP1.S# );

Result:
P#
P1
P2
P4
P5

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Operation of this query: For each row in turn, SP1 
of table SP, extract the P# value, iff that P# value 
appears in some row SP2 of table SP whose S#
value is not that in row SP1. Note that at least one 
alias must be used, but not both.

Get supplier numbers for suppliers who are located in 
the same city as supplier S1.
select S#
from S 
where City = ( select City

from S
where S# = ‘S1’ );

Result:

S#
S1
S4
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SubQueries (exists)
Get suppliers names for suppliers who supplies part P2.

select Sname
from S 
where exists   ( select 

from SP
where S# = S.S#  and P# = ‘P2’ );

Result:
Sname
Smith
Jones
Blake
Clark

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Predicate exists x (predicate-involving-x) is true iff 
predicate-involving-x is true for some x. For exam-
ple if x=1,2,…,10 then exists x (x<5) is true, while 
exists x (x<0) is false. 

Get suppliers names for suppliers who do not supply 
part P2.

select Sname
from S 
where not exists  ( select 

from SP
where S# = S.S#  and P# = ‘P2’ );

Result:
Sname
Adams

In general, exists is one of the most important SQL 
feature. In fact, any query expresssed using in can 
be formulated using exists. The converse is not true.
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SubQueries (not exists)

Get supplier names for suppliers who supply all parts.

select Sname
from S 
where not exists

( select 
from P
where not exists

( select 
from SP
where S# = S.S#  and P# = p.pp );

Result:
Sname
Smith

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

The query can be paraphrased according to the above 
SQL statement:  Select supplier names for supplier such 
that there does not exists a part that they do not supply.
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SubQueries (all, some)

Get the all part numbers that have greater shipment 
quantity than all parts located in London.

select P#
from SP
where QTY > all

( select QTY
from SP, P
where City = ‘London’ ) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get the all part numbers that have greater shipment 
quantity than some part located in London.

select P#
from SP
where QTY > some

( select QTY
from SP, P
where City = ‘London’ ) ;

Result:

P#
P3
P2
P5

Result:

P#
P1
P2
P3
P4
P5
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Definition of Some and All Clauses

0
5
6

(5< some ) = true
0
5

0

) = false

5
0
5(5  some ) = true (since 0  5)

(5< some

) = true(5 = some

(= some)  in.  However, ( some)  not in

0
5
6

(5< all ) = false
6
10 ) = true(5< all

4
5 ) = false(5 = all

4
6(5  all ) = true (since 5  4 and 5  6)

( all)  not in. However, (= all)  in
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Aggregate Functions (count, sum, max)

Get the number of shipments for part P2.

select count()
from SP
where P# = ‘P2’ ;

Get the total quantity of part P2 supplied.

select sum(QTY)
from SP
where P# = ‘P2’ ;

Get supplier numbers for suppliers with status less  
then current maximum status.

select S#
from S
where Status < 

( select max(Status)
from S ) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

4

Result:

S#
S1
S2
S4

Result:

1000
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Aggregate Functions (min, avg)

Get the all part names for parts with minimum 
weights.

select Pname
from P
where Weight = 

( select min(Weight)
from P ) ;

Get supplier numbers, status nad city for all suppliers 
whose status is greater than or equal to the average 
for their city.

select S#, Status, City
from S as S1
where Status >= 

( select avg(Status)
from S as S2
where S2.City = S1.City ) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

Pname
Nut
Cam

Result:

S# Status City
S1  20 London
S3  30 Paris
S4  30 London
S5  30 Athens
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Aggregate Functions (group by)

Get the total quantity supplied for each part.

select P#, sum(QTY)
from SP
group by P# ;

For each part supplied, get the part number and the 
total quantity supplied of that part, excluding 
shipment from supplier S1.

select P#, sum(QTY)
from SP
where S# <> ‘S1’
group by P# ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:
P#
P1    600
P2  1000
P3    400
P4    500
P5    500
P6    100

Result:

P#
P1   300
P2   800
P4   300
P5   400
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Aggregate Functions (having)

Get part numbers for all parts supplied by more than 
one supplier.

select P#
from SP
group by P#
having count() > 1 ;

The same without group by/having.

select P#, 
from P
where 1 < ( select count(S#)

from SP
where P# = P.P# );

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

P#
P1 
P2 
P4 
P5 

Having is to groups what where is to rows. (If having is 
specified, group by should be also specified). Having is 
used to eliminate groups just as where is used to 
eliminate rows.
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Set Operations (union)

Get part numbers for parts with weight more than 16 
pounds or are supplied by supplier S2.

select P#
from P
where Weight > 16 union select P#

from SP
where S# = ‘S2’ ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

P#
P1 
P2 
P3 
P6 

Since a relation is set of rows, it is possible to construct union, in-
tersection and difference between them. However, to be result a 
relation the two original relation must be set-compatable:

1. to have the same number of columns.
2. the i-th column of both relations must have the same data type.

The set operations union, intersect, and except operate on 
relations and correspond to the relational algebra operations 


Each of the above operations automatically eliminates duplicates; 
to retain all duplicates use the corresponding multiset versions 
union all, intersect all and except all.
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Set Operations (intersect, except)

Get supplier numbers for suppliers who supply part 
P1 and are located in London.

select S#
from SP
where P# = ‘P1’ intersect  select S#

from S
where City = ‘London’ ;

Get supplier numbers for suppliers who supply part 
P2 and are not located in London.

select S#
from SP
where P# = ‘P2’ except    select S#

from S
where City = ‘London’ ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

S#
S1 

Result:

S#
S2
S3 
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A Comprehensive Example

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

For all red and blue parts such that the total quantity suppli-
ed is greater than 350 (excluding from the total all shipments 
for which the quantity is less than or equal to 200), get the 
part number, the weight in grams, the color, and the maxi-
mum supplied of that part. Order the result by decreasing 
part number within asceding values of that maximum.

select P.P#, ‘Weight in grams = ‘, P.Weight454,
P.Color, ‘MSQuantity = ‘, max (SP.QTY)

from P, SP
where P.P# = SP.P#

and P.Color in (‘Red’, ‘Blue’)
and  SP.QTY > 200

group by P.P#, P.Weight; P.Color
having sum (QTY) > 350
order by 6, P.P#, desc ;

Result:
P# Color
P1 Weight in grams = 5448 Red MSQuantity = 300 
P5 Weight in grams = 5448    Blue MSQuantity = 400 
P3 Weight in grams = 7718    Blue MSQuantity = 400 
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With Clause
Get all supplier names with maximum status.
with maxst(value) as

select max(Status)
from S

select Sname
from S 
where Status = maxst.value;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Get all part numbers where the total their shipments is greater 
than the average of the total supplier shipments at all 
suppliers.
with ptotal(P#, value) as

select P#, sum(QTY)
from SP
group by P#

with pavg(S#, value) as
select S#, avg(QTY)
from SP
group by P#

select P#
from ptotal, pavg
where ptotal.value > pavg.value;

Result:
P#
P1
P2

With clause allows views to be defined locally to a query, rather 
than globally. Analogous to procedures in a programming language.

Result:
Sname
Blake
Adams
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Derived Relations

Get the average quantity of those supplier shipments 
where the average quantity is greater than 250.

select S#, AvgShip
from (select S#, avg (QTY)

from SP
group by S#)

as result (S#, AvgShip)
where AvgShip > 250

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

S# AvgShip
S2   350
S4   300

Note that we do not need to use the having clause, since 
we compute the temporary (view) relation result in the 
from clause, and the attributes of result can be used 
directly in the where clause.
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Views

Create view from good suppliers (with status greater 
than 15).

create view GoodSup
as select S#, Status,City

from S
where Status > 15 ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Provide a mechanism to hide certain data from the view of 
certain users.  To create a view we use the command:

create view v as <query expression>

where:
• <query expression> is any legal expression

• the view name is represented by v

S# Status City

S1 20 London

S3 30 Paris

S4 20 London
S5 30 Athens

GoodSup is in effect a “window” into real table S. The window 
is dynamic because changes of S is automatically visible 
through the window GoodSup. Some users may genuinely 
believe that GoodSup is a “real” table.
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Views

Query on view (suppliers not located in London).

select S#, City
from GoodSup 
where City <> ‘London’ ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Result:

S# City
S3   Paris
S5   Athens

Create view of part numbers and names for parts 
with weight more than 16 pounds or are supplied 
by supplier S2.

select P#, Pname
from P
where Weight > 16 union 

select distinct P#, Pname
from P, SP
where P.P# = SP.P# 

and S# = ‘S2’ ;

Result:

P# Pname
P1    Nut
P2    Bolt
P3    Screw
P6    Cog
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Modification of the Database – Deletion

Delete all suppliers in Paris.

delete S#, City
from S 
where City = ‘Paris’ ;

Delete all shipments.

delete 
from SP ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Delete all shipments for suppliers in London.

delete
from SP
where ‘London’ = ( select City

from S
where S.S# = SP.S# ) ;
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Modification of the Database – Deletion

Problem:  as we delete tuples from SP, the 
average quantity changes

Solution used in SQL:

1. First, compute avg balance and find all tuples to delete
2. Next, delete all tuples found above (without 

recomputing avg or retesting the tuples)

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Delete all shipments with quantity below the average.

delete
from SP
where QTY < ( select avg(QTY)

from SP ) ;

General form of delete statement:

delete
from table
[ where  predicate  ]
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Modification of the Database – Insertion

Add part P7 with unknown name and color.

insert 
into P  (P#, City, Weight)
values (‘P7’, ‘Athens’, 2) ;

Add part P8 to table P.

insert 
into P  
values (‘P8’, ‘Sprocket’, ‘Pink’, 14, ‘Nice’) ;

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Add a new shipment with supplier S20, part number 
p20, and quantity 1000.

insert 
into SP  (S#, P#, QTY)
values (‘S20’, ‘P20’, 1000) ;

Name and color will 
have null values.
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Modification of the Database – Insertion

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

For each part supplied, get the part number and the 
total quantity, and save the result in the database.

create table temp
( P#      char(6)
TOTQTY  integer ) ;

insert into temp ( P#, TOTQTY )
select P#, sum(QTY)
from SP
group by P# ;

General form of insert statement:

insert
into table [ (field1, field2, field3, …) ]
values  ( constant1, constant2, constant3, … ) ;       or

insert
into table [ (field1, field2, field3, …) ]
subquery ;
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Modification of the Database – Updates

Double status for all suppliers in London.

update  S
set status = status  2
where city = ‘London’ ;

Change the color and weight of part P2.

update  P
set color = ‘Yellow’, weight = weight + 5
where P# = ‘P2’ ;

S# P# QTY

S1 P1 300 S2 P1 0

S1 P2 200 S2 P2 0

S1 P3 400 S3 P2 0

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Yellow 22 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 40 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 40 London
S5 Adams 30 Athens

Set the shipment quantity to zero for all suppliers in 
Paris.

update  SP
set QTY = 0
where ‘Paris’ = ( select city

from S
where S.S# = SP.S# ) ;
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Modification of the Database – Updates

S# P# QTY

S1 P1 318 S2 P1 318

S1 P2 210 S2 P2 424

S1 P3 424 S3 P2 210

S1 P4 210 S4 P2 210

S1 P5 105 S4 P4 318

S1 P6 105 S4 P5 424

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Increase all shipment quantities over 200 by 6%, 
and all others by 5%.

update SP
set QTY = QTY  1.06
where QTY > 200

The order is important
Can be done better using the case statement

update SP
set QTY =  case

when QTY <= 200  then QTY  1.05
else QTY  1.06

end

General form of update statement:

update  table
set field = expression

[ , field = expression ] …
where predicate ;

update account
set QTY = QTY  1.05
where QTY <= 200
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Modification of the Views

S# P# QTY

S1 P1 300 S2 P1 300

S1 P2 200 S2 P2 400

S1 P3 400 S3 P2 200

S1 P4 200 S4 P2 200

S1 P5 100 S4 P4 300

S1 P6 100 S4 P5 400

P# Pname Color Weight City

P1 Nut Red 12 London
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London
P5 Cam Blue 12 Paris

P6 Cog Red 19 London

S# Sname Status City

S1 Smith 20 London
S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London
S5 Adams 30 Athens

Create a view of shipment relation (SP), hiding the 
QTY attribute.

create view Ship as
select S#, P#
from SP

Add a new shipment to ship.

insert 
into Ship  
values (‘S5’, ‘P6’) ;

 Updates on more complex views are difficult 
or impossible to translate, and hence are 
disallowed. 

 Most SQL implementations allow updates 
only on simple views (without aggregates) 
defined on a single relation



©Silberschatz, Korth and Sudarshan4.41Database System Concepts

Transactions
 A transaction is a sequence of queries and update statements 

executed as a single unit

 Transactions are started implicitly and terminated by one of

 commit work: makes all updates of the transaction permanent in 
the database

 rollback work: undoes all updates performed by the transaction. 

 Motivating example

 Transfer of money from one account to another involves two steps:

 deduct from one account and credit to another

 If one steps succeeds and the other fails, database is in an 
inconsistent state

 Therefore, either both steps should succeed or neither should

 If any step of a transaction fails, all work done by the transaction 
can be undone by rollback work.  

 Rollback of incomplete transactions is done automatically, in case 
of system failures 
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Transactions (Cont.)

 In most database systems, each SQL statement that executes 
successfully is automatically committed.  

 Each transaction would then consist of only a single statement

 Automatic commit can usually be turned off, allowing multi-
statement transactions,  but how to do so depends on the database 
system

 Another option in SQL:1999:  enclose statements within

begin atomic
… 

end
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Joined Relations

 Join operations take two relations and return as a result another 
relation.

 These additional operations are typically used as subquery 
expressions in the from clause

 Join condition – defines which tuples in the two relations match, 
and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match 
any tuple in the other relation (based on the join condition) are 
treated.

Join Types

inner join
left outer join
right outer join
full outer join

Join Conditions

natural
on <predicate>
using (A1, A2, ..., An)
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Joined Relations – Datasets for Examples

 Relation loan

 Relation borrower

customer-name loan-number 

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170 

L-230

L-260

 Note: borrower information missing for L-260 and loan 
information missing for L-155
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Joined Relations – Examples 

 loan inner join borrower on
loan.loan-number = borrower.loan-number

 loan left outer join borrower on
loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number 

Jones

Smith

L-170

L-230

loan-number 

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number 

Jones

Smith

null

L-170

L-230

null

loan-number 

L-170

L-230

L-260
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Joined Relations – Examples

 loan natural inner join borrower

 loan natural right outer join borrower

branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number 

L-170

L-230

branch-name amount

Downtown

Redwood

null 

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number 

L-170

L-230

L-155
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Joined Relations – Examples

 loan full outer join borrower using (loan-number)

 Find all customers who have either an account or a loan (but 
not both) at the bank.

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number 

L-170

L-230

L-260

L-155

select customer-name
from (depositor natural full outer join borrower)
where account-number is null or loan-number is null
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Data Definition Language (DDL)

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Allows the specification of not only a set of relations but also 
information about each relation, including:
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Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum 
length n.

 int.  Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer 
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits, 
with n digits to the right of decimal point. 

 real, double precision. Floating point and double-precision floating point 
numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n
digits.

 Null values are allowed in all the domain types.  Declaring an attribute to be 
not null prohibits null values for that attribute.

 create domain construct in SQL-92 creates user-defined domain types
create domain person-name char(20) not null
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Date/Time Types in SQL (Cont.)

 date. Dates, containing a (4 digit) year, month and date

 E.g.   date ‘2001-7-27’

 time. Time of day, in hours, minutes and seconds.

 E.g. time ’09:00:30’        time ’09:00:30.75’

 timestamp: date plus time of day

 E.g.  timestamp ‘2001-7-27 09:00:30.75’

 Interval:  period of time

 E.g.   Interval  ‘1’ day

 Subtracting a date/time/timestamp value from another gives an interval value

 Interval values can be added to date/time/timestamp values

 Can extract values of individual fields from date/time/timestamp

 E.g.   extract (year from r.starttime) 

 Can cast string types to date/time/timestamp 

 E.g.   cast <string-valued-expression> as date
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Create Table Construct

 An SQL relation is defined using the create table 
command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table S
(S# char(5) not null,
Sname char(20),
Status smallint,
City char(15) ) ;
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Integrity Constraints in Create Table

 not null

 primary key (A1, ..., An)

 check (Predicate), where Predicate is a predicate

Example:  Declare table P (Parts).

create table P
( P# char(6) not null,
Pname char(20)
Color char(10),
Weight smallint,
City char(15),

primary key (P#),
check (Weight >= 0))

primary key declaration on an attribute automatically 
ensures not null in SQL-92 onwards, needs to be 
explicitly stated in SQL-89
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Drop and Alter Table Constructs

 The drop table command deletes all information about the 
dropped relation from the database.

 The alter table command is used to add attributes to an 
existing relation. 

alter table r add A D

where A is the name of the attribute to be added to relation r 
and D is the domain of A.

 All tuples in the relation are assigned null as the value for the 
new attribute.  

 The alter table command can also be used to drop attributes 
of a relation

alter table r drop A
where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases
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Chapter 5:  Relational Database Design

 First Normal Form

 Pitfalls in Relational Database Design

 Functional Dependencies

 Decomposition

 Boyce-Codd Normal Form

 Third Normal Form

 Multivalued Dependencies and Fourth Normal Form

 Overall Database Design Process



13.10.2011

2

©Silberschatz, Korth and Sudarshan7.3Database System Concepts

First Normal Form

 Domain is atomic if its elements are considered to be 
indivisible units
 Examples of non-atomic domains:

 Set of names,  composite attributes

 Identification numbers like CS101  that can be broken up into 
parts

 A relational schema R is in first normal form if the domains 
of all attributes of R are atomic

 Non-atomic values complicate storage and encourage 
redundant (repeated) storage of data
 E.g.  Set of accounts stored with each customer, set of children 

stored with each person, etc.
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First Normal Form (Contd.)

 Atomicity is actually a property of how the elements of the 
domain are used.
 E.g. Strings would normally be considered indivisible 

 Suppose that students are given roll numbers which are strings of 
the form CS0012 or EE1127

 If the first two characters are extracted to find the department, the 
domain of roll numbers is not atomic.

 Doing so is a bad idea: leads to encoding of information in 
application program rather than in the database.
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Pitfalls in Relational Database Design

 Relational database design requires that we find a 
“good” collection of relation schemas.  A bad 
design may lead to 
 Repetition of Information.

 Inability to represent certain information.

 Design Goals:
 Avoid redundant data

 Ensure that relationships among attributes are 
represented 

 Facilitate the checking of updates for violation of 
database integrity constraints.
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Example
 Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets, 
customer-name, loan-number, amount)

 Redundancy:

 Data for branch-name, branch-city, assets are repeated for each loan 
that a branch makes

 Wastes space 

 Complicates updating, introducing possibility of inconsistency of 
assets value

 Null values

 Cannot store information about a branch if no loans exist 

 Can use null values, but they are difficult to handle.
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Decomposition

 Decompose the relation schema Lending-schema into:

Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)

 All attributes of an original schema (R) must appear in 
the decomposition (R1, R2):

R = R1  R2

 Lossless-join decomposition.
For all possible relations r on schema R

r = R1 (r)    R2 (r) 
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Example of Non Lossless-Join Decomposition 

 Decomposition of R = (A, B)
R1 = (A) R2 = (B)

A B





1
2
1

A




B

1
2

r
A(r) B(r)

A (r)     B (r) A B






1
2
1
2
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Goal — Devise a Theory for the Following

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it 
into a set of relations {R1, R2, ..., Rn} such that 

 each relation is in good form 

 the decomposition is a lossless-join decomposition

 Our theory is based on:

 functional dependencies

 multivalued dependencies
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Functional Dependencies

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines 
uniquely the value for another set of attributes.

 A functional dependency is a generalization of the notion of a 
key.
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Functional Dependencies (Cont.)

 Let R be a relation schema      R  and    R

 The functional dependency

  
holds on R if and only if for any legal relations r(R), whenever any 
two tuples t1 and t2 of r agree on the attributes , they also agree 
on the attributes . That is, 

t1[] = t2 []    t1[ ]  = t2 [ ] 

 Example:  Consider r(A,B) with the following instance of r.

 On this instance, A  B does NOT hold, but  B  A does 
hold.

1 4
1     5
3 7
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Functional Dependencies (Cont.)

 K is a superkey for relation schema R if and only if K  R

 K is a candidate key for R if and only if 
 K  R, and

 for no   K,   R

 Functional dependencies allow us to express constraints that 
cannot be expressed using superkeys.  Consider the schema:

Loan-info-schema = (customer-name, loan-number,
branch-name, amount).

We expect this set of functional dependencies to hold:

loan-number  amount
loan-number  branch-name

but would not expect the following to hold: 

loan-number  customer-name
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Example

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

 Reasonable FD's to assert:

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

 Sometimes, several attributes jointly determine another 
attribute, although neither does by itself. Example:

beer bar  price

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud
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Functional Dependencies

 A functional dependency is trivial if it is satisfied by all instances 
of a relation

 E.g.

 customer-name, loan-number  customer-name

 customer-name  customer-name

 In general,    is trivial if   

 “Nontrivial” = right-side attribute not in left side
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Closure of a Set of Functional 
Dependencies

 Given a set F set of functional dependencies, there are certain 
other functional dependencies that are logically implied by F.

 E.g.  If  A  B and  B  C,  then we can infer that A  C

 The set of all functional dependencies logically implied by F is the 
closure of F.

 We denote the closure of F by F+.

 We can find all of F+ by applying Armstrong’s Axioms:

 if   , then    (reflexivity)

 if   , then      (augmentation)

 if   , and   , then    (transitivity)

©Silberschatz, Korth and Sudarshan7.16Database System Concepts

Example

 R = (A, B, C, G, H, I)
F = {  A  B

A  C
CG  H
CG  I

B  H}

 some members of F+

 A  H        

 by transitivity from A  B and B  H

 AG  I       

 by augmenting A  C with G, to get AG  CG 
and then transitivity with CG  I 

 CG  HI     

 from CG  H and CG  I :   “union rule” can be inferred from

– definition of functional dependencies, or 

– Augmentation of CG  I to infer CG  CGI, augmentation of
CG  H to infer CGI  HI, and then transitivity
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Procedure for Computing F+

 To compute the closure of a set of functional dependencies F:

F+ = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+

for each pair of functional dependencies f1and f2 in F+

if f1 and f2 can be combined using transitivity
then add the resulting functional dependency to F+

until F+ does not change any further

NOTE:  We will see an alternative procedure for this task later
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Closure of Functional Dependencies 
(Cont.)

 We can further simplify manual computation of F+ by using 
the following additional rules.

 If    holds and    holds,  then     holds (union)

 If     holds, then    holds and    holds 
(decomposition)

 If    holds and     holds, then     holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.



13.10.2011

10

©Silberschatz, Korth and Sudarshan7.19Database System Concepts

Closure of Attribute Sets

 Given a set of attributes  define the closure of  under F
(denoted by +) as the set of attributes that are functionally 
determined by  under F:

   is in F+    +

 Algorithm to compute +, the closure of  under F
result := ;
while (changes to result) do

for each    in F do
begin

if   result then result := result  
end
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Example of Attribute Set Closure

 R = (A, B, C, G, H, I)

 F = {A  B
A  C 
CG  H
CG  I
B  H}

 (AG)+

1. result = AG

2. result = ABCG (A  C and A  B)

3. result = ABCGH (CG  H and CG  AGBC)

4. result = ABCGHI (CG  I and CG  AGBCH)

 Is AG a candidate key?  
1. Is AG a super key?

1. Does AG  R? == Is (AG)+  R

2. Is any subset of AG a superkey?

1. Does A  R? == Is (A)+  R

2. Does G  R? == Is (G)+  R
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Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

 Testing for superkey:

 To test if  is a superkey, we compute +, and check if + contains 
all attributes of R.

 Testing functional dependencies

 To check if a functional dependency    holds (or, in other words, 
is in F+), just check if   +. 

 That is, we compute + by using attribute closure, and then check if 
it contains . 

 Is a simple and cheap test, and very useful

 Computing closure of F

 For each   R, we find the closure +, and for each S  +, we 
output a functional dependency   S.
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Goals of Normalization

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it 
into a set of relations {R1, R2, ..., Rn} such that 

 each relation is in good form 

 the decomposition is a lossless-join decomposition

 Our theory is based on:

 functional dependencies

 multivalued dependencies
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Decomposition

 Decompose the relation schema Lending-schema into:

Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)

 All attributes of an original schema (R) must appear in the 
decomposition (R1, R2):

R = R1  R2

 Lossless-join decomposition.
For all possible relations r on schema R

r = R1 (r)    R2 (r) 

 A decomposition of R into R1 and R2 is lossless join if and only if 
at least one of the following dependencies is in F+:
 R1  R2  R1

 R1  R2  R2
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Normalization Using Functional Dependencies

 When we decompose a relation schema R with a set of 
functional dependencies F into R1, R2,.., Rn we want
 Lossless-join decomposition:  Otherwise decomposition would result in 

information loss.

 No redundancy:  The relations Ri preferably should be in either Boyce-
Codd Normal Form or Third Normal Form.

 Dependency preservation: Let Fi be the set of dependencies F+ that 
include only attributes in Ri. 

 Preferably the decomposition should be dependency preserving, 
that is,       (F1  F2  …  Fn)

+ = F+

 Otherwise, checking updates for violation of functional 
dependencies may require computing joins, which is expensive.
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Example

 R = (A, B, C)
F = {A  B, B  C)

 Can be decomposed in two different ways

 R1 = (A, B),   R2 = (B, C)

 Lossless-join decomposition:

R1   R2 = {B} and B  BC

 Dependency preserving

 R1 = (A, B),   R2 = (A, C)

 Lossless-join decomposition:

R1   R2 = {A} and A  AB

 Not dependency preserving 
(cannot check B  C without computing R1 R2)

©Silberschatz, Korth and Sudarshan7.26Database System Concepts

Second Normal Form

    where   is a superkey for R

A relation is said to be in Second Normal Form when 
every nonkey attribute is fully functionally dependent on 
the primary key. (No attribute dependent on a portion of 
primary key)

 That is, every nonkey attribute needs the full primary key for 
unique identification

 It is important only in cases of keys containing more than 
one attribute

A relation schema R is in 2NF respect to a set F of functional 
dependencies if for all nonkey set of attributes  holds:
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Example

Drinkers (name, addr, beersLiked, manf, favoriteBeer)

FD’s: name  addr,  name  favoriteBeer,  beersLiked  manf
violates 2NF.

Lending-schema (branch-name, branch-city, assets, 
customer-name, loan-number, amount)

FD’s: branch-name branch-city  assets violates 2NF.

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud
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Boyce-Codd Normal Form

    is trivial (i.e.,   )

  is a superkey for R

R is in BCNF if for every nontrivial FD for R, say X  A, 
then X is a superkey.

Follow from the idea “key   everything.”

1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one occurrence of a fact is 
updated, not all.

3. Guarantees no deletion anomalies = valid fact is lost when 
tuple is deleted.

A relation schema R is in BCNF with respect to a set F of functional 
dependencies if for all functional dependencies in F+ of the form 
 , where   R and   R, at least one of the following holds:
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Example

 R = (A, B, C)
F = {A  B

B  C}
Key = {A}

 R is not in BCNF

 Decomposition R1 = (A, B),  R2 = (B, C)

 R1 and R2 in BCNF

 Lossless-join decomposition

 Dependency preserving
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Example of Problems

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

FD’s:

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

 ???’s are redundant, since we can figure them out from the FD’s.

 Update anomalies: If Janeway gets transferred to the Intrepid,
will we change addr in each of her tuples?

 Deletion anomalies: If nobody likes Bud, we lose track of Bud’s 
manufacturer.

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway ??? WickedAle Pete's ???

Spock Enterprise Bud ??? Bud
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Each of the given FD’s is a BCNF violation:

 Key = {name, beersLiked}

 Each of the given FD’s has a left side that is a proper subset of the 
key.

Another Example
Beers(name, manf, manfAddr). (Note: 2NF is satisfied)

 FD’s = name   manf, manf  manfAddr.

 Only key is name.

 manf  manfAddr violates BCNF with a left side unrelated to 
any key.
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Testing for BCNF

 To check if a non-trivial dependency  causes a violation of 
BCNF
1.  compute + (the attribute closure of ), and 

2.  verify that it includes all attributes of R, that is, it is a superkey of R.

 Simplified test: To check if a relation schema R is in BCNF, it 
suffices to check only the dependencies in the given set F for 
violation of BCNF, rather than checking all dependencies in F+.
 If none of the dependencies in F causes a violation of BCNF, then 

none of the dependencies in F+ will cause a violation of BCNF either.

 However, using only F is incorrect when testing a relation in a 
decomposition of R
 E.g. Consider R (A, B, C, D), with F = { A B, B C}

 Decompose R into R1(A,B) and R2(A,C,D) 

 Neither of the dependencies in F contain only attributes from
(A,C,D) so we might be mislead into thinking R2 satisfies BCNF.  

 In fact, dependency A  C in F+ shows R2 is not in BCNF. 
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BCNF Decomposition Algorithm (1)

result := {R};
done := false;
compute F+;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let    be a nontrivial functional
dependency that holds on Ri

such that   Ri is not in F+, 
and    = ;

result := (result – Ri )  (Ri – )  (,  );
end

else done := true;

Note:  each Ri is in BCNF, and decomposition is lossless-join.
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Example of BCNF Decomposition

 R = (branch-name, branch-city, assets,

customer-name, loan-number, amount)

F = {branch-name  assets branch-city

loan-number  amount branch-name}

Key = {loan-number, customer-name}

 Decomposition

 R1 = (branch-name, branch-city, assets)

 R2 = (branch-name, customer-name, loan-number, amount)

 R3 = (branch-name, loan-number, amount)

 R4 = (customer-name, loan-number)

 Final decomposition 
R1, R3, R4



13.10.2011

18

©Silberschatz, Korth and Sudarshan7.35Database System Concepts

BCNF Decomposition Algorithm (2)

Setting: relation R, given FD’s F.

Suppose relation R has BCNF violation X  B.

1. Compute X+.

 Cannot be all attributes – why?

2. Decompose R into X+ and (R–X+)  X.

3. Find the FD’s for the decomposed relations.

 Project the FD’s from F = calculate all consequents of F that 
involve only attributes from X+ or only from (RX+)  X.

R X+X
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Example

R = Drinkers(name, addr, beersLiked, manf, favoriteBeer)

F =

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

Pick BCNF violation  name  addr.

 Close the left side:  name+ = name addr favoriteBeer.
 Decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)
 Projected FD’s (skipping a lot of work that leads nowhere interesting):

 For Drinkers1: name  addr and name  favoriteBeer.

 For Drinkers2: beersLiked  manf.
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(Repeating)

 Decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

 Projected FD’s:

 For Drinkers1: name  addr and name  favoriteBeer.

 For Drinkers2: beersLiked  manf.

 BCNF violations?

 For Drinkers1, name is key and all left sides of FD’s are 
superkeys.

 For Drinkers2, {name, beersLiked} is the key, and beersLiked 
 manf violates BCNF.

©Silberschatz, Korth and Sudarshan7.38Database System Concepts

Decompose Drinkers2

 First set of decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

 Close beersLiked+ = beersLiked, manf.

 Decompose Drinkers2  into:

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

 Resulting relations are all in BCNF:

Drinkers1(name, addr, favoriteBeer)

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)
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Testing Decomposition for BCNF

 To check if a relation Ri in a decomposition of R is in BCNF, 

 Either test Ri for BCNF with respect to the restriction of F to Ri (that 
is, all FDs in F+ that contain only attributes from Ri)

 or use the original set of dependencies F that hold on R, but with the 
following test:

– for every set of attributes   Ri, check that + (the attribute 
closure of ) either includes no attribute of Ri- , or includes all 
attributes of Ri.

 If the condition is violated by some   in F, the dependency
 (+ - )  Ri

can be shown to hold on Ri, and Ri violates BCNF.

We use above dependency to decompose Ri
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BCNF and Dependency Preservation

 R = (J, K, L)
F = {JK  L

L  K}
Two candidate keys = JK and JL

 R is not in BCNF

 Any decomposition of R will fail to preserve

JK  L

It is not always possible to get a BCNF decomposition that is 
dependency preserving
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Third Normal Form: Motivation

 There are some situations where 
 BCNF is not dependency preserving, and 

 efficient checking for FD violation on updates is important

 Solution: define a weaker normal form, called Third Normal 
Form
 Allows some redundancy (with resultant problems; we will see 

examples later)

 But FDs can be checked on individual relations without computing a 
join.

 There is always a lossless-join, dependency-preserving decomposition 
into 3NF.
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Example

One FD structure causes problems:

 If you decompose, you can’t check all the FD’s only in the 
decomposed relations.

 If you don’t decompose, you violate BCNF.

Abstractly: R = (A, B, C),  F = {AB  C, C  B.}

Example:  street city  zip,   zip  city.
Keys: {A, B} and {A, C}, but C  B has a left side that is not a superkey.

 Suggests decomposition into {B, C} and {A, C}.
 But you can’t check the FD: AB  C in only these relations (requires a 

join)

 Equivalent to example in book:

Banker-schema = (branch-name, customer-name, banker-name)

banker-name  branch name

branch name customer-name  banker-name
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Third Normal Form

 A relation schema R is in third normal form (3NF) if for all:

   in F+

at least one of the following holds:

    is trivial (i.e.,   )

  is a superkey for R

 Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first 
two conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure 
dependency preservation (will see why later).
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Testing for 3NF

 Optimization: Need to check only FDs in F, need not check all 
FDs in F+.

 Use attribute closure to check for each dependency   , if  is 
a superkey.

 If  is not a superkey, we have to verify if each attribute in  is 
contained in a candidate key of R

 this test is rather more expensive, since it involve finding candidate 
keys

 testing for 3NF has been shown to be NP-hard

 Interestingly, decomposition into third normal form (described 
shortly) can be done in polynomial time 
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3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency    in Fc do
if none of the schemas Rj, 1  j  i contains   

then begin
i := i  + 1;
Ri :=  

end
if none of the schemas Rj, 1  j  i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end 
return (R1, R2, ..., Ri)
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What 3NF Gives You

There are two important properties of a decomposition:

1. We should be able to recover from the decomposed relations 
the data of the original.
 Recovery involves projection and join.

2. We should be able to check that the FD’s for the original relation 
are satisfied by checking the projections of those FD’s in the 
decomposed relations.

 Without proof, we assert that it is always possible to decompose 
into BCNF and satisfy (1).

 Also without proof, we can decompose into 3NF and satisfy both 
(1) and (2).

 But it is not possible to decompose into BNCF and get both (1) 
and (2).

 Street-city-zip is an example of this point.
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Example

 Relation schema:

Banker-info-schema = (branch-name, customer-name,
banker-name, office-number)

 The functional dependencies for this relation schema are:
banker-name  branch-name office-number
customer-name branch-name  banker-name

 The key is:

{customer-name, branch-name}
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Applying 3NF to Banker-info-schema

 The for loop in the algorithm causes us to include the 
following schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name,          
office-number)

Banker-schema = (customer-name, branch-name,
banker-name)

 Since Banker-schema contains a candidate key for 
Banker-info-schema, we are done with the decomposition 
process.
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Comparison of BCNF and 3NF

 It is always possible to decompose a relation into relations in 
3NF and 

 the decomposition is lossless

 the dependencies are preserved

 It is always possible to decompose a relation into relations in 
BCNF and 

 the decomposition is lossless

 it may not be possible to preserve dependencies.
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Comparison of BCNF and 3NF (Cont.)

A

a1

a2

a3

null

B

b1

b1

b1

b2

C

c1

c1

c1

c2

A schema that is in 3NF but not in BCNF has the problems of 

 repetition of information (e.g., the relationship b1, c1) 

 need to use null values (e.g., to represent the relationship
b2, c2 where there is no corresponding value for A).

 Example of problems due to redundancy in 3NF

 R = (A, B, C)
F = {AB  C, C  B}
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Design Goals

 Goal for a relational database design is:

 BCNF.

 Lossless join.

 Dependency preservation.

 If we cannot achieve this, we accept one of

 Lack of dependency preservation 

 Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying 
functional dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test

 Even if we had a dependency preserving decomposition, using 
SQL we would not be able to efficiently test a functional 
dependency whose left hand side is not a key.
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Multivalued Dependencies

 There are database schemas in BCNF that do not seem to be 
sufficiently normalized 

 Consider a database 

classes(course, teacher, book)

such that (c,t,b)  classes means that t is qualified to teach c,
and b is a required textbook for c

 The database is supposed to list for each course the set of 
teachers any one of which can be the course’s instructor, and the 
set of books, all of which are required for the course (no matter 
who teaches it).
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 There are no non-trivial functional dependencies and therefore 
the relation is in BCNF 

 Insertion anomalies – i.e., if Sara is a new teacher that can teach 
database, two tuples need to be inserted

(database, Sara, DB Concepts)
(database, Sara, Ullman)

course teacher book

database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi 
Jim 
Jim 

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Shaw
OS Concepts
Shaw

classes

Multivalued Dependencies (Cont.)
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 Therefore, it is better to decompose classes into:

course teacher

database
database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi 
Jim

teaches

course book

database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

text

We shall see that these two relations are in Fourth Normal 
Form (4NF)

Multivalued Dependencies (Cont.)
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Multivalued Dependencies Def.

The multivalued dependency X  Y holds in a relation R if 
whenever we have two tuples of R that agree in all the attributes 
of X, then we can swap their Y components and get two new 
tuples that are also in R.

X Y others
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Example (Cont.)

 In our example:

course  teacher
course  book

 The above formal definition is supposed to formalize the 
notion that given a particular value of Y (course) it has 
associated with it a set of values of Z (teacher) and a set 
of values of W (book), and these two sets are in some 
sense independent of each other.

 Note: 
 If Y  Z then  Y  Z

 Indeed we have (in above notation) Z1 = Z2
The claim follows.
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Example

Drinkers(name, addr, phones, beersLiked)

with MVD Name   phones. If Drinkers has the two tuples:

name addr phones beersLiked

sue a p1 b1

sue a p2 b2

it must also have the same tuples with phones components swapped:

name addr phones beersLiked

sue a p2 b1

sue a p1 b2

Note: we must check this condition for all pairs of tuples 
that agree on name, not just one pair.
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MVD Rules

1. Every FD is an MVD.

 Because if X Y, then swapping Y’s between tuples that agree on X
doesn’t create new tuples.

 Example, in Drinkers: name  addr.

2. Complementation: if X  Y, then X  Z, where Z is all 
attributes not in X or Y.

 Example: since name  phones
holds in Drinkers, so does
name  addr beersLiked.
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Fourth Normal Form
 A relation schema R is in 4NF with respect to a set D of 

functional and multivalued dependencies if for all multivalued 
dependencies in D+ of the form   , where   R and   R, 
at least one of the following hold:

    is trivial (i.e.,    or    = R)

  is a superkey for schema R

 If a relation is in 4NF it is in BCNF

4NF eliminates redundancy due to multiplicative effect of MVD’s.

 Formally: R is in Fourth Normal Form if whenever MVD
X  Y is nontrivial (Y is not a subset of X, and X  Y is not all 
attributes), then X is a superkey.

 Remember, X  Y implies X  Y,                                               
so 4NF is more stringent than BCNF.

 Decompose R, using NF violation X  Y,                              
into XY and X  (R—Y).

R YX
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4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

while (not done) 
if (there is a schema Ri in result that is not in 4NF) then

begin

let    be a nontrivial multivalued dependency that holds
on Ri such that   Ri  is not in Di, and ; 

result :=  (result - Ri)  (Ri - )   (, ); 
end

else done:= true;

Note: each Ri is in 4NF, and decomposition is lossless-join
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Splitting Doesn’t Hold

Sometimes you need to have several attributes on the right of an 
MVD. For example:

Drinkers(name, areaCode, phones, beersLiked, beerManf)

name areaCode phones beersLiked beerManf

Sue 831 555-1111 Bud A.B.

Sue 831 555-1111 Wicked Ale Pete’s

Sue 408 555-9999 Bud A.B.

Sue 408 555-9999 Wicked Ale Pete’s

 name   areaCode phones holds, but neither

name  areaCode nor    name  phones do.
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Example

Drinkers(name, addr, phones, beersLiked)

 FD:   name  addr

 Nontrivial MVD’s: name  phones and
name  beersLiked.

 Only key: {name, phones, beersLiked}

 All three dependencies above violate 4NF.

 Successive decomposition yields 4NF relations:

D1(name, addr)

D2(name, phones)

D3(name, beersLiked)
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Normalization

Boyce-

Codd

Functional 
dependency
of nonkey 
attributes on 
the primary 
key - Atomic 
values only

Full 
Functional 
dependency
of nonkey 
attributes on 
the primary 
key

No transitive 
dependency 
between 
nonkey 
attributes

All 
determinants 
are candidate 
keys - Single 
multivalued 
dependency

4NF
No 
multivalued 
dependency
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Further Normal Forms

 Join dependencies generalize multivalued dependencies

 lead to project-join normal form (PJNF) (also called fifth normal 
form)

 A relation is in 5NF if every join dependency in the relation is 
implied by the keys of the relation

 Implies that relations that have been decomposed in previous NF 
can be recombined via natural joins to recreate the original relation

 A class of even more general constraints, leads to a normal form 
called domain-key normal form.

 Problem with these generalized constraints:  are hard to reason 
with, and no set of sound and complete set of inference rules 
exists.

 Hence rarely used

 The normalized relations grows in additive way while      
non-normalized relations grows in multiplicative way.
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Overall Database Design Process

 We have assumed schema R is given
 R could have been generated when converting E-R diagram to a set of 

tables.

 R could have been a single relation containing all attributes that are of 
interest (called universal relation).

 Normalization breaks R into smaller relations.

 R could have been the result of some ad hoc design of relations, which 
we then test/convert to normal form.

 In practice, usually we start with more relations that intuitively satisfy 
some normal forms.
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ER Model and Normalization

 When an E-R diagram is carefully designed, identifying all entities 
correctly, the tables generated from the E-R diagram should not need 
further normalization.

 However, in a real (imperfect) design there can be FDs from non-key 
attributes of an entity to other attributes of the entity

 E.g. employee entity with attributes department-number  and 
department-address, and  an FD department-number  department-
address

 Good design would have made department an entity

 FDs from non-key attributes of a relationship set possible, but rare ---
most relationships are binary 
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Denormalization for Performance

 May want to use non-normalized schema for performance

 E.g. displaying customer-name along with account-number and 
balance requires join of account with depositor

 Alternative 1:  Use denormalized relation containing attributes of 
account as well as depositor with all above attributes

 faster lookup

 Extra space and extra execution time for updates

 extra coding work for programmer and possibility of error in extra code

 Alternative 2: use a materialized view defined as
account      depositor

 Benefits and drawbacks same as above, except no extra coding work 
for programmer and avoids possible errors
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Other Design Issues

 Some aspects of database design are not caught by 
normalization

 Examples of bad database design, to be avoided: 

Instead of earnings(company-id, year, amount), use 
 earnings-2000, earnings-2001, earnings-2002, etc., all on the 

schema (company-id, earnings).

 Above are in BCNF, but make querying across years difficult and 
needs new table each year

 company-year(company-id, earnings-2000, earnings-2001,  
earnings-2002)

 Also in BCNF, but also makes querying across years difficult and 
requires new attribute each year.

 Is an example of a crosstab, where values for one attribute 
become column names

 Used in spreadsheets, and in data analysis tools
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End of Chapter
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Sample lending Relation
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Sample Relation r
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The customer Relation
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The loan Relation
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The branch Relation
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The Relation branch-customer
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The Relation customer-loan
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The Relation branch-customer      customer-loan
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An Instance of Banker-schema
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Tabular Representation of 
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Relation bc: An Example of Reduncy in a BCNF Relation
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An Illegal bc Relation
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Decomposition of loan-info
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Relation of Exercise 7.4
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A Form with Visual Basic
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sdob najdi

sdel najdi

kol najdi

data najdi

Cisti_Click()
Prikazi_Click()
Nov_Click()
Otvori_Click()
Brisi_Click()

Nazad_Click()
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sdob najdi

sdel najdi

kol najdi

data najdi

Cisti_Click()
Prikazi_Click()
Nov_Click()
Otvori_Click()
Brisi_Click()

Nazad_Click()
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Procedure for a Query Building
Option Compare Database
Option Explicit
Private Sub AddToWhere(FieldValue As Variant, FieldName As String,       

MyCriteria As String, ArgCount As Integer)    
'  Create criteria for WHERE clause.
If FieldValue <> "" Then

'  Add "and" if other criterion exists.
If ArgCount > 0 Then

MyCriteria = MyCriteria & " and "
End If

'  Append criterion to existing criteria.
'  Enclose FieldValue and asterisk in quotation marks.
MyCriteria = (MyCriteria & FieldName & " Like " & Chr(39) & Chr(42) & 

FieldValue & Chr(42) & Chr(39))

'  Increase argument count.
ArgCount = ArgCount + 1

End If
End Sub

Chr(34) = “

Chr(39) = ‘

Chr(42) = *
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Procedure for Field Cleaning in a Form
Private Sub Cisti_Click()

Dim MySQL As String
Dim Tmp As Variant

MySQL = "SELECT * FROM NajdiNaracka WHERE False"
'  Clear search text boxes.
Me![sdob najdi] = Null
Me![sdel najdi] = Null
Me![kol najdi] = Null
Me![data najdi] = Null
'  Reset subform's RecordSource property to remove records.
Me![Naracka subform].Form.RecordSource = MySQL

'  Move insertion point to Look For Company text box.
Me![sdob najdi].SetFocus

‘ Exit_Cisti_Click:
'   Exit Sub

‘ Err_Cisti_Click:
'   MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
'  Resume Exit_Cisti_Click

End Sub
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Procedure for Searching in Database
Private Sub Prikazi_Click()
On Error GoTo Err_Prikazi_Click

Dim MySQL As String, MyCriteria As String, MyRecordSource As String
Dim ArgCount As Integer
Dim Tmp As Variant
'  Initialize argument count.
ArgCount = 0
'  Initialize SELECT statement.
MySQL = "SELECT * FROM NajdiNaracka WHERE "
MyCriteria = ""
'  Use values entered in text boxes in form header to create criteria for WHERE clause.
AddToWhere [sdob najdi], "[NajdiNaracka.sdob]", MyCriteria, ArgCount
AddToWhere [sdel najdi], "[NajdiNaracka.sdel]", MyCriteria, ArgCount
AddToWhere [kol najdi], "[NajdiNaracka.kol]", MyCriteria, ArgCount
AddToWhere [data najdi], "[NajdiNaracka.data]", MyCriteria, ArgCount

'  If no criterion specifed, return all records.
If MyCriteria = "" Then

MyCriteria = "True"
End If

'  Create SELECT statement.
MyRecordSource = MySQL & MyCriteria & " ORDER BY sdob"
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Continues
'  Set RecordSource property of Find Customers Subform.

Me![Naracka subform].Form.RecordSource = MyRecordSource

'  If no records match criteria, display message.
'  Move focus to Clear button.
If Me![Naracka subform].Form.RecordsetClone.RecordCount = 0 Then

MsgBox "Nema zapisi! ", 48, "Greska"
Me!Cisti.SetFocus

Else
'Enable control in detail section.

' Me.Section(acDetail).Enabled = True
'Tmp = EnableControls("Detail", True)
'  Move insertion point to Find Customers Subform.
Me![Naracka subform].SetFocus

End If

Exit_Prikazi_Click:   Exit Sub

Err_Prikazi_Click:
MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
Resume Exit_Prikazi_Click

End Sub
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Do almost Nothing

Private Sub Form_Activate()
'  Used by Solutions to show toolbar that includes Show Me button.
'  Hide built-in Form View toolbar.
'  Show Custom Form View toolbar.
'    DoCmd.ShowToolbar "Form View", A_TOOLBAR_NO
'   DoCmd.ShowToolbar "Custom Form View", A_TOOLBAR_YES

End Sub

Private Sub Form_Deactivate()
'  Used by Solutions to hide toolbar that includes Show Me button.
'  Hide Custom Form View toolbar.
'  Show built-in Form View toolbar.
'    DoCmd.ShowToolbar "Custom Form View", A_TOOLBAR_NO
'   DoCmd.ShowToolbar "Form View", A_TOOLBAR_WHERE_APPROP

End Sub

Private Sub Form_Open(Cancel As Integer)
'  Move insertion point to sdob when form is opened.
Me![sdob najdi].SetFocus

End Sub
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Levels of Abstraction
Private Sub Nov_Click()
On Error GoTo Err_Nov_Click

Dim stDocName As String
Dim stLinkCriteria As String
stDocName = "Naracka"
DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormAdd

Exit_Nov_Click:   Exit Sub
Err_Nov_Click:

MsgBox Err.Description
Resume Exit_Nov_Click

End Sub

Private Sub Otvori_Click()
On Error GoTo Err_Otvori_Click

Dim stDocName As String
Dim stLinkCriteria As String
stDocName = "Naracka"
If IsNull(Me![Naracka subform].Form![sdob]) Then
MsgBox "-->Nemate sifra za ovoj zapis!", vbInformation, "Greska"
Else
stLinkCriteria = "[sdob]='" & Me![Naracka subform].Form![sdob] & "'"
DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormEdit
End If  

Exit_Otvori_Click:      Exit Sub
Err_Otvori_Click:

MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
Resume Exit_Otvori_Click

End Sub
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Instances and Schemas

Private Sub Brisi_Click()
On Error GoTo Err_Brisi_Click

Dim MySQL As String, MyCriteria As String

MySQL = "DELETE FROM Naracka WHERE sdob LIKE "
If IsNull(Me![Naracka subform].Form![sdob]) Then
MsgBox "-->Nemate izbrano zapis!", vbInformation, "Greska"
Else
MySQL = (MySQL & Chr(34) & Me![Naracka subform].Form![sdob] & Chr(34) & " and sdel 

LIKE " & Chr(34) & Me![Naracka subform].Form![sdel] & Chr(34))
DoCmd.RunSQL MySQL
Prikazi_Click
End If    

Exit_Brisi_Click:    Exit Sub

Err_Brisi_Click:
MsgBox "Greska-->" & Err.Description, vbInformation, "Greska"
Resume Exit_Brisi_Click    

End Sub
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Procedure for Opening Form

Private Sub Nazad_Click()
On Error GoTo Err_Nazad_Click

Dim stDocName As String
Dim stLinkCriteria As String
DoCmd.Close
stDocName = "GlavnoMeni"
DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_Nazad_Click:    Exit Sub

Err_Nazad_Click:
MsgBox Err.Description
Resume Exit_Nazad_Click

End Sub
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