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University Ss Cyril and Methodius 
 
TEMPUS JEP DEREC  
 
Course syllabus prepared by Prof. Aleksandar Nošpal from the University Ss Cyril and 
Methodius  and Prof. Petros Anagnostoupolos from the Aristotle University of Thessaloniki 
 
 
COURSE TITLE:         FLUID MECHANICS       
 
COURSE NUMBER:    
 
Time schedule:  
 
9 credits (25x9=225 learning hours) 
 
ECTS distribution:  
Lecture time: 89 hours (54 hours lectures + 35 hours tutorials)  
Laboratory work:  10 hours 
Self study: 120 hours 
Testing, exams, presentations: 6 hours 
TOTAL: 225 hours 
 
Week class distribution (lecturs + tutorials/lab. practising):  4+5 
 
COURSE CONVENOR Prof. Dr. Aleksandar Nošpal 
 
COURSE AIMS: 
 
Knowledge of:  

fundamentals and application of the Fluid Mechanics; basic laws and fundamental concepts of fluid 
flows; basic considerations of Experimental Fluid Mechanics and CFD; methods and examples of 
Applied Fluid Mechanics - characteristic for the engineering practice and especially Environmental 
and Resources Engineering.  
 
LEARNING OUTCOMES: 
 
By the end of this module students should be able to: 

solve basic and practical fluid flow problems from the field of Applied Fluid Mechanics; be better 
prepared for further knowledge acceptance needed for experimental and CFD methods; 
understand better other subjects in the area of Environmental and Resources Engineering.  
 
 
TEACHING AND LEARNING METHODS 
 
lecturing, tutorials, laboratory work, presentation of video materials, use of Internet, self-study, 
homework preparation 
 
DETAILS OF ASSESSMENT INSTRUMENTS 
 
active participation on classes, homework and lab assignments, knowledge assessment on tests 
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SUMMARY DESCRIPTION OF ASSESSMENT 
 
Grading system is given by the following table:  

Assessment Points Percentage
Active participation 30 10 
Homeworks 1,2,3 30 10 
Homeworks 4,5,6 30 10 

Midterm test 90 30 
Final test 99 33 
Lab work 21 7 

Total 300 100 
Quality grading is realized by the following table: 

Points Grade Equivalent 
271-300 10 А 
241-270 9 B 
211-240 8 C 
181-210 7 D 
151-180 6 D- 
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SYLLABUS: 
 
1. Introduction to the Fluid Mechanics 

1.1. The importance of the Fluid Mechanics for the Science and Engineering; the importance for 
Environmental and Resources Engineering 

1.2. Fundamental dimensions, dimensional homogeneity and fundamental units of measurement. 
1.3. Properties and states of fluids - pressure, temperature, density, specific weight, viscosity, specific 

heat, internal energy, bulk modulus of elasticity and compressibility, velocity of sound, equations of 
state  

1.4. Forces on a fluid element and pressure  

2. Statics of fluids 

2.1. Basic laws - hydrostatic pressure, Euler's equations of equilibrium 
2.2. Equilibrium in gravity field  - incompressible fluid in gravity field, hydrostatic manometers, Pascal's 

law, relative equilibrium of fluid (translation and rotation of a liquid container), pressure force on a 
flat and curved surface, buoyant forces 

3. Kinematics of flow 

3.1. Flow field - properties of flow field, Lagrangean versus Eulerian aproach, steady and unsteady flow 
3.2. Velocity, stream line versus path line, stream function, stream tube, velocity gradient and shear 
3.3. Volume flow, flux and circulation 
3.4. Continuity equations   
3.5. Acceleration 

 
4. Dynamics of inviscid (ideal) fluid flow 

4.1. Forces on a inviscid fluid element, 3-D and 2-D flows, Euler's equations for inviscid fluid flow 
4.2. One dimensional gravity flow - Bernoulli's equation 
4.3. Potential flow - differential equations, Cauchy-Lagrange and Bernoulli equation 
4.4. The continuity equation in integral form 
4.5. Equations of momentum and energy 

5. Some elementary flows of inviscid fluid 
5.1. Stream tube control volume. Basic equations for flows through a stream tube 
5.2. Some examples of steady flow of incompressible fluid - Venturi tube, discharge through nozzles 

from a reservoir into the atmosphere, submerged discharge, flow through a rotating tube, cavitation 
5.3. Basic consideration of compressible fluid flow  
5.4. Some examples for the momentum equations application  - force on a bended pipe, jet reaction, 

basic equation of the turbo-machines 

6. Some fundamental concepts of viscous fluid flow 
6.1. General concept of viscous fluid flow - Newton's law for shear stress, flow classification, laminar 

versus turbulent flow 
6.2. Fundamental equations for laminar flow - stresses in a viscous fluid flow, friction forces, Navier-

Stokes equations  
6.3. Fundamental concepts and solutions of the governing equations for some cases of laminar flow 
6.4. Fundamental concepts and equations for creeping motions and two-dimensional boundary layer 
6.5. The notion of resistance, drag, and lift 
6.6. Basic concepts of incompressible viscous fluid turbulent flow - Reynolds experiment and Reynolds 

number, velocity in turbulent flow, Reynolds equations for turbulent flow of incompressible fluid 
6.7. Concepts for solving governing equations of viscous fluid flow - features of theoretical methods, 

experimental and semi-empirical approach, CFD approach. 

7. Basic consideration of Experimental Fluid Mechanics 
7.1. Basic approach to the Dimensional Analysis - dimensional homogeneity, Rayleigh method, the 

significance of non-dimensional relationships and numbers, Vaschy's theorem.  
7.2. Basic approach to the experimental investigation and application of the similarity theory - similarity 

criteria for characteristic flow conditions  
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8. Methods and examples of Applied Fluid Mechanics 

8.1. Basic equations of flow in conduits and pipes  - velocity distribution and average velocity; pressure; 
continuity equation; Bernoulli equation; momentum law; energy losses linear and local losses 

8.2. Laminar and turbulent incompressible flows in pipes - velocity profiles for turbulent flow, velocity 
and friction laws, roughness effects, examples for pipe-flow computation 

8.3. Incompressible flow in noncircular ducts - friction losses in closed conduits, two dimensional flows 
8.4. Flow in prismatic open channels - one dimensional open-channel equations, head-loss equations, 

velocity and friction laws for two-dimensional channels, computation examples 
8.5. Immersed bodies, drag and lift - hydrodynamic forces and force coefficients, drag of symmetrical 

bodies, lift and drag of nonsymmetrical bodies 
8.6. Basic approach to turbulent jets and diffusion processes - free turbulence, diffusion processes in 

nonhomogeneous fluids 
8.7. Basic approach to multiphase flow 

 
 
Distribution of the material by weeks:  
 
Week 1: 1.1.; 1.2.; 
Week 2: 1.3.;  
Week 3: 1.4.; 2.1 
Week 4: 2.2  
Week 5: 3.1.; 3.2.; 3.3;   
Week 6: 3.4.; 4.1.; 4.2.;  
Week 7: 4.3; 4.4; 4.5.  
Week 8: 5.1; 5.2.  
Week 9: 5.3; 5.4.   
Week 10: 6.1.; 6.2.; 6.3.; 6.4.   
Week 11: 6.5.; 6.6.; 6.7.   
Week 12: 7.1.; 7.2.   
Week 13: 8.1.; 8.2.;  
Week 14: 8.3.; 8.4.; 8.5.;. 
Week 15: 8.6.; 8.7.;   
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UNIT GUIDE      TEMPUS JEP DEREC  
Unit Title: FLUID MECHANICS       
Mode:  
Co Requisites: Solid Mechanics 
Pre Requisites Mathematics II and Solid Mechanics 
Lectures: 54 hours 
Tutorials: 35 hours 
Lab practicing:  10 hours 
Individual Study Hours: 120 hours 
Study Hours: 225 hours 
Method of Assessment: active participation on classes, homework and lab 

assignments, knowledge assessment on tests 
Study year: II 
Semester: III  
ECST Credit Value: 9 
Web support http://www.derec.ukim.edu.mk     
Module:  
Level: undergraduate     
Subject Area: Environmental and Resources Engineering 
Unit Coordinator: Prof. Dr Aleksandar Nošpal 
Version: english/macedonian 

MOTIVATION        
To ensure knowledge transfer to the students in a field and subject very important for the foreseen studies of 
Environmental and Resources Engineering.  

SHORT DESCRIPTION 
The unit (subject) is planned acoording the following main course parts: 
Introduction to the Fluid Mechanics; Statics of Fluids; Kinematics of Fluids; Dynamics of ideal fluid flow; 
Some elementary flows of inviscid fluid; Some fudamental concepts of viscous fluid flow; Basic consideration 
of Experimental Fluid Mechanics; Method and Examples of Applied Fluid Mechanics 

AIMS 
Knowledge of:  

fundamentals and application of the Fluid Mechanics; basic laws and fundamental concepts of fluid flows; 
basic considerations of Experimental Fluid Mechanics and CFD; methods and examples of Applied Fluid 
Mechanics - characteristic for the engineering practice and especially Environmental and Resources 
Engineering.  

LEARNING OUTCOMES 
Students who complete this course should be able to perform the following tasks: 

to solve basic and practical fluid flow problems from the field of Applied Fluid Mechanics; to be better 
prepared for further knowledge acceptance needed for experimental and CFD methods; to understand better 
other subjects in the area of Environmental and Resources Engineering. 

TRANSFERABLE SKILLS   
At the end of the unit students will be able to:  
continue more efficiently his further studies in the field of Environmental and Resources Engineering, or other 
engineering studies if he plans such a transfer.  
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INDICATIVE CONTENT    
 
Introduction to the Fluid Mechanics:    The importance of the Fluid Mechanics; Fundamental dimensions and units of 
measurement; Properties and states of fluids; Forces on a fluid element and pressure. 
Statics of fluids: Basic laws - hydrostatic pressure, Euler's equations; Equilibrium in gravity field -incompressible fluid in 
gravity field, hydrostatic manometers, Pascal's law, relative equilibrium of fluid,  pressure force on a flat and curved surface, 
buoyant forces.  
Kinematics of flow:  Flow field - properties of flow field, Lagrangean versus Eulerian aproach, steady and unsteady 
flow; Velocity, stream line and stream function, stream tube, velocity gradient and shear; Volume flow, flux and 
circulation; Continuity equations; Acceleration. 
Dynamics of inviscid fluid flow: Forces on a inviscid fluid element, Euler's equations for inviscid fluid flow;One 
dimensional gravity flow - Bernoulli's equation; Potential flow - Cauchy-Lagrange and Bernoulli equation; The continuity 
equation in integral form;  Equations of momentum and energy. 
Some elementary flows of inviscid fluid:  Stream tube control volume. Basic equations for flows through a stream 
tube; Some examples of steady flow of incompressible fluid - Venturi tube, discharge through nozzles from a reservoir 
into the atmosphere, submerged discharge, flow through a rotating tube, cavitation; Basic consideration of compressible 
fluid flow;  Some examples for the momentum equations application - force on a bended pipe, jet reaction, basic equation of the 
turbo-machines.  
Some fundamental concepts of viscous fluid flow:  General concept of viscous fluid flow - Newton's law for shear 
stress, flow classification; Fundamental equations for laminar flow - Navier-Stokes equations; Bases  of creeping motions 
and two-dimensional boundary layer; The notion of resistance, drag, and lift; Basic concepts of incompressible viscous 
fluid turbulent flow - Reynolds number, velocity in turbulent flow, Reynolds equations; Concepts for solving governing 
equations - experimental and CFD approach. 
Basic consideration of Experimental Fluid Mechanics: Basic approach to the Dimensional Analysis -  Rayleigh's 
method and Vaschy's theorem; Basic approach to the experimental investigation and application of the similarity theory - 
similarity criteria for characteristic flow conditions. 
Methods and examples of Applied Fluid Mechanics: Basic equations of flow in conduits and pipes  - velocity 
distribution, pressure, continuity equation, Bernoulli equation, momentum law, energy losses; Laminar and turbulent 
incompressible flows in pipes - velocity profiles, velocity and friction laws, roughness effects, examples for pipe-flow 
computation; Bases of incompressible flow in noncircular ducts; Bases of flow in prismatic open channels; Immersed 
bodies, drag and lift - hydrodynamic forces and force coefficients, drag and lift; Basic approach to turbulent jets and 
diffusion processes; Basic approach to multiphase flow. 

CONTENT 
 
WEEKLY TEACHING PLAN AND LEARNING PROGRAMME 

Week Lectures   Tutorials and Lab practicing  

1 

1. Introduction to the Fluid Mechanics:  
The importance of the Fluid Mechanics for the Science and 
Engineering; the importance for Environmental and Resources 
Engineering; 
Fundamental dimensions, dimensional homogeneity and 
fundamental units of measurement; 

Video materials presentations of H. Rouse (from 
IIHR) and A. Shapiro (from MIT). 
Notion of some useful web sites. 

2 
Properties and states of fluids - pressure, temperature, density, 
specific weight, viscosity, specific heat, internal energy, bulk 
modulus of elasticity and compressibility, velocity of sound, 
equations of state; 

Examples and problems from measurment units.   
Examples and problems from fluids properties. 

3 
Forces on a fluid element and pressure. 

2. Statics of fluids:  
Basic laws - hydrostatic pressure, Euler's equations of equilibrium 

Examples and problems from Statics of fluids. 

4 
Equilibrium in gravity field  - incompressible fluid in gravity field, 
hydrostatic manometers, Pascal's law, relative equilibrium of fluid 
(translation and rotation of a liquid container), pressure force on a 
flat and curved surface, buoyant forces 

Examples and problems from Statics of fluids. 

5 

3. Kinematics of flow: 
Flow field - properties of flow field, Lagrangean versus Eulerian 
aproach, steady and unsteady flow; 
Velocity, stream line versus path line, stream function, stream 
tube, velocity gradient and shear;  
Volume flow, flux and circulation;  

Lab measurements of some fluid properties. 
Lab measurements of pressure. 

6 

Continuity equations; Acceleration 
4. Dynamics of inviscid (ideal) fluid flow:  
Forces on a inviscid fluid element, 3-D and 2-D flows, Euler's 
equations for inviscid fluid flow; 
One dimensional gravity flow - Bernoulli's equation; 

Examples and problems from Dinamics of inviscid 
fluid flow.  
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7 
Potential flow - differential equations, Cauchy-Lagrange and 
Bernoulli equation; The continuity equation in integral form; 
Equations of momentum and energy.  

Examples and problems from Dinamics of inviscid 
fluid flow. 

8 

5. Some elementary flows of inviscid fluid 
Stream tube control volume. Basic equations for flows through a 
stream tube; 
Some examples of steady flow of incompressible fluid - Venturi 
tube, discharge through nozzles from a reservoir into the 
atmosphere, submerged discharge, flow through a rotating tube, 
cavitation; 

Examples and problems from some elementary 
flows of inviscid fluid. 

9 
Basic consideration of compressible fluid flow;  
Some examples for the momentum equations application - force 
on a bended pipe, jet reaction, basic equation of the turbo-machines. 

Problems for the momentum equations application. 

10 

6. Some fundamental concepts of viscous fluid flow 
General concept of viscous fluid flow - Newton's law for shear 
stress, flow classification, laminar versus turbulent flow; 
Fundamental equations for laminar flow - stresses in a viscous 
fluid flow, friction forces, Navier-Stokes equations;  
Fundamental concepts and equations for creeping motions and 
two-dimensional boundary layer 

Some basic laboratory measurments of fluid flow 
velocity; and volume and mass flow rate. 

11 

The notion of resistance, drag, and lift; 
Basic concepts of incompressible viscous fluid turbulent flow - 
Reynolds experiment and Reynolds number, velocity in turbulent 
flow, Reynolds equations for turbulent flow of incompressible fluid; 
Concepts for solving governing equations of viscous fluid flow        
- experimental and semi-empirical approach, CFD approach. 

Some video presentations for the fundamental 
concepts of viscous fluid flow. 
Some examples for solving the governing equations 
- experimental and CFD aproach. 

12 

7. Basic consideration of Experimental Fluid Mechanics 
Basic approach to the Dimensional Analysis - dimensional 
homogeneity, Rayleigh method, the significance of non-
dimensional relationships and numbers, Vaschy's theorem;  
Basic approach to the experimental investigation and application of 
the similarity theory - similarity criteria for characteristic flow 
conditions.  

Some examples and problems for Dimensional 
Analysis Application.  
Some examples and problems for Similarity Theory 
Application. 

13 

8. Methods and examples of Applied Fluid Mechanics 
Basic equations of flow in conduits and pipes  - velocity distribution 
and average velocity, pressure, continuity equation, Bernoulli 
equation, momentum law, energy losses linear and local losses; 
Laminar and turbulent incompressible flows in pipes - velocity 
profiles for turbulent flow, velocity and friction laws, roughness 
effects, examples for pipe-flow computation; 

Examples and problems from Appled Fluid 
Mechanics.  

14 

Incompressible flow in noncircular ducts - friction losses in closed 
conduits, two dimensional flows; 
Flow in prismatic open channels - one dimensional open-channel 
equations, head-loss equations, velocity and friction laws for two-
dimensional channels, computation examples; 
Immersed bodies, drag and lift - hydrodynamic forces and force 
coefficients, drag of symmetrical bodies, lift and drag of 
nonsymmetrical bodies; 

Examples and problems from Applied Fluid 
Mechanics.  
Examples for some measurements in Applied Fluid 
Mechanics. 

15 
Basic approach to turbulent jets and diffusion processes - free 
turbulence, diffusion processes in nonhomogeneous fluids; 
Basic approach to multiphase flow. 

Examples and problems from Appled Fluid 
Mechanics. 

 

TEACHING METHOD 

lecturing, tutorials, laboratory work, presentation of video materials, use of Internet, self-study, 
homework preparation 

ASSESSMENT METHOD 

Active participation on classes - 30 points (10%)  
Homework assignments (6 homeworks) - 60 points (20%) 

 Laboratory work - 21 points (7%) 
Knowledge assessment on tests – 189 points (63%) 
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GRADING 
 
Grading system is given by the following table:   

Assessment Points Percentage
Active participation 30 10 
Homeworks 1,2,3 30 10 
Homeworks 4,5,6 30 10 

Midterm test 90 30 
Final test 99 33 
Lab work 21 7 

Total 300 100 
  
Quality grading is realized by the following table: 

Points Grade Equivalent 
271-300 10 А 
241-270 9 B 
211-240 8 C 
181-210 7 D 
151-180 6 D- 

 

COURSE LEARNING MATERIALS 

Textbook 
Street R.L., Watters G.Z., Vennard J.K., Elementary Fluid Mechanics, John Wiley & Sons, 7th editiond, 1996, 
ISBN: 978-0-471-01310-5 
 
Bundalevski T., : Mechanics of Fluids (in Macedonian), University Ss Cyril and Methodius, publisher MB-3, 
Skopje, 1995, ISBN 9989-704-01-5 
 
Nošpal A., Stojkovski V.,: Fluid Mechanics - Prepared lecures and tutorials material for the DEREC subject, 
edition of the Faculty of Mechanical Engineering, Skopje, 2007/2008 

Professors from EU DEREC Universities: Fluid Mechanics - Prepared lecures and tutorials material for the 
DEREC subject, Educational Material prepared by professors from EU DEREC Universities, 2007/2008 

Tutorial 
Nošpal A., Stojkovski V.,: Fluid Mechanics - Prepared lecures and tutorials material for the DEREC subject, 
edition of the Faculty of Mechanical Engineering, Skopje, 2007/2008 

Professors from EU DEREC Universities: Fluid Mechanics - Prepared lecures and tutorials material for the 
DEREC subject, Educational Material prepared by professors from EU DEREC Universities, 2007/2008 

Lab practicum  
Nospal A.: "Fluid Flow Measurments and Instrumentation" (in Macedonian), University Ss Cyril and 
Methodius, publisher MB-3, Skopje, 1995, iSBN 9989-704-02-3 

Stojkovski V., Nošpal A., Kostic.Z.,: "Practicum for Laboratory Works for the Subject Fluid Flow 
Measurements and Instrumentation", edition for students of the Faculty of Mechanical Engineering, Skopje, 
1993. 

Stojkovski V., Nošpal A.,: Fluid Mechanics - Prepared lecures and tutorials material for the DEREC subject, 
edition of the Faculty of Mechanical Engineering, Skopje, 2007/2008 

Professors from EU DEREC Universities: Fluid Mechanics - Prepared lecures and tutorials material for the 
DEREC subject, Educational Material prepared by professors from EU DEREC Universities, 2007/2008 
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Web support 
http://www.derec.ukim.edu.mk  
   

BACKGROUND   

TEMPUS JEP DEREC MATERIALS 
UNIVERSITIES CONSORTIUM: University of Florence, University Sts. Cyril and Methodius, 
Aristotele University of Thessaloniki, Ruhr University Bochum, Vienna University of Technology 
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1. Introduction to the Fluid Mechanics 
 

1.1. The importance of the Fluid Mechanics for the Science and Engineering; the 
importance for Environmental and Resources Engineering 

 
Definition: 
 physical science dealing with the action of fluids at rest or in motion, and with engineering 
applications and devices using fluids.  

A fluid is defined as a substance that continually deforms (flows) under an applied shear stress 
regardless of the magnitude of the applied stress. It is a subset of the phases of matter and includes 
liquids, gases, plasmas and, to some extent, plastic solids. 

Fluids are also divided into liquids (incompressible fluids) and gases (compressible fluids). 

Physics ⇒  Mechanics ⇒  Fluid Mechanics 
Continuum Mechanics 
Fluid mechanics is basic to such diverse fields as aeronautics , chemical, civil, mechanical 
engineering, meteorology, naval architecture, oceanography.  
 
Fluid mechanics can be subdivided into two major areas:  

fluid statics, or hydrostatics, which deals with fluids at rest, and  
fluid dynamics, concerned with fluids in motion.  
 
The term hydrodynamics is applied to the flow of liquids or to low-velocity gas flows in which the 
gas can be considered as being essentially incompressible. 
  
Aerodynamics or gas dynamics is concerned with the behaviour of gases when velocity and pressure 
changes are sufficiently large to require inclusion of the compressibility effects. 
 
Hydraulics:  
 application of fluid mechanics to engineering devices involving liquids, usually water or oil.  

Hydraulics deals with such problems as the flow of fluids through pipes or in open channels and the 
design of storage dams, pumps, and water turbines. With other devices it deals with the control or 
use of liquids, such as nozzles, valves, jets, and flowmeters. 
 
Applications of fluid mechanics include also jet propulsion, gas and vapor turbines, compressors 
etc. 
∴ Fluid Mechanics - extremly important for Environmental and Resources engineering.  
  
Web sites references: 
 http://en.wikipedia.org/wiki/Fluid_mechanics;    uk.encarta.msn.com/encyclopedia_761578780/Fluid_Mechanics.html 

www.britannica.com/eb/article-9110311/fluid-mechanics

http://ocw.mit.edu/OcwWeb/index.htm;      http://www.iihr.uiowa.edu;     The Science of All Things Fluid 

⇒ Video Presentation:  
Hunter Rouse:       Introduction to the Study of Fluid Motion
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1.2. Fundamental dimensions, dimensional homogeneity and fundamental units of 
measurement 

 

Equations in physics have dimensional homogeneity - not only because of their theoretical 
derivation but also due to the way of measurements of the physical quantities.  

Definition: 
All members in an equation have the same physical meaning and are expressed with same 
measurement units. 
Example:  
A form of the Bernoulli equation 

22

2
0

00

2 vhpvhp ργργ ++=++  

All three members are/present pressure: 

 p - flow pressure; 

 γ h  - hydrostatic pressure;  

 
2

2vρ  - dynamic pressure  

All members have same dimensional formula   -   [FL– 2]   i.e.  [ML– 1T–2],  
and are expressed with same units  -   [N/m2]. 
 

⇒ 
Fundamental Quantities, Dimensions and Units: 

⇒ Fundamental Quantities in Mechanics and Fluid Mechanics:  

• Length, Mass, Time, Temperature 

⇒ Fundamental Dimensions  -  L,M,T,θ 

⇒ Fundamental Units of Measurement  (SI)  -  m, kg, s, K 

• Length, Force, Time, Temperature 

⇒ Fundamental Dimensions  -  L,F,T,θ 

⇒ Fundamental Units of Measurement  (SI)  -  m, N, s, K 

 

⇒ Dimensional formulae 
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Dimensional Formulae and Measurment Units 

a)  Geometric Quantity 

Quantity Symbol Dimensions Measurement units 

  M,L,T,θ F,L,T,θ SI Old 
technical 

Length l, r, a, b L L m m 

Area/Surface A L2 L2 m2 m2

Volume V L3 L3 m3 m3

Curvature C=1/R L-1 L-1 m-1 m-1

Hydraulic radius R L L m m 

Roughness k L L m m 

Wave length λ L L m m 

Angle α, β, γ,... _ _ rad ; 0 rad ; 0

Resistance moment 
/First moment of area W L3 L3 m3 m3

Geometric moment 
of inertia I L4 L4 m4 m4

 
b)  Kinematic Quantities 

Quantity Symbol Dimensions Measurement units 
  

M,L,T,θ F,L,T,θ SI Old 
technical 

Time t T T s s 

Rate of deformation ij xv ∂∂ /  T-1 T-1 s-1 s-1

Angular velocity ω  T-1 T-1 s-1 s-1

Frequency f T-1 T-1 s-1 s-1

Angular acceleration ω&  T-2 T-2 s-2 s-2

Velocity u, v, w LT-1 LT-1 m/s m/s 

Acceleration va &,  LT-2 LT-2 m/s2 m/s2

Volume flow rate Q L3T-1 L3T-1 m3/s m3/s 

2D flow rate q L2T-1 L2T-1 m2/s m2/s 

Circulation Γ L2T-1 L2T-1 m2/s m2/s 

Kinematic viscosity ν L2T-1 L2T-1 m2/s m2/s 

Vorticity r r r
Ω=∇×v  T-1 T-1 s-1 s-1
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c)  Dynamic Quantities 

Quantity Symbol Dimensions Measurement units 

  
M,L,T,θ F,L,T,θ SI Old 

technical 

Mass m M FT2L-1 kg kps2/m 

Force F MLT-2 F kgm/s2=N kp 

Pressure p ML-1T-2 FL-2 N/m2 kp/m2

Stress σ, τ ML-1T-2 FL-2 N/m2 kp/m2

Pressure gradient Δp/Δxj ML-2T-2 FL-3 N/m3 kp/m3

Density ρ ML-3 FT2L-4 kg/m3 kps2/m4

Specific weight γ ML-2T-2 FL-3 N/m3 kp/m3

Momentum, Impulse 
r

M , r r
K mv=  MLT-1 FT kgm/s kps 

Angular momentum H=mr2ω ML2T-1 FLT kgm2/s kpms 
Momentum flux, 
Momentum force 

r r
FR Qv= ρ  MLT-2 F kgm/s2 kp 

Moment of momentum 
r r

M Mk m,  ML2T-1 FLT Nms kpms 

Moment of force, 
Torque 

r r
M M TT, ,  ML2T-2 FL Nm kpm 

Mass moment of 
inertia J ML2 FLT2 kgm2 kpms2

Relative atomic mass A 1 1 1 1 

Relative molecular 
mass M 1 1 1 1 

Energy E ML2T-2 FL kgm2/s2=J kpm 

Work W ML2T-2 FL J=Nm kpm 

Hydraulic head      h = 
v2/2g+p/γ+z L L Nm/N kpm/kp 

Energy per unit mass gh = 
v2/2+p/ρ+gz 

L2T-2 L2T-2 m2/s2 m2/s2

Power P ML2T-3 FLT-1 W=J/s kpm/s 

Dynamic viscosity μ, η ML-1T-1 FTL-2 Ns/m2 kps/m2

Eddy viscosity ε ML-1T-1 FTL-2 kg/ms kps/m2

Modulus of elasticity E ML-1T-2 FL-2 N/m2 kp/m2

Bulk modulus of 
elasticity 

    EV 
= Δp/(ΔV/V)  

ML-1T-2 FL-2 N/m2 kp/m2

Mass flow rate &m, q  MT-1 FTL-1 kg/s kps/m 

Surface tension σ MT-2 FL-1 N/m kp/m 

Mass diffusion 
coefficient. k, D L2T-1 L2T-1 m2/s m2/s 

Concentration of 
mass c ML-3 FL4T-2 kg/m3 kpm4/s2
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d) Thermodynamic Quantities 

Quantity Symbol Dimensions Measurement units 

  
M,L,T,θ F,L,T,θ SI Old 

technical 

Temperature T θ θ K 0C, 0K 

Temperature gradient ΔT/Δxi L-1θ L-1θ K/m 0C/m 

Quantity of heat Q ML2T-2 FL J=Nm kcal= 
427 kpm 

Thermal conductivity 
coefficient λ MLT-3θ-1 FT-1θ-1 W/mK kcal/sm0K 

Entropy S, dS ML2T-2θ-1 FLθ-1 J/K kcal/0K 

Enthalpy I, H ML2T-2 FL J kcal 

Gas constant R L2T-2θ-1 L2T-2θ-1 J/kgK kcal/kg0K 

Specific heat cp, cv L2T-2θ-1 L2T-2θ-1 J/kgK kcal/kg0K 

Specific entalpy i, h L2T-2 L2T-2 J/kg kcal/kg 

Specific entropy s L2T-2θ-1 L2T-2θ-1 J/kgK kcal/kg0K 

Heat flux density qH MT-3 FL-1T-1 W/m2 kcal/m2s 

Thermal diffusion 
coefficient χ L2T-1 L2T-1 m2/s m2/s 

 

 

1.3. Properties and states of fluids 
 

 - pressure, temperature, density, specific weight, viscosity, specific heat, internal energy, bulk modulus of 
elasticity and compressibility, velocity of sound, equations of state  
 

Pressure:  

Property defined as force per unit area:  

A
F

p p=        (1-1) 

pF  -  force applied on a surface A in a direction perpendicular to that surface. 
.  

Dimensional formula: [P] = ML-1T-2 = FL-2  . 
 
Units:  
 
International System of Units (SI):   

1 Pa = 1 N/m2 ;  1 bar = 105 Pa . 

N = kgm/s2
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Old "technical":  

1 kp/m2 ≈ 1 mmH2O = 9,81 Pa 
1 at = 1 kp/cm2 = 0,981 bar  
1 atm = 760 mmHg = 1,01325 bar 
1 Torr = 1 mmHg = 133,322 Pa 
 

Old British:  

1 pound/sq.in. (p.s.i) = 703,1 kp/m2 = 6,895 kN/m2

1 pound/sq.ft. (p.s.ft.) = 4,882 kp/m2 = 47,88 N/m2

 
See Table of units in the literature 
 
Kinds of pressure - explained later on:  

Fluid fow pressure = static presure,  
Dynamic pressure, 
Total pressure,  
Absolute pressure,  
Atmospheric pressure,  
Gauge pressure,  
Vacuum,  
Hydrostatic pressure etc 
 
 
Temperature:  
 
Temperature is a fundamental physical property (quantity) of a system that underlies the common 
notions of hot and cold - the level of heat of a fluid.  
On the molecular level, temperature is the result of the motion of particles which make up a 
substance. 
Changes in temperature causes changes in other properties. 
 
Symbol:    T,  t 
 
Dimensional formula:  θ   
 
Units:  
 
SI:  

K = Kelvin 
0C = Degree Celsius 

K = 273,16 + [0C]       (1-2) 

Old British: 
0F -  Degree Fahrenheit's:  

[ ] [ ]{ }0 05
9

32C F= − ;               [ ] [ ]0 09
5

32F C= +      (1-3) 

Kinds of temperature - explained later on: Fluid flow temperature;  Total (stagnation) temperature 
etc - simlaer to pressure. 
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Density:  

Density (or specific mass) is defined as ratio of mass and volume:  

V
m

V
m

=
Δ
Δ

=ρ       (1-4) 

Dimensional formula:  ML-3 

Units:  
SI System: kg/m3

∴ ),( Tpf=ρ  

For liquids (or incompressible fluids):  

Coefficient of thermal expansion:  
dT
d

dT
dV

V
ρ

ρ
α 11

−==   1/0C 

∴ For values of ρ  and α , for diferent fluids, see the corresponding tables in the literature 

In the book of T. Bundalevski the symbol β  is used ( βα = ) 

For gasses (or compressible fluids) - depending the process of change:  

- Equation of state for ideal gass: RTp
=

ρ
 R - gass constant ⇒  see tables in the literature. 

- Equation for Isentropic adiabatic process:   constp
=κρ

 

 
Specific weight:  

Defined as weight per unit volume: 

g
V

mg
V
G ργ =

Δ
Δ

=
Δ
Δ

=       (1-5) 

Dimensional formula:  FL-3 = ML-2T-2 

Units:  
SI System: N/m3

∴ For values for diferent fluids see the corresponding tables in the literature 

 

Viscosity:  
Viscosity is a measure of the resistance of a fluid to deform under shear stress. It is commonly 
perceived as "thickness", or resistance to flow. ⇒  see Fig. 1.1. 

Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid 
friction. 

In general, in any flow, layers move at different velocities and the fluid's viscosity arises from the 
shear stress between the layers that ultimately opposes any applied force.  

According Isaac Newton (for so called Newtonian fluids):  
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dn
dvμτ =        (1-6) 

τ  -  shear stress in N/m2; 

dn
dv  -  rate of angular deformation (velocity gradient) in s-1;  

μ   -   Dynamic (absolute) viscosity in Ns/m2; in some literature the symbol η  is used ( ημ = ). 
SI units:   kg/ms=Ns/m2;         P = dyns/cm2 = g/cms = 0,1 Ns/m2;    cP = 10-2 P 

 
 

Kinematic viscosity, ν , is very often used in the hydraulic computations. Kinematic viscosity is 
defined as ratio of the dynamic viscosity μ  and density ρ :  

ρ
μν =         (1-7) 

SI units:     m2/s; St = cm2/s = 10-4 m2/s ;  cSt = 10-2 St  = 10-6 m2/s ;  mSt = 10-3 St 

 
),( Tpf=ν  

∴ For values of μ  and ν , for different fluids, see the corresponding tables and diagrams in the 
literature 

 
Fig. 1.1:    Laminar shear of fluid between two plates 

 
Specific heat, c: 
 
Specific heat capacity, also known simply as specific heat, is the ratio of the quantity of heat 
flowing into a substance per unit mass to the change in temperatutre 
=  measure of the heat energy required to increase the temperature of one kg of a substance by one 
Kelvin. 
 
Dimensional formula:  L2T-2θ-1

SI units:    J/kgK 
 

pc = specific heat at constant pressure;  

vc  = specific heat at constant volume.  

∴ For values for diferent fluids see the corresponding tables in the literature 
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Specific internal energy, u:  
 
Defined as energy per unit mass, due to the kinetic and potential energies bound into the substance 
by its molecular activity and depends primarily on temperature.  
 
∴ For values for diferent fluids and temperatures,  see the corresponding tables in the 

literature - experimentaly obtained. 
For a perfect (ideal) gass:  

dtcdu v=       (1-8) 

For :   constcv = )( 1212 TTcuu v −=−  

SI units:      J/kg 
 

Specific entalpy, i:  

Sum of the internal energy and energy due to the pressure change:  

ρ
pui +=        (1-9) 

SI units:      J/kg 
 
For a perfect (ideal) gass:  

dTcpud p=+ )(
ρ

 

For  constc p =

)()()( 1212 TTcpupu p −=+−+
ρρ

 

∴ For values for diferent fluids and temperatures,  see the corresponding tables in the 
literature - experimentaly obtained. 

 
Compressibility and Bulk modulus of elasticity:  

Compressibility β  is a measure of the relative volume change of a fluid or solid as a response to a 
pressure (or mean stress) change:  

dp
d

dp
dV

V
ρ

ρ
β 11

+=−=      (1-8) 

The bulk modulus of elasticity is defined as reciprocal of compresibility: 

ρρβ d
dp

VdV
dpEV +=−==

1      (1-9) 

The sign (-) shows that for   ⇒   ↑p ↓V

SI units for :    N/mVE 2

∴ Liquids (incompressible fluids) have large values of .  VE

∴ For values for diferent fluids see the corresponding tablesand diagrams  in the literature 
For water  N/cm51006,2 ×=VE 2
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Velocity of sound, c:  
Associated with each state of a substance, according Laplace formula:  
 

ρρ VEddpc ==     (1-10) 
 

In case of isentropic adiabatic process of a gass:  constp
=κρ

;  
v

p

c
c

=κ  

From (1-9) ⇒ pEv κ=    ⇒   ρκpc =  
 
For liquids c is determined from experimental values of EV  ⇒ tables and dyagrams in the literature. 
 
Vapor pressure, pv - cavitation presuure, pk:  

Vapor pressure is the pressure of a vapor in equilibrium with its non-vapor phases.  
All solids and liquids have a tendency to evaporate to a gaseous form, and all gases have a tendency 
to condense back.  
At any given temperature,  for a particular substance, there is a partial pressure at which the gas of 
that substance is in dynamic equilibrium with its liquid or solid forms. This is the vapor pressure of 
that substance at that temperature. 
 
Cavitation (explained later on) = rapid (almost "explosive") change of of phase from liquid to 
vapor 
∴  )     ⇒   see the corresponding tables and dyagrams  in the  ,( Tliquidtypefpp vk =≈

       literature - experimentaly obtained. 

Surface energy and surface tension, σ:  
At boundaries between gas and liquid phases or between different immiscible liquids, molecular 
attraction introduces forces which cause the interface to behave like a membrane under tension.  

Surface tension is an effect within the surface layer of a liquid that causes that layer to behave as an 
elastic sheet.  

This effect allows insects (such as the water strider) to walk on water. It allows small metal objects 
such as needles, razor blades, or foil fragments to float on the surface of water, and causes capillary 
action.  

force × distance work force 
σ = area = area = length 

 
 

Equations of state 

An equation of state is a thermodynamic equation describing the state of matter under a given set of 
physical conditions = Dependance between the fluid properties. 
Liquids 
The equations of state for most physical substances are complex and are expressible in simple forms 
only for limited ranges of conditions.  
True for liquids as well! 
⇒ use of tables and graphical curves obtained mostly experimentaly ⇒ empirical formula 
Important:  
For wide range of pressures liquids are nearly incompressible. 
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Gases 
For real gases and vapors ⇒ use of tables and graphical curves obtained mostly experimentaly ⇒ 
empirical formula.  
For gases in a highly superheated condition a useful aproximation is the theoretical equation of 
state for the perfect (ideal gas) - Clapeyron's equation:  
 

RTp
=

ρ
      (1-11) 

An ideal gas or perfect gas is a hypothetical gas consisting of identical particles of zero volume, 
with no intermolecular forces. 

T - absolute temperature in K (or 0C);  p -  absolute pressure in N/m2; ρ - density in kg/m3; 

R - gas constant in J/kgK (or J/kg0C) - for dry air R = 287 J/kg0C.  
 
For ideal gas ⇒ 

RRcc vp 1−
=+=

κ
κ ; 

1−
=

κ
Rcv ; 

v

p

c
c

=κ   (1-12) 

pc = specific heat at constant pressure;  

vc  = specific heat at constant volume.  
 
∴ For values for diferent fluids see the corresponding tables in the literature 

 
Change of state proceses for gasses 

Isothermal process:  

constRTp
==

ρ
     (1-13) 

Constant pressure process: 
constRTp == ρ       (1-14) 

 

Isentropic adiabatic process: 
Zero heat transfer (adiabatic proces) and no friction (isentropic) 

constp
=κρ

       (1-15) 

v

p

c
c

=κ  - adiabatic constant for the gas.  

∴ Additional equations can be obtained ⇒ see basic laws of Thermodynamics.  
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1.4. Forces on a fluid element and pressure 

 
Different kinds of forces acting on a fluid element with mass m in a volum V.  
For example: 
 
- Mass (or volume) force - a force proportional to the mass of the fluid element ("body force"):  

Gravity force (wight):    mgG =

Inertial force:  maFi =

Centrifugal force:   et.c rmFc
2ω=

In general, a force per unit mass is defined:       R
r

 in  N/kg - force per unit mass = "body force" 

∴ The force on a mass dm is:  

RdVRdmRd
rrr

ρ==        (1-16) 

 

- Force proportional to an area (area or surface force) - see Fig. 1.2:  

)(dAfTdPdSd =+=
rrr

      (1-17) 

Td
r

- friction force  

0=Td
r

 in case of ideal fluid and in case of  fluid at rest.  In that case PdSd
rr

=  

pFPd
rr

=  - pressure force 

⇒ pressure p:  

A
F

dA
dPp p==         (1-18) 

∴  The pressure is a scalar property 

  

Fig. 1-2: Forces proportional to an area 
 

-  Other forces acting in fluid flows:  viscous forces, elastic forces, surface tension forces etc. 
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2. Statics of fluids 
 

2.1. Basic laws - hydrostatic pressure, Euler's equation of equilibrium 
 
Hydrostatic pressure 
 
The pressure exists in both cases of fluid at rest and flowing fluid ⇒ differences of the pressure 
characteristics.  

In case of fluid at rest ⇒ hydrostatic pressure. 
The same term (hydro) for compressible and incompressible fluid.   
 
Two important characteristics of hydrostatic pressure:  
- it is always perpendicular to each surface in the fluid volume - which is obvious following the 

pressure definition;  

- Its magnitude (value) doesn’t change if that surface changes its position ⇒ the pressure value 
in one point is the same in all directions! 

⇒  proof according Fig. 2.1: 
From the equilibrium of the surface forces on the supposed fluid tetrahedral element (with one 
corner at point M) in the directions x,y,z ⇒:  

0cos =− αpdAdAp xx  

0cos =− βpdAdAp yy  

0cos =− γpdAdAp zz  
 
Since from Fig. 2.1:       αcosdAdAx = ;     βcosdAdAy = ;      γcosdAdAz =   

⇒    pppp zyx ===       (2-1) 

 

Fig. 2.1: Equilibrium of surface forces    Fig. 2.2: Elementary pressure force 
  on a infinitesimal fluid element   
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The elementary pressure force on an elementary surface Ad
r

 (Fig. 2.2) as a vector is defined as:  

ApdPdFd p

rrr
−==       (2-2) 

⇒ The resultant pressure force over a certain surface A will be:  

∫−=
A

p ApdF
rr

       (2-3) 

 
 
Euler's equation of equilibrium  

Elementary (infinitesimal) volume in the point M - dxdydzdV =  - Fig. 2.3. 

Acting forces on the volume:  

- Pressure forces P
r

  

- Elementary body force  in N/kg R
r

kZjYiXR
rrrr

++=        (2-3) 

X,Y and Z - components of  in x, y and z directions.  R
r

On the mass dm the total body force is:  

dxdydzRdmR ρ
rr

=  

in the "y" direction ⇒              YdxdydzdmY ρ=  

 

 

Fig. 2-3: Equilibrium of forces on an elementary volume 
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Equilibrium condition:   0=+ RP
rr

      (2-4) 

⇒ 3 scalar equations from the vector equation (2-4):  

• in the "y" direction  - see Fig 2.3: 

0=+− Ydxdydzdxdzpdxdzp BA ρ      (2-5) 

From Fig. 2.3 ⇒  

In point M the pressure is:   ),,( zyxpp =

in point A:  
22
dz

z
pdx

x
pppA ∂

∂
+

∂
∂

+=  

in point B:  
22
dz

z
pdx

x
pdy

y
pppB ∂

∂
+

∂
∂

+
∂
∂

+=  

∴ The equation (2-5) is easily transformed into:  

                        dy
y
pYdy
∂
∂

=ρ       (2-5a) 

• in the "x" direction:  dx
x
pXdx
∂
∂

=ρ       (2-5b) 

• in the "z" direction:  dz
z
pZdz
∂
∂

=ρ       (2-5c) 

The equations (2-5a) to (2-5c) are known as Euler's equation of equilibrium in scalar form 
 
The sum of the equations (2-5a) + (2-5b) + (2-5c) gives:  

dz
z
pdy

y
pdx

x
pZdzYdyXdx

∂
∂

+
∂
∂

+
∂
∂

=++ )(ρ     (2-6) 

where 

dz
z
pdy

y
pdx

x
pdp

∂
∂

+
∂
∂

+
∂
∂

=       (2-7) 

is total pressure increase from point M(x,y,z) to point N(x+dx,y+dy,z+dz). 

⇒ 

dpZdzYdyXdx =++ )(ρ       (2-8)  

(2-8) is the fundamental equation of  Static of fluids 

 

Force potential. Equipotential surfaces 

Elementary body force ),,( zyxRR
rr

=  ⇒ ),,( zyxXX = ; ),,( zyxYY = ;  ),,( zyxZZ =

Barotropic fluid ⇒ explicit function )( pρρ =  ⇒ (2-8) transforms into;  

)( p
dpZdzYdyXdx
ρ

=++       (2-9) 
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)( p
dpdP
ρ

=       (2-10) 

∫= )( p
dpP
ρ

 - generalized pressure. 

x
p

x
P

∂
∂

=
∂
∂

ρ
1 ; 

y
p

y
P

∂
∂

=
∂
∂

ρ
1 ; 

z
p

z
P

∂
∂

=
∂
∂

ρ
1  

∴ (2-9) is transformed into:  

dPZdzYdyXdx =++      (2-11) 

(2-11) can be integrated only if the left side is also a total differential of certain scalar function:  

dz
z
Udy

y
Udx

x
UdUZdzYdyXdx

∂
∂

+
∂
∂

+
∂
∂

==++     (2-12) 

x
UX
∂
∂

= ; 
y
UY
∂
∂

= ; 
z
UZ
∂
∂

=   -  components of the resultant body force ),,( zyxRR
rr

=  

 
),,( zyxUU =  - potential of the force, or potential function.  

 
⇒ (2-8) is transformed into:  

dpdz
z
Udy

y
Udx

x
U

=
∂
∂

+
∂
∂

+
∂
∂ )(ρ      (2-13) 

dpdU =ρ       (2-13a) 
 

Equipotential surface = surface on which 0== dpdUρ   ⇒  0=dU
 
By integration it is obtained:    

constzyxUU == ),,( ;   constzyxpp == ),,(  on a equipotential surface 
 
 

2.2. Equilibrium in gravity field 
 
Fluid element at rest in a gravity field ⇒ only gravity force as  G=mg 
 
⇒ the only body force is in the "z" direction:  

0== YX ; g
z
UZ −=
∂
∂

=   N/kg 

 
∴ (2-13) is transformed into: 

dpgdzZdzYdyXdx =−=++ ρρ )(  i.e. 

dzgdzdp γρ −=−=      (2-14) 
 

The equation (2-14) = fundamental equation of equilibrium of fluid at rest in a gravity field. 
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Since ; and 0== YX g
z
UZ −=
∂
∂

=  ⇒  g
dz
dU

−=  

⇒   ∫ +−=+−= 00 UgzUgdzU      (2-15) 
 

The equipotential surfaces (with ;   constU = constp = )  in this case are:  

constUgzU =+−= 0  

⇒  constz =       (2-16) 
 

∴ The equipotential surfaces in this case are surfaces parallel to the horizon. 
 
The integration of the differential equation (2-14), also gives:  

∫ ∫ ∫ ==−=−=
p

p

z

z

z

z

z

z

dzgdzdzppdp
0 0

0 0

0 ργγ ∫    (2-17) 

The pressure difference is equal to the weight of the fluid column between the surfaces "z0" and "z". 
 
 
Incompressible fluid in gravity field 

const=ρ ; constg == ργ  
 

⇒ (2-17) transforms into:  

∫ −=−=−=−
z

z

zzgzzdzpp
0

)()( 000 ργγ    (2-18) 

∴ The pressure at the "z" level will be:  

ghphpp ργ +=+= 00      (2-19) 

zzh −= 0  =  height of the liquid column between points M0 and M (see Fig. 2.6). 

If the level z0 is the free surface to the atmosphere (see Fig. 2.6) ⇒ 

app =0  =  atmospheric (barometric) pressure;  

∴ The pressure at the level "z" (point M) will be:  
 

ghphpp aa ργ +=+=      (2-20) 
where:  

p - absolute pressure 

If                      ⇒  app > am ppp −=      (2-21) 

 pm - over-pressure (gauge pressure) 

If                      ⇒  app < ppp av −=      (2-22) 

pv - vacuum (sub-pressure or negative gauge pressure).  
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Fig. 2.6:  Liquid with free surface in gravity field  

 
 
 
 
Hydrostatic manometers 
 
Interconnected vessels ⇒ see Fig. 2.7 
 

 

Fig. 2.7:  Interconnected vessels 
 
Every horizontal plane is a equipotential surface 
The points A and B are laying on the same horizontal plane = equipotential surface 

⇒  BA pp =

From the equation (2-19) ⇒ 
11 hppA γ+=    and 22 hppB γ+=  

 Since  ⇒ BA pp =
ghhhhpp ργγ ==−=− )( 2112      (2-23) 

Special case:    (for example  21 pp = appp == 21 ) ⇒ 0=h  

⇒ ∴ In open interconnected vessels the free surfaces are laying in one horizontal plane 
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Hydrostatic manometer, U-tube 
 
Special case of interconnected vessels  = an instrument for measurement of gauge pressure pm

From Fig. 2.8 ⇒ pp =2     and     app =1  ⇒ 

ghhppp am ργ ==−=       (2-24) 

 
         a)    b)  

Fig. 2.8:  Hydrostatic manometer; a) U-tube and b) Vessel manometer 

The hydrostatic manometer can be used for vacuum measurement as well (vacuum-meter):  

⇒   ⇒   app < 0<h  -   the column level moves in the opposite direction (downwards). 

ghppp av ρ=−=  

A variety construction of U-tube is the well-type (single-leg) manometer (see Fig. 2.8b)). 
 
Barometer 

A variety of the single-leg manometer = instrument for measurement of atmospheric (barometric) 
pressure pa , see Fig. 2.9:   

 
Fig. 2.9:  Barometer Principle 

In this case:  

01 =p  - the air is completely evacuated from the tube (leg).  

app =2  - the pressure in the well is atmospheric (barometric) pressure. 

aaa ghhhppp ργγ ====− 12      (2-25) 

On the sea level at normal conditions and temperature 15=t  0C :    

⇒    N/m4101325,10 ×=ap 2 = 1,01325 bar = 1 atm  = standard (physical) atmosphere.  
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⇒  γ/aa ph =  = 760 mmHg  -  barometric liquid is mercury with   N/m4103,13 ×== gργ 3 ;  
⇒  γ/aa ph =  = 10,33 mWC  -  barometric liquid is water column with 9810== gργ  N/m3.  

Pascal's Law 

For equilibrium of liquid at rest in gravity field in two interconnected vessels (Fig. 2.10) ⇒ 

)( BAAB hhpp −=− γ        (2-26) 

If in point A,  pA is increased with value ApΔ  (e.g. 2
14

D
PpA π

=Δ  , produced by the force  on the 

piston, P1 )  ⇒  in the point B   ?=Δ Bp

For the fluid at rest in gravity field ⇒ 

)()()( BAAABB hhpppp −=Δ+−Δ+ γ       (2-27) 

From the equations (2-26) and (2-27)  ⇒  

BA pp Δ=Δ        (2-28) 

∴ the Law of Blaise Pascal:  

The pressure change in one point in liquid at rest in gravity field is transferred equally in all liquid 
points (on the container wals as wel). 

 
Fig. 2.10: Ilustration of the Pascal's Law 

 

Example of aplication - Hydraulic press (Fig. 2.11):  

If the acting force on the piston K2 is P
b
aP =2   

⇒  2
2

2
4
d
Pp

π
=Δ  

According Pascal's Law ⇒ the pressure on the piston K1,   21 pp Δ=Δ  

⇒   P
b
a

dd
P

D
Pp 22

2
2
1

1
444

πππ
===Δ  

⇒     P
b
a

d
DP

2

1 ⎟
⎠
⎞

⎜
⎝
⎛=  
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∴  Depending the ratios  D/d and a/b, higher force P1 can be performed with smaller force P 
acting on the arm.  

 
Fig. 2.11: Ilustration of a hydraulic press 

 
Relative equilibrium of fluid 
Acting forces on a fluid in rest: Gravity forces and other Body forces 

In case of gravity forces only ⇒ the free surface is horizontal (normal to the gravity force).  

In case of relative equilibrium (e.g. liquid at rest in moving container) ⇒ gravity forces, inertial 
forces, centrifugal forces etc).  

Example: Translation of a liquid container 

- The container has a linear movement with constant velocity ⇒ the free surface is also 
horizontal; since the gravity force is acting only.  

- The container has a linear accelerated movement with constant acceleration  (see 
Fig. 2.12):  

consta =

two forces are acting:  mgG =  - gravity force;  and  maFi −=  - inertial force.  

⇒  The free surface is normal to the resultant force  (see Fig. 2.12).  ,maFR =

∴  The equipotential surfaces as well as the free surface are normal to the resultant force FR.   
 
If the liquid will oscillate in the container (the free surface will oscillate too).  consta ≠
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Fig. 2.12:  Container with linear movement with constant acceleration 

The equations of the equipotential surfaces (with p = const) can be obtained analytically from the 
fundamental equation of statics of fluids (2-8):  

dpZdzYdyXdx =++ )(ρ       (2-8)  
From Fig. 2.12 ⇒  

0=xa ; αcosaa y −= ; αsinaaz −=  

0=−= xaX ;     αcosaaY y =−= ;    gagaZ z −=−−= αsin  

For equipotential surfaces  in the equation (2-8) ⇒:  0=dp

⇒    0)sin(cos =−+ dzgadya αα     (2-29) 

The integrating of (2-29) gives:  
        Czgaya =−+ )sin(cos αα      (2-30) 

At the free surface (Fig. 2.12),  ⇒  0== zy 0=C , from (2-30) ⇒ 

0)sin(cos =−+ zgaya αα          (2-31) 

∴ The free surface is a plane with an angle toward the horizontal obtained from:  

α
αγ

sin
costan
−

=
g
a      (2-32) 

The pressure change is obtained from (2-8):  

⇒       [ ] dpdzgadya =−+ )sin(cos ααρ     (2-33) 

The integrating gives:  
[ ] 1)sin(cos Cpzgaya +=−+ ααρ  

At the coordinates beginning point at the free surface:  0== zy ,  and app =      ⇒    apC −=1  

⇒                     [ ] apzgayap +−+= )sin(cos ααρ          (2-34) 
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Example: Rotation of a liquid container around vertical axis 

Rotation of a container with const=ω ⇒ rotation of the liquid together with the container as a 
whole, as on the Fig 2.13 

 
Fig. 2.13:  Rotation of a liquid container around vertical axis 

⇒     The liquid is in relative rest (equilibrium)  

⇒    Acting forces per unit mass:     gZ −= ,   2ωrFc =

⇒ Forces per unit mass in x and y direction:  

xrFX c
22 coscos ωαωα === ;  yrsiFY c

22sin ωαωα ===

For equipotential surfaces  in the equation (2-8) ⇒:  0=dp

022 =−+ gdzydyxdx ωω  
The integrating gives:  

( ) Cgzyx =−+ 222

2
1ω  

At the coordinates beginning point at the free surface:  0=== zyx ,  ⇒  0=C

⇒  ( ) 0
2
1 222 =−+ gzyxω   ⇒ 2

2

2
r

g
z ω
=     (2-35) 

which is a rotating paraboloid. 

The pressure change can be also obtained from the equation (2-8) ⇒ 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+=⎥⎦

⎤
⎢⎣
⎡ −++= gzrpgzyxpp aa

22222

2
1

2
1 ωρω     (2-36) 
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Pressure force on a flat and curved surface 

Pressure force on a flat surface 

In general the pressure force: 

∫−=
A

ApdP        (2-37) 

On a flat surface Fig. 2.14: 

  
Fig. 2.14: Pressure force on a flat surface 

 
Elementary force dP:  

( ) gzdAdAppdP a ρ=−=     (2-38) 

⇒         (2-39) ∫=
A

zdAgP ρ

The integral is the static moment of the surface A related to the free surface.  

S = center of mass (gravity) 

D = acting point of the pressure force; SD ≠  

⇒   ∫=
A

S zdAAz

⇒      SS AzgAzP γρ ==      (2-40) 

Coordinates of D:  

From the equations:  and  (from the theoreme of Varignon),  ∫=
A

D xdPPx ∫=
A

D ydPPy

⇒      ∫=
A

DS xydAxAy ∫=
A

DS dAyyAy 2

⇒   
S

xy
D Ay

J
x =    

S

x
D Ay

Jy =      (2-41) 

Jxy - centrifugal moment of inertia related to x and y axis; 

Jx - centrifugal moment of inertia related to x axis. 
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⇒     
S

xo
SD Ay

Jyye =−=      (2-42) 

2
Sxox AyJJ +=   - from Steiner's theorem 

Jxo  - proper moment of inertia (moment of inertia about the centre of gravity S), 

 

Example:  Fig. 2.15  ( zs zy = , concerning eq. (2-40)) 

-  for rectangular cover: 

 
2
ayy OS +=  ;  ⎟

⎠
⎞

⎜
⎝
⎛ += OyagabP

2
ρ ;  

)2(6

2

Oya
ae
+

=  

-  for circular cover: 

 
2
dyy OS += ;  ⎟

⎠
⎞

⎜
⎝
⎛ += OydgdP

24
1 2πρ ;  

)
2

(16

2

Oyd
de
+

=  

  
Fig. 2.15: Example - pressure force on a flat surface 

 
Horizontal and vertical components of a  pressure force - Fig. 2.16:  

αsinPPH = ;  gVPPV ρα == cos      (2-43) 

AzP Sγ= ; αγ cosAzP SV = ; αcosAzV S= ; gργ =  

V = volume of the liquid column acting on the surface A (see Fig. 2-16). 

 

  
Fig. 2.16: Horizontal and vertical components of a pressure force  

 
 

A. Nospal 2.  Statics of fluids  



DEREC   Fluid Mechanics - Lectures         26

Pressure force on horizontal bottom - Fig. 2.17: 

hpp a γ=−  - over-pressure on any point of the bottom. 

⇒  ∫ ∫ ====
A A

V VhAdAhpdAP γγγ

  
Fig. 2.17: Pressure force on horizontal bottom 

 

Pressure force on a curved surface - Fig. 2.18:, Fig. 2.19:, Fig. 2.21: 
 

      xx gzdAgzdAdPdP ραρα === coscos    

yy gzdAgzdAdPdP ρβρβ === coscos     (2-44) 

       zz gzdAgzdAdPdP ργργ === coscos  

⇒ 

           zSx
Ax

xx AgzzdAgP ρρ ∫ ==

ySy
Ay

xy AgzzdAgP ρρ ∫ ==      (2-45) 

        gVdVgzdAgP
VAz

zz ρρρ ∫∫ ===

V = volume of the liquid column acting on the curved surface A (see Fig. 2-21). 

Pz  - weight of the liquid column acting on the curved surface.  

  
   Fig. 2.18:    Fig. 2.19:  
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Fig. 2.21:  

 
Buoyant forces 

Buoyancy is the upward force on an object produced by the surrounding fluid (i.e., a liquid or a 
gas) in which it is fully or partially immersed, due to the pressure difference of the fluid between the 
top and bottom of the object.  

The net upward buoyancy force is equal to the magnitude of the weight of fluid displaced by the 
body. This force enables the object to float or at least to seem lighter. Buoyancy is important for 
many vehicles such as boats, ships, balloons, and airships. 

Acting forces in x dirrection (fig. 2.23):  

xxx gzdAdPdP ρ== 21  

Acting forces in vertical z dirrection (fig. 2.23): 

gdVdAzzgdPdPdP zzz ρρ =−=−= )( 1212  

dV - volume of the elementary vertical cylinder. 

⇒ the buoyant force or Archimed's force Pz: 

gVVdVP
V

z ργγ === ∫      (2-46) 

  

Fig. 2.23: Acting forces on an immersed body 

 

 

A. Nospal 2.  Statics of fluids  



DEREC   Fluid Mechanics - Lectures         28

Equation of floating - see Fig. 2.24 and Fig. 2.25 

G - proper weight (gravitational force) of the body.  
S - acting point of G (center of gravity). 
D - acting point of Pz. 

∴  The body is floating (Fig. 2.24b) if:  

•  GPz =
• the points S and D are on a same vertical line. 

∴ If S and D are not on a same vertical line, the body rotates until S and D reach the same line. 
    (see Fig. 2.25).  

∴ If , the body is sinking downwards.  zPG >

∴ If , the body is moving upwards until reaches the free surface (floating condition).  zPG <

 
   Fig. 2.24:     Fig. 2.25 

 
 
Example - prismatic body (Fig. 2.26) 

 -  Principle of areometer (hydrometer) - instrument for measuring density/specific weight of a 
fluid.  

    AhAH FS γγ =   ⇒  HHh
F

S

F

S

ρ
ρ

γ
γ

==  ⇒  
h
HS

F
ρρ =  

    Fρ - density of the fluid;   Sρ - density of the body 

 

     

       Fig. 2.26 
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3. Kinematics of flow 
 

3.1. Flow field - velocity field 
 
Fluid flow - movement of the fluid particles.  
Every particle in the fluid has different properties - difference with solid body movement. 

Flow field - change of fluid flow properties (properties in every point) in space and time. 
 
Velocity and acceleration of a fluid particle are vectors (see Fig.3.1). 
 
∴ Velocity field - a vector field, which is used to mathematically describe the motion of the fluid. 
 

 
Fig.3.1: Examples of flow field 

 
⇒ two approaches for flow field defining - Lagrangian and Eulerian approach: 
 
Lagrangian approach:  
 
A point in the space determined with a position vector Lr  corresponds to every fluid particle with 
mass dm at certain time 0=t . 
 
∴  The position of the fluid particle r  is defined as:  

),( trrr L=       (3-1) 

Lr
r - position vector, Fig. 3.1 
 
∴ The coordinates of particles are represented as functions of time! 

 
With application of the Newton's equation to the fluid particle ⇒ Lagrangian differential equations. 
⇒ very difficult solving ⇒ the application is not practical. 
The description of the entire flow field is essentially an instantaneous picture of the velocity and 
acceleration of every particle.  
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Eulerian approach:  
 
Approach with significant advantage.  
 
∴  The particle velocities at various points are given as functions of time: 
 

),( trvv =       (3-2) 
 

Similar expressions for any fluid flow property can be defined; e.g.:  
 

),( trff =        (3-3) 
 

 ∴ If the functions as (3-3) are defined for all fluid flow properties ⇒ the fluid flow field is 
completely solved.  

 

Steady (stationary) flow:  0=
∂
∂

t
v  ⇒  )(rvv =  

Unsteady flow:  0≠
∂
∂

t
v  

 
 

3.2. Velocity, streamlines and path lines, stream function, stream tube, velocity gradient 
and shear 

 
Velocity v  is defined as a vector dependent of the position vector r  of a point (particle) in the flow 
space and time - see Fig. 3.1 and Fig. 3.2:  
 

),( trvv =         (3-4) 
 

In 3-D Cartesian (Descartes) coordinate system - see  Fig. 3.2 and Fig. 3.3a:  
 

kvjvivk
dt
dzj

dt
dyi

dt
dx

dt
sd

dt
rdv zyx ++=++===     (3-5) 

kdzjdyidxrdsd ++==  

s - length along stream line (path);  - elementary path sdr

velocity components:           
dt
dxvx = ;  

dt
dyvy = ;  

dt
dzvz =  

velocity intensity:  222
zyx vvvv ++=       (3-6) 

In polar coordinate system - see  Fig. 3.3a): 
θcosrx = ; θsinry =      (3-7) 

θθ sincos yxr vvv += ;   θθθ sincos xy vvv −=     (3-8a) 
θθ θ sincos vvv rx −= ;   θθθ sincos ry vvv +=     (3-8b) 
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The axisymmetric flow ( Fig. 3.3b) is defined only with the components the components  and :  rv zv

⇒            θcosrx vv = ;  θsinry vv =  ;  zz vv =      (3-9) 
 

 
Fig. 3.2: Velocity vector 

 

 
Fig. 3.3: Cartesian versus polar (cylindrical) system and axisymmetric flow 

 
Streamlines versus pathlines: 
Streamlines are a family of curves that are instantaneously tangent to the velocity vector of the flow 
- see Fig. 3.4. 
Streamline - in every point the dirrection of the velocity is identical with the tangent line in that 
point: 

⇒  dsv λ=        (3-10) 

   
   a)     b) 

Fig. 3.4: Streamlines and path lines 
since:    kvjvivv zyx ++=  ⇒ 

λ
1

===
zyx v

dz
v
dy

v
dx       (3-11) 
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For 2-D flow  (Fig. 3.5) ⇒ 

αtan==
x

y

v
v

dx
dy       (3-12) 

 
Fig. 3.5: Slope of a streamline 

 
Pathlines are the trajectory that a fluid particle would make as it moves around with the flow.  
In unsteady flow, the fluid particle will not, in general, remain on the same stream line (see Fig. 3.4b). 

∴   In steady motion streamlines are the same as pathlines.  
 
Stream function 
For 2-D flows streamlines definition a stream function ),( yxψ  is defined!  
The velocity components are defined with this function as:  

y
vx ∂

∂
=

ψ ; 
x

vy ∂
∂

−=
ψ      (3-13) 

⇒ The differential equation for the stream line (3-12) becomes:  

0=− dxvdyv yx          (3-14a) 

0==
∂
∂

+
∂
∂ ψψψ ddy

y
dx

x
      (3-14b) 

⇒ along a stream line   constyx =),(ψ      (3-15) 
         
Stream tube 

A stream tube or stream filament is a small imaginary tube or "conduit" bounded by streamlines.  
Because the streamlines are tangent to the flow velocity, fluid that is inside a stream tube must 
remain forever within that same stream tube (see Fig. 3.6).  

 
Fig. 3.6: Stream tube 
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Velocity gradients and shear 

The velocity change in the vicinity of a point can be expressed in terms of the partial derivatives of 
the four independent variables (x,y,z,t).  

⇒ velocity change in the x-direction:  

 dz
z
vdy

y
vdx

x
vdt

t
vdv xxxx

x ∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
=     (3-16) 

Velocity changes in y and z directions can be expressed with similar expressions to (3-16).  
 
The rate of change of the velocity in the x-direction (total derivative) is:  

z
vv

y
vv

x
vv

t
v

dt
dv x

z
x

y
x

x
xx

∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
=       (3-17) 

z
v

y
v

x
v

t
v xxxx

∂
∂

∂
∂

∂
∂

∂
∂ ,,,  …… -  velocity gradients 

t
vx

∂
∂  =  "local" change;  

z
vv

y
vv

x
vv x

z
x

y
x

x ∂
∂

+
∂
∂

+
∂
∂   =  "convective" change.  

Any other property of the fluid or its motion can be treated in this way. For example, the total rate 
of  density change for for compressible fluid:  

z
v

y
v

x
v

tdt
d

zyx ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
ρρρρρ   

⇒  acceleration components:  

z
vv

y
vv

x
vv

t
v

dt
dva x

z
x

y
x

x
xx

x ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

==  

z
v

v
y
v

v
x
v

v
t

v
dt

dv
a y

z
y

y
y

x
yy

y ∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
==           (3-18) 

z
vv

y
vv

x
vv

t
v

dt
dva z

z
z

y
z

x
zz

z ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

==  

⇒ steady flow - if all local accelerations are zero.  
⇒ uniform flow - if all convective accelerations are zero. 
 
Velocity gradients are also measures for rate of deformation!  
For example the shear stress (equation (1-6) in Chapter 1.3): 

dn
dvμτ =  

 
3.3. Volume flow, flux and circulation 

 
The volumetric flow rate, or volume flow rate, is the volume of fluid which passes through a given 
surface per unit time (for example [m3/s] in SI units) - see Fig. 3.7. 

For steady flow, from Fig. 3.7 ⇒   αcosdAdsdAdhdV == ;        since vdtds =     ⇒ 

⇒ elementary volume flow rate:        ( )AdvdAvvdA
dt
dVdQ n ,cos ==== α           (3-19) 

( )Adv,  = scalar product of  v  and Ad .  
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The entire volume flow rate through the given area A see Fig. 3.7 will be:  

( ) αcos, AvAdvdQQ
A A

=== ∫ ∫    (3-20) 

If  the flow is uniform and  perpendicular to the area A ( ) - i.e. 090=α Av ⊥ , and  ⇒ constv =

∫ ==
A

vAdAvQ     (3-20a) 

Mass flow rate is the movement of mass per time. Its unit are [kg/s] in SI units: 

( ) QAdvQm
A

m ρρ === ∫ ,&            (3-21) 

 
Fig. 3.7: Flow rate 

Concerning Fig. 3.7:    
Ad
r

 - elementary area which moves with a velocity vr  ⇒  after time dt , the fluid particles on dA 
will make a path of ds  ⇒  αcosdAdsdAdhdV ==  

 
Other properties connected to the velocity change can be defined:  
 
Velocity flux (flow through the curve L ) - see Fig. 3.8:  

( )∫=Φ
B

A

dlv,       (3-22) 

Velocity circulation (along the closed curve L) - see Fig. 3.8:   

( )∫=Γ
L

dlv,       (3-23) 

 

 
Fig. 3.8:Velocity flux and circulation  

 
 
 
 

A. Nospal 3.  Kinematics of flow  



DEREC   Fluid Mechanics - Lectures         35

 
3.4. Continuity equations 

 
Flow through a prismatic flow element - Fig. 3.16 ⇒  

-  velocity in the point M: kvjvivv zyx ++=   

-  velocity in "y" direction in the point A:  
22
dz

z
vdx

x
v

vv yy
yA ∂

∂
+

∂
∂

+=  

-  velocity in "y" direction in the point B: 
22
dz

z
vdx

x
v

dy
y
v

vv yyy
yB ∂

∂
+

∂
∂

+
∂
∂

+=  

The rate of volume flow change in "y" direction, for incompressible fluid flow const=ρ , is:  

( ) dV
y
v

dxdydz
y
v

dxdzvvQ yy
BAy ∂

∂
−=

∂
∂

−=−=δ     (3-24a) 

On the same manner in the "x" and "z" directions ⇒ 

dV
x
vQ x

x ∂
∂

−=δ  ; dV
z
vQ z

z ∂
∂

−=δ      (3-24b) 

For compressible fluid flow, const≠ρ , the rate of mass flow changes Qmx, Qmy, Qmz   have to be 
treated ⇒:     
 

( )dV
x
vQ x

mx ∂
∂

−=
ρδ  ;  

( )
dV

y
v

Q y
my ∂

∂
−=

ρ
δ ;  ( ) dV

z
vQ z

mz ∂
∂

−=
ρδ     (3-25) 

 
Fig. 3.16: Flow through a prismatic element 

 
The total excess of the volume flow rate Qδ  will be: 

vdVdV
z
v

y
v

x
vQQQQ zyx

zyx div−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=++= δδδδ    (3-26) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=
z
v

y
v

x
vv zyxdiv  -  divergence of v .  

∴ The total excess of the mass flow rate mQδ (for compressible fluid) - excess of mass passing into 
the element per unit time: 

( ) ( ) ( ) ( )vdVdV
z
v

y
v

x
vQ zyx

m ρρρρδ div−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+
∂

∂
−=      (3-27) 
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The principle of conservation of matter ⇒  ( ) ( )
t

dVdV
t

dm
t

Qm ∂
∂

=
∂
∂

=
∂
∂

=
ρρδ    

Since dV is independent of time (the control volum dV is fixed) ⇒ The general continuity equation 
for unsteady flow of compressible fluid :  

( ) ( ) ( ) 0=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

z
v

y
v

x
v

t
zyx ρρρρ       (3-28) 

For steady compressible fluid  flow,  0=
∂
∂

t
ρ  ⇒` 

( ) ( ) ( ) 0=
∂

∂
+

∂
∂

+
∂

∂
z
v

y
v

x
v zyx ρρρ       (3-29) 

∴  The continuity equation for incompressible fluid flow, const=ρ :  

0=
∂
∂

+
∂
∂

+
∂
∂

z
v

y
v

x
v zyx        (3-30) 

For 2-D flow ⇒ 0=
∂
∂

+
∂
∂

y
v

x
v yx  

 
3.5. Acceleration 

 
For 3-D flow:  

kajaia
dt
vda zyx ++==      (3-31) 

Acceleration components - see (3-18):  
 

z
vv

y
vv

x
vv

t
v

dt
dva x

z
x

y
x

x
xx

x ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

==  

z
v

v
y
v

v
x
v

v
t

v
dt

dv
a y

z
y

y
y

x
yy

y ∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
==           (3-18) 

z
vv

y
vv

x
vv

t
v

dt
dva z

z
z

y
z

x
zz

z ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

==  

For one-dimensional flow: 
 
One dimensional gravity flow along a stream line "s" - see Fig. 3.17 ⇒ 

),( tsvv =  

ds
s
vdt

t
vdv

∂
∂

+
∂
∂

=      (3-32) 

 
s
vv

t
v

dt
dva

∂
∂

+
∂
∂

==       (3-33) 

where:    is the path of the fluid particle along the streamline (see Fig. 3.17).  vdtds =

For steady flow,  0=
∂
∂

t
v  ⇒ 

s
vva

∂
∂

=        (3-34) 
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Fig. 3.17:One dimensional flow along a streamline 

 
For 2-D flow: 
 

0=zv  and  0=
∂
∂
z

,  from (3-31) and (3-18) ⇒  

jaia
dt
vda yx +==        (3-35) 

y
vv

x
vv

t
v

dt
dva x

y
x

x
xx

x ∂
∂

+
∂
∂

+
∂

∂
==      (3-36a) 

y
v

v
x
v

v
t

v
dt

dv
a y

y
y

x
yy

y ∂
∂

+
∂
∂

+
∂

∂
==      (3-36b) 

For 2-D steady flow,  0=
∂

∂
=

∂
∂

=
∂
∂

t
v

t
v

t
v yx  ⇒ 

y
vv

x
vva x

y
x

xx ∂
∂

+
∂
∂

=      (3-37a) 

y
v

v
x
v

va y
y

y
xy ∂

∂
+

∂
∂

=      (3-37b) 

 
In polar coordinate system - see  Fig. 3.3 and equations (3-8) and (3-36):  
 

r
vv

r
v

r
vv

t
v

dt
dva rr

r
rr

r

2
θθ

θ
−

∂
∂

+
∂
∂

+
∂
∂

==      (3-38a) 

r
vvv

r
v

r
vv

t
v

dt
dva r

r
θθθθθθ

θ θ
+

∂
∂

+
∂
∂

+
∂

∂
==      (3-38b) 

For coordinates starting point O at the curvature center of the streamline (Fig. 3.18) ⇒ 

krr = ; ;  ⇒  0=rv θdrds k=  ; vv =θ

nr aa =  (normal acceleration);   (tangential acceleration):  taa =θ

k
n r

va
2

−=        (3-39a) 

s
vv

t
vat ∂

∂
+

∂
∂

= θ       (3-39b) 
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Fig. 3.18: Acceleration components in polar coordinates 
 
 

For steady axisymetric 2-D flow (see Fig. 3.3b and equations (3-9)):  

0=
∂
∂

t
v ;   and  0=θv 0=

∂
∂
θ

  ⇒ 

dt
dv

z
vv

r
vva rr

z
r

rr =
∂
∂

+
∂
∂

=      (3-40a) 

dt
dv

z
vv

r
vva zz

z
z

rz =
∂
∂

+
∂
∂

=       (3-40b) 

 
For flow along a rotating streamline: 
 
Important for fluid flows in turbomachinery!  

Compound (absolute) motion = relative motion + rotation (transfer motion). 

⇒  Velocities 
      w  - relative velocity - tangential to the rotating stream line (see Fig. 3.19 and Fig. 3.20)! 
      u  - peripheral velocity - normal to the radius of the rotating point (see Fig. 3.19 and Fig. 3.20)!  
      v  - absolute velocity - vector sum of w and u  (see Fig. 3.20)! 
 

∴     uwv +=       (3-41) 

[ ] 0, uRru ωω ==      (3-42) 

αωω sinrRu ==  in 
s
m - peripherial velocity intensity (see Fig. 3.19);  

nπω 2=  s-1 - angular velocity;    n - rotations/second. 

 
 

Fig. 3.19: Relative and peripherial velocity 
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const=ω  = for steady flow! 

⇒ acceleration of such absolute flow: 

koc aa
dt
wda ++=       (3-43) 

dt
wd  - relative movement acceleration;  ca  - centripetal acceleration;  koa  - Coriolis acceleration.  

[ ] [ ] [ ] [ ][ ]ruuRuRRRac ,,,,, 0000
2

0
2 ωωωωωωωωω −=−=−=−=−=   (3-44) 

000 ,, ωuR  - orts (unit vectors) of the corresponding vectors.  
 

[ ]wako ,2 ω=        (3-45) 

∴   [ ][ ] [ ]wr
dt
wda ,2,, ωωω +−=       (3-46) 

 
For 2-D flow with rotation axis normal to the flow plane ⇒ ω⊥w  ; and Rr =  (see Fig. 3.20):  

⇒    ( ) 0, =wω ;  rRRRac
22

0
2 ωωω −=−=−=    (3-47) 

 
The following scalar products are also zero:  

( ) ( ) ( ) 0,,, === sdawaa kokoko ω    (3-48) 
 

∴  From the equation (3-46) the overall acceleration is ⇒ 

[ ]wr
dt
wda ,22 ωω +−=      (3-49) 

 
The intensity of the acceleration component tangential to the streamline  (Fig. 3.20) is: Ta

( ) ( )00
2

0 ,, wrr
dt
dwwaat ω−==    (3-50) 

 

 
Fig. 3-20: Velocity and acceleration components of flow along a rotating streamline 
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4. Dynamics of inviscid (ideal) fluid flow 
 

4.1. Forces on inviscid fluid flow, Euler equations for inviscid fluid flow 
 

 Forces on inviscid fluid flow 
 
A fluid which has no resistance to shear stress is known as an ideal fluid or inviscid fluid. 

∴  The tangential surface forces are neglected; e.g. 0==
dn
dvμτ . 

Acting forces on a fluid element with dVdm ρ=  - see also chapter 1.4 (Fig. 1.2) , and chapter 2.1 
(Fig. 2.1, Fig. 2.2  & Fig. 2.3):  

Inertial forces:   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−==

dt
vddmadmJdFd i  

Inertial force per unit mass  ⇒ a
dt
vd

dm
JdJ −=−==      (4-1) 

 
Surface forces - only normal pressure forces are acting (idial fluid)⇒  components: 

dV
x
pdxdydz

x
pdPx ∂

∂
−=

∂
∂

−= ;    dV
y
pdPy ∂
∂

−=  ;   dV
z
pdPz ∂
∂

−=    (4- 2a) 

from Fig. 2-3: ⇒  dV
y
pdydxdz

y
pdxdzppdP BAy ∂

∂
−=

∂
∂

−=−= )(  

⇒ Surface forces - resultant: 

pdmdVpdVk
z
pj

y
pi

x
pPd gradgrad

ρ
−=−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=    (4-2) 

⇒ Resultant surface forces per unit mass: 

p
dm

PdP grad1
ρ

−==       (4-3) 

Elementary resultant body force R
r

 in N/kg (see equation (2-3) in chapter 2.1:  

kZjYiXR
rrrr

++=        (4-4) 

X,Y and Z - components of R
r

 in x, y and z directions. 

According the D'Alembert's principle for dynamic equilibrium ⇒ :   

0=++ RPJ  
i.e. 

0grad1
=+−− Rp

dt
vd

ρ
 

∴ Basic vector equation for inviscid (ideal) fluid flow:  

pR
dt
vd grad1

ρ
−=       (4-5) 

A. Nospal 4.  Dynamics of inviscid fluid flow  



 DEREC   Fluid Mechanics - Lectures         41 

 
 Euler's equations for inviscid fluid flow, 3-D and 2-D flows 

 
The vector equation (4-5) can be expressed in scalar form ⇒  

Components of body force ),,( zyxRR
rr

=  (chapter 2.1) - 
x
UX
∂
∂

= ;  
y
UY
∂
∂

= ; 
z
UZ
∂
∂

=   -   

⇒  Uk
z
Uj

y
Ui

x
UkZjYiXR grad=

∂
∂

+
∂
∂

+
∂
∂

=++=
rrrrrrr

    (4-7) 

Components of the inertial forces per unit mass - see equation (4-1):  

kajaiak
dt
dvj

dt
dv

i
dt
dv

dt
vda zyx

zyx ++=++==     (4-8) 

The acceleration component in the x direction - see equations (3-18):  

z
vv

y
vv

x
vv

t
v

dt
dva x

z
x

y
x

x
xx

x ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

==      (4-9) 

Similar expressions are for and  - see equations (3-18) in the chapter 3.2.  ya za
 
The components of the surface forces can be defined through the pressure gradient - see equation (4-3): 

k
z
pj

y
pi

x
pp

∂
∂

+
∂
∂

+
∂
∂

=grad        (4-10) 

 
∴ The vector equation (4-5) can be transformed into three scalar equations:  

x
p

x
U

z
vv

y
vv

x
vv

t
v

dt
dv x

z
x

y
x

x
xx

∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
ρ
1      (4-11a) 

y
p

y
U

z
v

v
y
v

v
x
v

v
t

v
dt

dv y
z

y
y

y
x

yy

∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
ρ
1      (4-11b) 

z
p

z
U

z
vv

y
vv

x
vv

t
v

dt
dv z

z
z

y
z

x
zz

∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
ρ
1      (4-11c) 

∴ and together with the continuity equation - equation (3-28):  

( ) ( ) ( ) 0=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

z
v

y
v

x
v

t
zyx ρρρρ       (4-11d) 

∴ This system of the 4 partial differential equations, (4-11a) to (4-11d), is known as Euler's 
equations for 3-D  inviscid (ideal) fluid flow.  

For barotropic fluid:    

( )pρρ = ; for example  constp
=κρ

   (4-11e) 

∴ The solution of the system of 5 governing equations (4-11a) to (4-11e) determines the 
components of the velocity, pressure and density:  

( )tzyxvv xx ,,,= ;   ( )tzyxvv yy ,,,= ; ( )tzyxvv zz ,,,= ;   ( )tzyxpp ,,,= ;   ( )tzyx ,,,ρρ =  

However, in rare cases the analytical integration of the partial differential equations is possible! 
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For steady flow ⇒  0=
∂
∂

t
vi  and 0=

∂
∂

t
ρ  (see also chapter 3.2)! 

∴   For steady 2-D flow,   and 0=zv 0=
∂
∂
z

,  ⇒  

x
p

x
U

y
vv

x
vv x

y
x

x ∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

ρ
1       (4-12a) 

y
p

y
U

y
v

v
x
v

v y
y

y
x ∂

∂
−

∂
∂

=
∂
∂

+
∂
∂

ρ
1      (4-12b) 

( ) ( )
0=

∂
∂

+
∂

∂
y
v

x
v yx ρρ             (4-12c) 

For  incompressible fluid flow,  const=ρ , ⇒ 

0=
∂
∂

+
∂
∂

y
v

x
v yx        (4-12d) 

 
 

4.2. One dimensional gravity flow - Bernnoulli's equation 
 

 One dimensional gravity flow along a stream line "s" - see Fig. 4.1a) ⇒ 

0===
∂
∂

=
∂
∂ YX

y
U

x
U ; 

dz
dU

z
UgZ =
∂
∂

=−= ; ⇒ 0UgzU +−=    (4-13) 

If z-axis is opposite to the gravity force - Fig. 4.1a), the resultant body (volume) force will be: 

UkgkZR grad=−==     (4-14) 

∴ The vector equation (4-5) will transform to :  

pUpkg
dt
vd grad1gradgrad1

ρρ
−=−−=      (4-15) 

 

             

 

 
a)     b) 

Fig. 4.1:  One dimensional gravity flow 
 
This flow is convenient for forces equilibrium analysis along the streamline and normal to it. 
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 Forces equilibrium along streamline s - tangential to s:  

Scalar product of the vector equation (4-15) and sd  ⇒ 

( ) ( sdpsdUsd
dt
vd ,grad1,grad,

ρ
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ )    (4-16) 

With the equations (3-39a and b) - chapter 3.5  (see also Fig. 4.1a) ⇒ 

0

2

000 n
r
v

s
vv

t
vnaa

dt
vd

k
nt −⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=+= ττ     (4-17) 

The members of the equation (4-16) become:  

ds
s
vv

t
vdsasd

dt
vd

t ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
,     (4-18a) 

( ) ss gdzds
s
zgds

s
UdUsdU −=

∂
∂

−=
∂
∂

==,grad    (4-18b) 

( ) ds
s
pdpsdp s ∂
∂

==
ρρρ
11,grad1      (4-18c) 

 
With the obtained expressions (4-18), the equation (4-16) is transformed to:  
 

01
=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ ds

s
pds

s
zgds

s
vvds

t
v

ρ
 ,   (4-19) 

wich, for barotropic fluid )( pρρ = , can be writen as:  

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

∂
∂

∫
s

dpgzvdds
t
v

ρ
   (4-19a) 

∴ The integration of the equation (4-19a) along the streamline gives the Bernoulli equation for  
unsteady inviscid compressible fluid flow along a streamline: 

constdpgzvds
t
vs

=+++
∂
∂

∫∫ ρ2

2

0

   (4-20) 

∴ Obviously the Bernoulli equation for incompressible flow ( const=ρ ) is: 

constdpgzvds
t
vs

=+++
∂
∂
∫ ρ2

2

0

    (4-21) 

⇒ Bernoulli equation for steady inviscid compressible fluid flow: 

constdpgzv
=++ ∫ ρ2

2

     (4-22) 

⇒ Bernoulli equation for steady inviscid incompressible fluid flow: 

constpgzv
=++

ρ2

2

      (4-23) 
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⇒ the well-known Bernoulli equation for steady inviscid incompressible fluid flow (no energy 
losses): 

constpz
g

v
=++

γ2

2

      (4-24) 

where:  gργ =  

∴ The Bernoulli equation is a form of the law for conservation of energy (see Fig. 4.2) !  

- In the equation (4-23) every member presents a specific energy in  
kg
J

kg
Nm

=  ;  

- In the equation (4-24) every member presents a specific energy in  m
N

Nm
=  

g
v
2

2

 - kinetic energy;     - position or potential energy;   z
γ
p  - pressure energy (see Fig. 4.2). 

⇒  constpz
g

vpz
g

v
=++=++

γγ
2

2

2
21

1

2
1

22
     (4-25) 

 

 
Fig. 4.2: Bernoulli equation as law for conservation of energy 

 
 

 Forces equilibrium along the normal "n" - see Fig. 4.1a ⇒ : 
 

-  inertial force: dn
r
vdnand

dt
vd

k
n

2

, −==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 

-  body (volume) forces:  ( ) ngdzdn
n
zgndkg −=
∂
∂

−=− ,  

-  pressure forces: dn
n
pdpndp n ∂
∂

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρρρ
11,grad1  

 

∴  012

=
∂
∂

+
∂
∂

+− dn
n
zgdn

n
pdn

r
v

k ρ
      (4-26) 

 
• If the stream line is a straight line ( ∞=kr ),  for steady inviscid incompressible fluid flow : 

⇒    01
=+ nn gdzdp

ρ
     ⇒   0=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ gzpdn ρ

    ⇒     constzp =+ γ   (4-26a) 
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• For a flow in a horizontal plane - Fig. 4.1b),     0=
∂
∂

= dn
n
zdzn     ⇒:  

⇒ dn
r
vdp

k
n

2

ρ=   ⇒ 
k

n

r
v

dn
dp 2

ρ=       (4-26b) 

• If the stream line is a straight line ( ∞=kr ),   ⇒   constp =    along the normal "n".  
   

 
 Flow along a rotating streamline - see Fig. 4.4, see also chapter 3.5  ⇒ 

From the equation (3-49): [ ]wr
dt
wda ,22 ωω +−= ,  

and the general vector equation (4-5):  pR
dt
vd grad1

ρ
−=   ⇒ 

[ ] pRwr
dt
wd grad1,22

ρ
ωω −=+−      (4-27) 

By multiplying the equation (4-27) with an elementary arc rddtwsd == , for steady flow along an 
arbitrary stream line "s" ⇒ 

( ) ( )sdgradpsdRrdrwdw ,1,2

ρ
ω −=−    (4-28) 

Where are:  

 w , wd , sd  and rd  are collinear and  [ ] sdw ⊥,ω     ⇒    [ ]( ) 0,, =sdwω  
)  and gradUR =      ⇒    ( ) ( ) sdUsdgradUsdR == ,,     and also   ( ) sdpsdgradp =,  ( zyxUU ,,=

 

∴ The equation (4-28) is transformed into: 
ρ

ω dpdUrdwd −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
222

22
  

∴ After the intergration the following equation is obtained:  

∫ =−+− constudpUw
22

22

ρ
     (4-29) 

where:  ωru =  

 
Fig 4.4: Flow along a rotating streamline 
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For gravity flow: 0=
∂
∂

=
∂
∂

==
y
U

x
UYX ; g

dz
dU

z
UZ −==
∂
∂

= ;  and      ⇒ 0UgzU +−=

∴ The Bernoulli equation for compressible fluid flow along a rotating streamline:  

∫ =−++ constugzdpw
22

22

ρ
      (4-30) 

∴ The Bernoulli equation for incompressible fluid flow ( )const=ρ along a rotating 
streamline:  

const
g

u
g

wz
g
p

=−++
22

22

ρ
      (4-31) 

In the Turbo-machinery theory these equations can be applied for the entire flow field, and it is 
known as Bernoulli equations for rotating channels. 
 

 
4.3. Potential flow - differential equations, Cauchy-Lagrange and Bernnoulli equation 

 
A rotational fluid flow can contain streamlines that loop back on themselves.  
Hence, fluid particles following such streamlines will travel along closed paths - vorteces.  
 
A vortex ω in Fluid Mechanics is defined as:  

kji

vvv
zyx

kji

v zyx

zyx

ωωωω ++=
∂
∂

∂
∂

∂
∂

==
2
1rot

2
1    (4-32) 

Bounded (and hence nonuniform) viscous fluids exhibit rotational flow, typically within their 
boundary layers. Since all real fluids are viscous to some amount, all real fluids exhibit a level of 
rotational flow somewhere in their domain.  
 
An irrotational (potential) fluid flow  is one whose streamlines never loop back on themselves.  
Typically, only inviscid fluids can be irrotational. A uniform viscid fluid flow without boundaries is 
also irrotational, but this is a special (and boring!) case.  

For a potential flow ⇒ 0=ω  ⇒ 

0
2
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
z
v

y
v yz

xω ,   0
2
1

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=
x
v

z
v zx

yω ,    0
2
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
y
v

x
v xy

zω         (4-33)       

It is obvious, from (4-33), that:  

z
v

y
v yz

∂
∂

=
∂
∂  , 

x
v

z
v zx

∂
∂

=
∂
∂ ;  

y
v

x
v xy

∂
∂

=
∂
∂

     (4-34) 

⇒  Conclusion from (4-34):  

A scalar potential function ),,( zyxϕϕ = can be defined for irrotational flow! 

xv
x
=

∂
∂ϕ , yv

y
=

∂
∂ϕ , zv

z
=

∂
∂ϕ      (4-35) 
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∴ The velocity vector can be defined as:  

kvjvivk
z

j
y

i
x

v zyx ++=
∂
∂

+
∂
∂

+
∂
∂

==
ϕϕϕϕgrad     (4-36) 

According the field theory in mathematics, it is obvious from (4-36) that ϕ⊥v   (for 2-D flow, see 
Fig. 4.5 ).  

∴ The stream function ψ (see equation (3-13) and Fig. 4.5 for 2-D flow) is also related to the 
potential function ϕ  ⇒: 

yx
vx ∂

∂
=

∂
∂

=
ψϕ  , 

xy
vy ∂

∂
−=

∂
∂

=
ψϕ       (4-37)  

∴ The equipotential lines are normal to the stream lines,  ( ) ( )constconst =⊥= ψϕ .  
 

 
Fig 4.5: Stream lines versus equipotential lines 

 
⇒ The Euler differential equations ((4-11a) to (4-11c)) can be simplified for potential flow, by 

taking into account the above conclusion - equations (4-34) and (4-35). 

∴  The equations (4-11a) to (4-11c) are transformed into:  
 

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∂
∂

+
∂
∂ UvP

xt
vx  

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∂
∂

+
∂
∂

UvP
yt

vy               (4-38) 

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∂
∂

+
∂
∂ UvP

zt
vz  

Where ∫==
ρ
dpzyxPP ),,(   is defined as "generalized pressure",  

 i. e.  
x
p

x
P

∂
∂

=
∂
∂

ρ
1 ,   

y
p

y
P

∂
∂

=
∂
∂

ρ
1 ,     

z
p

z
P

∂
∂

=
∂
∂

ρ
1  in the Euler differential equations (4-11a-c) .  

),,( zyxUU = - potential of the body force (chapter 2.1) - 
x
UX
∂
∂

= ;  
y
UY
∂
∂

= ; 
z
UZ
∂
∂

=   .   

 

Since from the equations (4-34) and (4-35) ⇒  ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∂
∂

txxtt
vx ϕϕ , the system of the 

differential equations (4-38) is transformed into:  
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0
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2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∂
∂

+
∂
∂ Uv

t
P

x
ϕ  

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∂
∂

+
∂
∂ Uv

t
P

y
ϕ               (4-39) 
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⎛
−+

∂
∂

+
∂
∂ Uv

t
P

z
ϕ  

∴ In the system (4-39) it is obvious that )(
2

2

tfUv
t

P =−+
∂
∂

+
ϕ  is function only of time 

(doesn't depend of x,y and z). 

∴ Finaly the Cauchy-Lagrange equation is obtained as a solution of the Euler's differential  
equations for a general case of potential compressible fluid flow:  

)(
2

2

tfUv
t

dp
=−+

∂
∂

+∫
ϕ

ρ
      (4-40) 

 
For steady flow, when 0/ =∂∂ tϕ , the Cauchy-Lagrange equation is transformed into Bernoulli 
equation for steady compressible fluid flow (see equation (4-22)): 

constUvdp
=−+∫ 2

2

ρ
      (4-41) 

 
 

4.4. Continiuty equation in integral form 
 
The continuity equations in differential form were obtained in chapter 3.4 - see equations (3-28) to 
(3-30). 

Consider an arbitrary control volume  bounded by a surface 1V ″+′= 111 AAA  (see Fig. 4-16). 

The mass corresponding to corresponding to  is: 1V

∫=
1

1
V

dVm ρ  

CVV mmm += '1 ; - common volume (not shaded);   - belong to shaded part  
CVm 'Vm 'V

After time , the fluid particles from the surface tΔ ′
1A  will make a path tvs Δ=Δ  and pass in the 

surface (entering the volume  ). Also particles from ′
2A 2V ″

1A  → ″
2A .  

∴ For steady flow, the fluid mass will pass in volume  (bounded by ) and is 
defined as:  

2V ″+′= 222 AAA

∫=
2

2
V

dVm ρ  

mmmm
CVV Δ++= ''2 ;      - belong to shaded part  ''Vm ''V

∴ For the time , a mass difference tΔ mΔ  (belonnging to - Fig. 4-16), will be eventually 
created - "source" or "sink" ⇒:  

0V

∫∫∫ =−=−=Δ=Δ
′′′ VVV

dVddVdVmmmm ρρρ120  
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∴ The time rate of mass flow change (elementary mass flow rate) will be:  

∫∫∫ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

′′′ VVV

dV
dt
ddVdV

dtdt
dm

dt
dm ρρρ10     (4-42) 

From Fig. 4.16, an elementary volume can be defined as:  dV

( )dtAdvdAvdtdAdsdV ,.coscos === αα  

dhds =  - according Fig. 4.16.  

∴ The equation (4-42) can be transformed into the continuity equation in integral form:  

( ) ∫∫∫ ===
AAV

dQAdvdV
dt
d

dt
dm ρρρ ,      (4-43) 

dt
dm

dt
dm 0=  - mass flow rate from the volume  through its bounding surface O (see Fig. 4.16).  0V

( )AdvdQ ,=  - elementary volume flow rate (see equation (3-19).  

⇒   The equation (4-43) can be transformed into:  

( ) 0, == ∫∫
KK

dQAdv ρρ      (4-44) 

OAK +=  - closed control surface.  

If  (there is no any "source" or "sink") ⇒ 00 =V 0=
dt
dm  ⇒:  

∴ The continuity equation in integral form for flow without singularities:  

( ) 0, == ∫∫
AA

dQAdv ρρ      (4-45) 

∴ The continuity equation in integral form for incompressible fluid flow ( const=ρ without 
singularities) will be:  

( ) 0, == ∫∫
AA

dQAdv      (4-46)  

Compare the obtained continuity equations in integral form with the continuity equations in 
differential form obtained in chapter 3.4. 

 
Fig. 4.16: Flow through an arbitrary finite control volume 
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4.5. Equations of momentum and energy 
 

 Momentum and Moment of Momentum equations 
 

In Fluid Mechanics, it usually exists a flow of certain fluid quantity in space bounded by concrete 
surface - practically, there is no flow of ideal fluid particles.  
⇒ A certain fluid mass m corresponds to a certain volume V. ⇒ The Momentum (Impulse) law 
from the Solid Body Mechanics (form the II Newton's law) can be applied:  

RF
dt
Jd
=       (4-47) 

RF  -  resultant force acting on a certain mass m, causign its movement (see Fig. 4.17). 
J - Sum of the impulses (entire momentum) of all elementary fluid particles.  

For elementary fluid particle with dVdm ρ= , having v  ⇒ dVvvdmJd ρ== .  

∴ The entire momentum will be:  

∫ ∫==
V V

dVvvdmJ ρ      (4-48) 

∴ The Momentum law in Fluid Mechanics is defined as:  

R

V

FdVv
dt
d

dt
dJ

== ∫ ρ      (4-49) 

 

 
Fig. 4.17: Momentum concept for certain fluid mass m 

 
Similarly, the Moment of Momentum Law can be defined as:  

R
F M

dt
Md

=        (4-50) 

RM  -  Sum of the moments of all acting forces on a certain mass m.  
FM  -  Entire moment of momentum - sum of moments for all elementary fluid particles.  
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The moment of momentum for certain fluid particle with mass dm and velocity v  is:  

[ ] [ ]vrdmvdmr ,, =  

r  -  distance of the fluid particle from the point to which the moment is considered. 
 

∴ The entire moment of momentum will be:  

[ ] [ ]dVvrvrdmM
VV

F ∫∫ == ,, ρ       (4-51) 

∴ The Moment of Momentum law in Fluid Mechanics is defined as:  

[ ] R

V

F MdVvr
dt
d

dt
dM

== ∫ ,ρ      (4-52) 

Similarly to the concept of continuity equation derivation in the previous chapter 4.4, the volume 
integral can be transformed to surface integral  (see equation (4-43)) ⇒ 

∴ Momentum Law: 

R

K

FdQv
dt
dJ

== ∫ ρ       (4-53) 

∴ Moment of Momentum Law: 

[ ] R

K

F MdQvr
dt

dM
== ∫ ,ρ      (4-54) 

OAK +=  - closed control surface bounding the mass m. 

The control surface is recommended usually to be defined as on Fig. 4.18 - around a possibly 
existing solid body with surface O:  
- the boundary surfaces (A3) are suggested to correspond to the streamlines - since, on that part.  0=dQ
- the inlet (A1) and outlet (A2) surfaces are usually normal to the stream lines.  

 
Fig. 4.18: Usual definition of a control surface 

 
The resultant force acting on a certain fluid mass m is defined as (see Fig. 4.19):   

FOAR GFFF ++=      (4-55) 

AAA TPF +=  - resultant surface force acting on the surface A.  

∫−=
A

A ApdP  - normal surface forces ; AT - tangential surface forces.  

FG  - resultant body force (gravity force, centrifugal force etc).  
OOO TPF +=  - resultant surface force acting on the solid body surface O.  
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Fig. 4.19: Forces acting on fluid mass m and possible solid body 
 
 

 General energy equation:  
 

The first law of thermodynamics basically states that a thermodynamic system can store or hold 
energy and that this internal energy is conserved.  
Heat is a process by which energy is added to a system from a high-temperature source, or lost to a 
low-temperature sink. In addition, energy may be lost by the system when it does mechanical work 
on its surroundings, or conversely, it may gain energy as a result of work done on it by its surroundings.  

The first law states that this energy is conserved:  
The change in the internal energy (du) is equal to the amount added by heating (dq) minus the 
amount lost by doing work on the environment (dw): 

dwdqdu −=        (4-56) 

du, dq and dw - specific energies (energy per unit mass  expressed in Nm/kg or J/kg). 
 
The equation (4-56) can be transformed into: 
 

gdzvdvpddudq +++= )/( ρ      (4-57) 
Where: 

 gdzvdvpddw ++= )/( ρ       (4-58) 

)/( ρpd - specific energy corresponding to mechanical work of pressure;  
)2/( 2vdvdv =  - specific kinetic energy;  

gz - specific potential energy.  
 

 
 

Fig. 4.20: First Law of thermodynamics - properties of fluid flow 
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Since, specific enthalpy is defined as:   

ρ
pui +=        (4-59) 

⇒  gdzvdvdidq ++=        (4-60) 
 

For an isentropic process ( ) of flow between two flow sections1 and 2 (see Fig. 4.20), and 
flow in a hirizontal plane ( ), after the integration of the equation (4-60), the following 
equation is obtained:  

021 =−q

21 zz =

( 21

2
1

2
2

21 2
TTcvvii p −=

−
=− )      (4-61) 

pc - specific heat at constant pressure in J/kgK. 
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5. Some elementary flows of inviscid fluid 
 

5.1. Stream tube control volume. Basic equations for flows through a stream tube 
 
As defined in chapter 3.2 ⇒ 
A stream tube or stream filament is a small imaginary tube or "conduit" bounded by streamlines.  
Because the streamlines are tangent to the flow velocity, fluid that is inside a stream tube must 
remain forever within that same stream tube (see Fig. 3.6 and Fig. 5.1).  

∴ The flow in a stream tube can be treated as flow in a pipe (no mixig with the surrounding).  

∴ In many cases, like flow in pipes and channels, the concept of stream tube can be applied.  

∴ Usualy the average flow properties are taken into account - at the central line of the stream 
tube, see Fig. 5.1. 

∴ In practice, the flow through the stream tube can be treated as one-dimensional - see chapter 4.2. 
 

∴ The basic equations for flow throw a stream tube can be obtained (using the conclusions in 
previous chapter 4 and chapter 3) as follows:  

 
• Continuity equation 
 
The continuity equation in integral form (4-44) can be used ⇒:  
 

( ) ( ) ( ) 0,,,
1212

=−=−== ∫∫∫∫∫∫
AAAAKK

AdvAdvdQdQdQAdv ρρρρρρ  

OAAAK T +++= 21  - control section (see Fig. 5.2).  

If  , and   (there is no any "source" or "sink" - Fig. 5.1)  ⇒ 00 =V 0=O TAAAK ++= 21   

Since through the boundaring surface  there is no inflow nor outflow,  TA

⇒  ( ) ( ) ( )∫∫∫ ==
AAA

AdvAdvAdv ,,,
12

ρρρ       (5-1) 

∴ The mass flow rate is equal in every cross-section of the flow!  
 
Since the concept of average properties in certain cross-section (A) is applied (see Fig. 5.1)  

⇒ vdAvdAAdv == 00cos),(  ⇒  ( ) ∫∫∫ ====
AAA

constvAdAvvdAAdv ρρρρ ,  ⇒ 

constvAAvAv === ρρρ 222111       (5-2) 

From (5-2) ⇒ ( ) 0=vAd ρ , and by dividing it with vAρ  ⇒ 

0===
A

dA
v
dvd

ρ
ρ       (5-3) 

 
For incompressible fluid flow ( const=ρ ) ⇒ 

constvAAvAvQ ==== 2211  ; 0==
A

dA
v
dv      (5-4) 
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For rotating channels ⇒  wv =
 

 
Fig. 5.1: Main properties of a stream tube 

 

 
Fig. 5.2: Boundaring surfaces of a stream tube 

 
 

• Bernoulli's equation 
 
The equations for one-dimensional flow can be applied - see equations (4-20) to (4-25).  
 
-  for steady inviscid compressible fluid flow: 

constdpgzv
=++ ∫ ρ2

2

     (4-22) 

-  for steady inviscid incompressible fluid flow: 

constpgzv
=++

ρ2

2

      (4-23) 

⇒  constpz
g

vpz
g

v
=++=++

γγ
2

2

2
21

1

2
1

22
    (4-25) 
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• Momentum Law and Moment of Momentum Law 
 

From the equation (4-53) R

K

FdQv
dt
dJ

== ∫ ρ , for control surface 21 AAK +=  ⇒ 

∫∫∫∫∫ −=−=
1212

1212
AAAAK

dQvdQvdQvdQvdQv ρρρρρ  

Taking into account the continuity equation (5-2) ⇒  

( )12111222 vvQQvQvdQv
K

−=−=∫ ρρρρ  

∴ The Momentum Law for flow through stream tube will be: 

( ) RFvvQ =− 12ρ       (5-5) 

RF  -  Resultant force acting on the fluid mass bounded by the control surface (see Fig 5.3 and Fig. 5.4):  

OR PGFPPF ++++= −− 212121  

111 ApP −= ;   222 ApP −= ;   TT AA TPF +=−21  - surface forces acting on the corresponding 
surfaces - see Fig. 5.3;  

21−G  - body forces;    
OP  - a force acting from the surface of  a possibly existing solid body inside the steam tube (see 

also Fig. 4.18 in chapter 4.5).  

If there is no a solid body ⇒   0=OP   ⇒ 

21212211 −− ++−−= GFApApF R  
∴ The equation of Momentum Law for flow through stream tube will be: 

( ) 2121221112 −− ++−−=− GFApApvvQρ                (5-6) 

 
Fig. 5.3:  Acting forces on a stream tube 

 
If the stream tube has solid boundaries - like in pipes and channels (see Fig. 5.4), the acting force 
from the fluid to the solid boundaries, will be a reaction to the force 21−F  ⇒  21−−= FF r  ⇒ : 
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( ) 21221121 −+−−−= GApApvvQF r ρ      (5-7) 

 

 
Fig. 5.4: Stream tube with solid boundaries 

 
∴  Moment of Momentum Law can be derived in a similar manner using the previously obtained 
equation (4-54) in chapter 4.5.  

However, an easier derivation can be performed by making vector products of every member of the 
equation (5-7) (i.e. every force) with the corresponding distance from the point to which the 
moment is considered (vector of its position) ⇒ 
 

[ ] [ ] [ ]( ) [ ] [ ] [ ]eGrAprAprvrvQrFM rrr ,,,,,, 212221112211 −+−−−== ρ    (5-8) 
 

In practice, the vector equations (5-7) and (5-8) usually are interpreted equations in the directions 
of the chosen coordinate system.  
 
 

5.2. Some examples of steady flow of incompressible fluid 
 
• Ventury pipe 

The concept of the Ventury tube is presented on Fig. 5.5. 

For incompressible fluid flow ( const=ρ ) the derived equations in chapter 5.1 can be applied ⇒  

Continuity equation:   ⇒ 2211 AvAvQ == 2112 / AAvv =  

Bernoulli's equation:  
g

pz
g

v
g

pz
g

v
ρρ

2
2

2
21

1

2
1

22
++=++  

 

⇒    ( )[ ]1/
2
1 2

21
2
1

21 −=
− AAv

gg
pp

ρ
 

( )
( ) 1/

/2
2

21

21
1 −

−
=

AA
gppgv ρ      (5-9) 

For ( ) gpphhh ρ/2121 −=−=Δ , see Fig. 5.5, the volume flow rate is obtained as:    

( )
hC

AA
hgAAvQ Δ=
−

Δ
==

1/
2

2
21

111      (5-10) 

where: 
( ) 1/

2
2

21
1 −

=
AA

gAC  
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Fig. 5.5: Concept of Ventury tube (Ventury meter) 

 
The Ventury pipe found an application as a device for volume flow rate measurment - Ventury flow 
meter.  
However, for real fluid flow the viscosity (μ ) effects have to be considered.  
 
Due to the fluid field similarity, the above-presented approach for Ventury tube can be applied for 
the orifice meter as well (Fig. 5.6).  
Applying a correction factor k, the volume flow rate can be obtained from the equation:  

( )
hkC

AA
hgkAAkvQ Δ=
−

Δ
==

1/
2

2
21

111      (5-11) 

The correction factor k, depends of the orifice geometry, fluid properties and flow regime - obtained 
experimentally.  

 
Fig. 5.6:Concept of an orifice meter co 

 
 
• Discharge from a reservoir into the atmosphere  

Discharge of incompressible inviscid fluid flow from a reservoir into the atmosphere is considered. 

- Discharge through small nozzle - Fig. 5.7:  

Bernoulli's equation between the free surface (0) and the nozzle outlet (1):  

g
p

g
v

g
pz

g
v

ρρ
+=++

22

2
0

2
0  

Continuity equation:  

vAAv =001  ⇒ 
0

0 A
Avv =  

Since - atmospheric pressure ⇒  appp == 0 g
v

z
A
A

g
v

22

22

0

2

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 ⇒  

A. Nospal 5.  Some elementary flows of  inviscid fluid  



 DEREC   Fluid Mechanics - Lectures         59 

( )201 /1
2

AA
gzv

−
=     (5-12) 

Since,  ⇒ 0AA <<

gzv 2=               (5-12a) 

The equation (5-12a) is known as Torricelli's formula.  

If the friction forces are taken into account, a correction factor 1<ϕ has to be applied ⇒:  

gzv 2ϕ=                   (5-13) 
0,196,0 ÷=ϕ , obtained experimentally. 

 

 
Fig. 5.7: Discharge through a small nozzle 

 
The discharge through a nozzle is also accompanied by the jet contraction (see Fig. 5.8).  
⇒ a contraction factor, 1/* <= AAψ  has to be taken into consideration ⇒ 

gzAgzAvAQ 22* μψϕ ===      (5-14) 

1<=ψϕμ  - discharge coefficient. 

15.0 << μ  - experimentally obtained (see Fig. 5.9). 
 

 
Fig. 5.8: Jet contraction 

 

  
Fig. 5.9:Discharge coefficient for some nozzles 
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- Discharge into the atmosphere through large openings - Fig. 5.10:  

For small nozzles in the Torricelli's formula (3-12a), zd <<  ⇒ constz ≈ .  

For large openings, Fig. 5.10,  ⇒  ,  constz ≠ )(zxx = , ⇒ dzzxdA )(=  

⇒ Elementary discharge:  dAgzvdAdQ 2μμ ==  

The entire discharge Q will be:  

dzzzxgvdAdQQ
Hz

HzA
∫∫
=

=

===
2

1

)(2μμ                (5-15) 

⇒ Example, Discharge through a rectangular opening:   

     ; constzxb == )( aHH =− 12  ⇒  

( )3
1

3
22

3
2 HHgbQ −= μ                            (5-16) 

 
Fig. 5.10: Discharge into the atmosphere through large opening 

 
⇒ Example, Discharge through circular opening (Fig. 5.11):   

     ;   RHH 212 += ( )[ 2
1

2
2

2
zRHRx

−+−=⎟
⎠
⎞

⎜
⎝
⎛ ]  ⇒ an elliptic integral:  

( )[ ]∫
+

−+−=
RH

H

dzzRHRzgQ
2

2
1

2
1

1

22μ  

If the under-integral function is developed into mathematical series ⇒ the solution:  

( )
( ) ⎥⎦

⎤
⎢
⎣

⎡

+
−+= 2

1

2

1
2

32
112

RH
RRHgRQ μπ               (5-17) 

 
Fig. 5.11: Discharge into the atmosphere through circular opening 
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• Submerged and partially submerged discharge through a large opening  

- Submerged discharge - Fig. 5.12:  
 

( )Hzpp −+= γ02 ;  zpp γ+= 01 ;   constHppp ==−=Δ γ21 ; ⇒  constgHv == 2  
 
The discharge through the entire opening A will be:  

gHAAvQ 2μμ ==         (5-18) 
 

 
Fig. 5.12:Submerged discharge  

 
 

- Partially submerged discharge - Fig. 5.13:  
 
The entire discharge:  21 QQQ +=  

1Q  - discharge into the atmosphere;   - submerged discharge. 2Q

For rectangular opening: ; for   - equation (5-16);  for  -  equation (5-18). ( )bHHA 12 −= 1Q 2Q
 

⇒ ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ −= 112 3

2
3

2 HHHHHgbQ μ     (5-19) 

 
Fig. 5.13:Partially submerged discharge 

 
- Discharge over a weir - Fig. 5.14:  
 
Discharge over a weir through a rectangular opening is treated ⇒ a methodology for volume flow 
rate measurements in open channels, rivers etc.  

01 =H ;      ⇒ HH =2 HHgbQ 2
3
2μ=     (5-20) 

Measurement section of H at - to avoid the overflow surface contraction. HL 3=
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Fig. 5.14: Flow over a weir 

 
 

• A reservoir emptying time -  Fig. 5.15 

from    ⇒   dVQdt = dzzAdtgza )(2 −=μ  

⇒  ∫∫ =−=
1

2

2

1

)(
2

1)(
2

1 H

H

H

H z
dzzA

gaz
dzzA

ga
t

μμ
  `   (5-21) 

For prismatic reservoir,  ⇒ constA = ( 21
2 HH
ga

At −=
μ

)   (5-21a) 

The reservoir will be entirely emptied for  02 =H  ⇒      
g
H

a
At 12
μ

=   (5-21b) 

 
Fig. 5.15: Emptying of a reservoir 

 
 

• Flow through a rotating pipe, cavitation -  Fig. 5.16 

Flow from a reservoir through a rotating pipe is considered (Fig. 5.16).  

Bernoulli's equation from cross-section "0" to cross-section "A" - "motionless (non-rotating) 
channel":  

g
ph

g
v

g
pH

g
v A

A
A

ρρ
++=++

22

2
0

0

2
0     (5-22) 

Since, the reservoir cross-section >> pipe cross-section and constH =0   ⇒     ⇒ 00 =v

)(
2 0

2
0

A
AA hH
g

v
g

pp
−−=

−
ρ

      (5-23) 
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According equation (4-31), the Bernoulli's equation the rotating pipe will be:  

g
u

g
wh

g
p

g
u

g
wh

g
p AA

A
A

2222

2
2

2
2

2
2

22

−++=−++
ρρ

      (5-24) 

According Fig. 5.16: AA vw = and ;  0=Au 02 pp =  and 02 =h  ⇒ 

g
u

g
w

g
p

g
vh

g
p A

A
A

222

2
2

2
20

2

−+=++
ρρ

      (5-25) 

Comparing the equations (5-22) and (5-25) ⇒ 

g
u

g
w

g
p

g
vH

g
p

222

2
2

2
20

2
0

0
0 −+=++

ρρ
      (5-26) 

For pipe with constant cross-section 2AAA = , from the continuity equation   22wAwAQ AA ==
⇒ , and from the equation (5-25) ⇒  2wwv AA ==

0
2

2
20 >+=

−
g

uh
g

pp
A

A

ρ
       (5-27) 

g
p

g
p A

ρρ
>0          (5-28) 

If  ⇒  catmospheripp =0 vacuumpA =  

If   = pressure of saturated vapor of the liquid at certain temperature T  ⇒ generation 
of vapor bubbles or cavities. These bubbles will implode at higher pressure  ⇒ cavitation!  

kA pp = ..vsp

=kp (liquid type, T) - example, for water at ⇒  Ct 020= mmHg 5.17bar 0234.0.. === vsk pp . 

The cavitation can also occur in non-rotational channels as well ⇒ explanation of  Fig. 5.17.  
 

 
 

Fig. 5.16:Flow through a rotating pipe 
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Cavitation is a general term used to describe the behavior of cavities or bubbles in a liquid.  

Cavitation is the process where generated liquid vapor bubbles rapidly (violently) collapse, 
producing shock waves - see Fig. 5.17. ⇒ explanation!   

Cavitation may occur in pumps, propellers, impellers, and in the vascular tissues of plants.  
 
∴  The generation of liquid vapor bubbles (cavities) at low pressure, and their subsequent sudden 
implosion (violent closing) at higher pressure, under corresponding dinamic and static influences, 
is known as cavitation.  
 

 
Fig. 5.17: Generation of cavitation in non-rotational channel 

 
∴  Cavitation is, in many cases, an undesirable occurrence. In devices such as propellers, pumps, 
and turbines, cavitation causes a great deal of noise, damage to components, vibrations, and a loss 
of efficiency - see Fig. 5.17a. 

 

       
 

Fig. 5.17a: Cavitation generation in a propeller (a) and cavitation damage of a turbine (b). 
 
 

5.3. Basic consideration of compressible flow 
 

),.......,,,,( kcTpf p=ρ - for compressible fluid.  
In general the density change can be determined from the energy equation (4-60):  

gdzvdvdidq ++=        

In the theory of heat and mass transfer, the following differential equation can be derived:  
 

Φ+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=−
z
Tk

zy
Tk

yx
Tk

xDt
Dp

Dt
DTc pρ   (5-29) 
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k - heat conductivity coefficient;  - specific heat;  pc 2)
3
2( θμλ +=Φ   - dissipation function;  

)
3
2( μλ +  - volumetric viscousity;   

z
v

y
v

x
v zyx

∂
∂

+
∂
∂

+
∂
∂

=θ ;    
z

v
y

v
x

v
tDt

D
zyx ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= . 

 
However, here, as an example a barotpropic fluid is treated:  

⇒   )(ρpp =  
⇒   Continuity equation for steady fluid flow (5-2)     ⇒  constvAAvAv === ρρρ 222111  

⇒   Bernoulli's equation for steady fluid flow (4-22)   ⇒ constdpgzv
=++ ∫ ρ2

2

 

∴  v, p and ρ  can be defined from these last three equations. 
 
-  Some equations for adiabatic (isentropic) fluid flow:  
Bernoulli's equation 

See chapter 1.3 for gas properties and states.  

For an adiabatic process, see equation (1-15)  ⇒  constp
=κρ

;  
v

p

c
c

=κ   

⇒        Cpp
== κκ ρρ 0

0   ⇒  
κκ

ρρ

1

0
0

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛=

p
p

C
p     (5-30) 

00  , ρp  -  initial properties (see Fig. 5.22).  

 
Fig. 5.22: Discharge of compressible fluid 

From the Bernoulli's equation (4-22)  ⇒ 

κ
κκ

κ
κ

κ
κ

ρκ
κ

κ
κ

ρ

1

0

1
11

1

0

11

−−−

−
=

−
=⎟

⎠
⎞

⎜
⎝
⎛= ∫∫ p

p
pCdp

C
pdp      (5-31) 

With the equation (5-30) ⇒  the Bernoulli's equation for steady adiabatic fluid flow:  
(for ) 0=z

constvp
=+

− 21

2

ρκ
κ         (5-32) 

2121

2
0

0

0
2 vpvp

+
−

=+
− ρκ

κ
ρκ

κ       (5-33) 
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From chapter 1.3, equation (1-10)  ⇒  velocity of sound  ρκpc =  ⇒ 

2121

2
0

2
0

22 vcvc
+

−
=+

− κκ
      (5-34) 

 
Dischargeof compressible fluid through nozzles 

Discharge of adiabatic compressible fluid flow of ideal gas is treated - as on Fig. 5.22.  

The discharge velocity, from the equation (5-33), for 00 ≈v  , ⇒ the Saint-Venant formula:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

ρρκ
κ ppv

0

0

1
2       (5-35) 

If the equation of state for ideal gas (1-11),  RTp
=

ρ
, is taken into account (see chapter 1.3) ⇒  

( )TTRv −
−

= 01
2
κ
κ       (5-36) 

Consider the equation (5-34) ⇒  

( )22
01

2 ccv −
−

=
κ

       (5-37) 

For real gases and vapors ⇒ use of tables and graphical curves obtained mostly experimentally ⇒ 
empirical formula. 
 
Example: flow through Ventury meter or an orifice meter - see Fig. 5.5 and Fig. 5.6 and equation 
(5-11) ⇒ 

( )2112 ppACm d −= ρε& ;   ( )
1

21

1

2
ρ

ε
ρ

ppACmQ d
−

==
&

 

)) ,(,(1 ee RmfRDdfCd ==  - discharge coefficient - experimentally obtained;    

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −= κε ,,, 211 ppp

D
df - coefficient of expansion - experimentally obtained. 

 
 

5.4. Some examples for the momentum equation application 
 
-  Force on bended pipe - Fig. 5.24:  

From the derived equation (5-7),        ( ) 21221121 −+−−−= GApApvvQF r ρ  ,  

and the continuity equation , according Fig. 5.24 ⇒  2211 AvAvQ == 1111 AvAv −=  and 
2222 AvAv +=   ⇒ 

( ) ( ) 212
2
221

2
11 −++−+−= GAvpAvpF r ρρ       (5-38) 

The components of this force will be (see Fig. 5.24): 

( ) ( ) ( ) αρρ cos, 2
2
221

2
11 AvpAvpiFF rrx +−+==  ;      βtgFF rxrz =    (5-39) 

In this case, the correspon ing scalar products are:   d
( ) 111 cos, AAiA −== π ;   ( ) αcos, 22 AiA = ;    ( ) ( ) 02/cos, 221 ==− πAiG  
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Fig. 5.24: Force on a bended pipe 

 
-  Jet reaction - Fig. 5.25:  

Discharge into the atmosphere is treated - Fig. 5.25 ⇒   the equation (5-12a) is valid ⇒  

gHv 2=  
∴  The equation (5-7), according Fig. 5.25,  is transformed into: 

( ) GApApvvQF r +−−−= 0000ρ  
 

The resultant acting force (component) in the "z" direction will be:  

( ) ( )GAvApGApQvApFF rzrz +−=−−−−=−−= 0
2
00000000

' ρρ    (5-40) 
where:  

00 Ap  is also acting on the bottom from outside;   00 AvQ =  

Adequately, the resultant acting force (component) in the "x" direction will be:  

( ) QvAvApAvpApFF rxrx ρρρ −=−=++−=+−= 2
0

2
00

'     (5-41) 

∴ The force is known as the reaction to the jet!  The sign "-" means that is in the opposite 
direction to the velocity of the discharge (see Fig. 5.25).  

rxF rxF

 

 
Fig. 5.25: Jet reaction 
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-  Missile reaction force and speed - Fig. 5.26: 
 
w - relative velocity of the gases through the Laval nozzle;  Rvwv −=  - absolute gas velocity;  
vR - missile velocity. ⇒ from (5-7) ⇒ 

2AwQwFr ρρ −=−=       (5-42) 
From the II Newton's law ⇒ 

dt
dvMF R

r −=        (5-43) 

QtMMM FR ρ−+=  - the missile mass after certain time "t".  

RM  - the mass of the useful missile load;   - the fuel mass before the missile start;  FM
Qtρ  - mass of the burned up gasses.  

 
∴   From the equations (5-42) and (5-43)  ⇒ the missile velocity:  

QtMM
Qw

M
F

dt
dv

FR

rR

ρ
ρ

−+
−==−       (5-44) 

Since,  and constQ = constw =  ⇒ 

⎥
⎦

⎤
⎢
⎣

⎡
−+

+=
−+

= ∫ QtMM
Qtw

QtMM
Qdtwv

FR

t

FR
R ρ

ρ
ρ

ρ 1ln
0

   (5-45) 

After time QMT F ρ/= , the maximum missile velocity will be achieved:  

⎥
⎦

⎤
⎢
⎣

⎡
+=

R

F
R M

Mwv 1lnmax         (5-46) 

 
Fig. 5-26:Missile reaction force and speed 

 
 

-  Basic equation of the turbo machines - Fig. 5.27: 

A steady flow of an inviscid fluid in a turbomachine runner is treated.   
From the Moment of Momentum, derived equation (5-8)  

[ ] [ ] [ ]( ) [ ] [ ] [ ]eGrAprAprvrvQrFM rrr ,,,,,, 212221112211 −+−−−== ρ , for conditions when:  
- the flow is in a horisontal plane  ⎜⎜to the axis of rotation ⇒21−G [ ] 0,21 =− eG ,  
- and for cylindrical entrance and exit surfaces ⇒ [ ] 0, =ii rA ,  ⇒  

A. Nospal 5.  Some elementary flows of  inviscid fluid  



 DEREC   Fluid Mechanics - Lectures         69 

⇒ The turbomachine runner torque will be: 
 

 [ ] [ ]( )2211 ,, rvrvQM r −= ρ        (5-47) 
 

Since, for collinear vectors, the intensities of the vector products are:  

[ ] iiiiiiii rvrvrv ααπ cos
2

sin, =⎟
⎠
⎞

⎜
⎝
⎛ −=   ⇒ 

( ) ( )uurr vrvrQrvrvQMM 2211222111 coscos −=−== ρααρ     (5-48) 

where, according Fig. 5.27, αcosvvu =  - see Fig. 5.27b). 
∴ The equation (5-48) is the fundamental equation of turbomachines.   

 
∴ The corresponding power to this theoretical torque (inviscid fluid) will be:  

 
( ) ( )uuuur vuvuQvrvrQMN 22112211 −=−== ρωωρω     (5-49) 

From Fig. 5.27b) ⇒  ⇒ αcos2222 vuvuw −+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
+

−
=

222

2
2

2
1

2
2

2
1

2
2

2
1 wwvvuuQN ρ  `   (5-50) 

∴ N is theoretical power ⇒ energy losses have to be taken into account.  
∴  for a turbine - the energy is delivered to the axis of rotation (runner shaft).  0>N
∴  for a pump - the energy is delivered from the axis of rotation (impeller shaft)  0<N

      
 

     a)                            b) 
Fig. 5.27: Rotating channel of a turbomachine 

A. Nospal 5.  Some elementary flows of  inviscid fluid  



 DEREC   Fluid Mechanics - Lectures         70 

 
6. Some fundamental concepts of viscous fluid flow 
 

6.1. General concept of viscous fluid flow 
 
All real fluids have some resistance to stress!  
Viscosity is a measure of the resistance of a fluid to deform under shear stress.  
⇒ 

∴  The Newton's law for shear stress is valid:             
dn
dvμτ = ,        (6-1) 

- see equation (1-6) and Fig. 1.1 in chapter 1.3 

τ  -  shear stress in N/m2; dn
dv  -  rate of angular deformation (velocity gradient) in s-1;  

μ   -   Dynamic (absolute) viscosity in kg/ms=Ns/m2.  

⇒   
ρ
μν =   - Kinematic viscosity in  m2/s.  

Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid 
friction. 

∴  The influence of tangential surface shear force has to be taken into account for real fluids.  
The influence of the viscosity, i.e. the shear stress has especially effect at the boundaries of a solid 
body ⇒ change of the velocity profile, see Fig. 6.1. 

 
Fig. 6.1:  The influence of the shear stress for viscous fluid flow 

∴  Flow classification can be defined:  

- inviscid (ideal) fluid flow - see chapter 4.;  
- viscous (real) fluid flow - basic concepts in this chapter 6.  

 
Depending on the relative magnitudes of the viscous and inertia forces two modes of viscous fluid flow 
can be defined:  

- laminar flow;  
- turbulent flow 

 
Laminar flow, sometimes known as streamline flow, occurs when a fluid flows in parallel layers, 
with no disruption between the layers.  
Laminar flow - an organized flow field that can be described with streamlines. In order for laminar flow to 
be permissible, the viscous stresses must dominate over the fluid inertia stresses. 
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Turbulent flow is a flow regime characterized by chaotic, stochastic property changes. 
Turbulent flow - a flow field that cannot be described with streamlines in the absolute sense. However, 
time-averaged streamlines can be defined to describe the average behavior of the flow. In turbulent flow, the 
inertia stresses dominate over the viscous stresses, leading to small-scale chaotic behavior in the fluid 
motion. 
 
∴  The dimensionless Reynolds number -  (see later chapter 6.6, and chapter 7) is an important 
parameter in the equations that describe whether flow conditions lead to laminar or turbulent flow:  

Re

 

number Reynolds
force/mass frictional

force/mass inertia
∝  

 
crReRe <  -  laminar flow;   - turbulent flow.  crReRe >

crRe - critical Reynolds number, defined later in chapter 6.6.  
 

 
  a) laminar     b) turbulent  c) Laminar and turbulent water flow  

    over the hull of a submarine 

Fig. 6.2:Examples of laminar and turbulent flow 
 
 

6.2. Fundamental equations for laminar flow 
 
- The continuity equation is valid - equation (3-28): 

0)div( =+
∂
∂ v

t
ρρ       i.e.   ( ) ( ) ( ) 0=

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

z
v

y
v

x
v

t
zyx ρρρρ     (6-2) 

- The energy equation is also valid - equation (4-60), ⇒ the density change can be obtained:  

),.......,,,,( kcTpf p=ρ  

for barotropic fluid ⇒   )( pf=ρ       (6-3) 
 

- Euler's equations, (4-11a) to (4-11c), can be also applied if tangential or shear stresses are 
taken into account ⇒  Navier-Stockes equations! 
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-  Stresses in a viscous fluid flow:  

-  Stress, is a measure of the average amount of force exerted per unit area  - e.g. 
A
P

=σ . 

∴ The influence of tangential surface shear force has to be taken into account for real fluids, 
besides the forces defined for ideal fluid (see chapter 4.1)   

-  Infinitesimal fluid element at point M(x,y,z) is considered in the fluid flow  

    ⇒ ;   dxdydzdV = dVdm ρ=   - see Fig. 6.3.  

 
Fig. 6.3: Normal and tangential stresses 

 
- Tangential (shear) stresses:  

yxxy ττ = ; zxxz ττ = ;  zyyz ττ =      (6-4) 

From the basic equation (6-1), the following relationships can be derived:  
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v zy

zyyz μττ        (6-5c) 

-  Normal stresses:  
txx pp +−=σ ;  tyy pp +−=σ  ;   tzz pp +−=σ     (6-6) 

txp , ,  - pressure increases due to the friction forces influence = additional normal stresses.  typ tzp

0=tip  for ideal fluid ⇒ px −=σ  etc (sign "-" for a direction towards the surface).  
 
⇒  Applying the approach for tangential stresses for 0=tip  ⇒  

v
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⇒ also  

v
y
v

pp y
yty div2 λμσ +

∂
∂

=+=      (6-7b) 

v
z
vpp z

ztz div2 λμσ +
∂
∂

=+=      (6-7c) 

If the definition for volumetric viscosity is included:  

)
3
2( μλ + - volume viscousity - see chapter 5.3.  

Stokes assumed:  0)
3
2( =+ μλ   ⇒  μλ

3
2

−=   

From the equations (6-7)  ⇒ normal stresses:  

v
x
vp x

x div
3
22 μμσ −

∂
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+−=       (6-8a) 

v
y
v

p y
y div

3
22 μμσ −

∂
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+−=      (6-8b) 

v
z
vp z

z div
3
22 μμσ −

∂
∂

+−=       (6-8c) 

-  Surface forces and friction forces:   

∴  The surface forces can be easyly obtained from the previously defined stresses ⇒ 
 Surface force per unit mass dVdm ρ= ,  in "y" direction (see Fig. 6.3):  
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and in the "x and "z" directions: 
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⇒  By expressing the stresses from the equations (6-8), the surface force in the "y" dirrection will be:  

v
z
v
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v
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y div
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−=   (6-10) 

With the vector notations:   
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=Δ  , where,  - Laplacian operator 2∇=Δ
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i

∂
∂

+
∂
∂

+
∂
∂

=∇  - vector operator ⇒ UU ∇=grad ;  ( )
z
v

y
v

x
vvv zyx

∂
∂

+
∂
∂

+
∂
∂

=∇= ,div  

⇒ yyyy TPvv
y
pS +=+∇+
∂
∂

−= div
3
11 2

ρ
μ

ρ
μ

ρ
      (6-11) 

Py - normal surface force; Ty - tangential surface force (friction force) - see chapter  1.4.  

y
pPy ∂
∂

−=
ρ
1  ;  vvT yy div

3
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ρ
μ

ρ
μ

+∇=      (6-12) 
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∴  Similar equation for "x" and "z" directions can be obtained ⇒  yyy TPS += ;  zzz TPS +=
 
∴  The entire normal surface force will be a vector sum:   

pk
y
pj

y
pi

x
pP ∇−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
ρρ
11       (6-13) 

⇒ The normal surface force has the same expression as for ideal (inviscid) fluid - see chapter 4.1. 

∴  The entire tangential friction surface force will be a vector sum:   

( )vvT ,
3
12 ∇∇+∇=
ρ
μ

ρ
μ        (6-14) 

 

 
-  Navier-Stockes equations:   

 Acting forces per unit mass on a viscous fluid element with dVdm ρ=  (make comparison 
with chapter 4.1):  

Inertial force per unit mass in N/kg  ⇒  
dt
vd

dm
JdJ −==  

Elementary resultant body force R
r

 in N/kg ⇒ UUk
z
Uj

y
Ui

x
UR ∇==

∂
∂

+
∂
∂

+
∂
∂

= grad
rrrr

 

Tangential surface force in N/kg ⇒  ( ) ( )vvvvT divgrad
3
1,

3
12 +Δ=∇∇+∇=

ρ
μ

ρ
μ

ρ
μ  

Normal surface force in N/kg  ⇒  ppP grad11
ρρ

−=∇−=  

According the D'Alembert's principle for dynamic equilibrium ⇒ :   

0=+++ TPRJ  

⇒ Navier-Stockes equations in vector notations:  

( )vvpU
dt
vd ,

3
11 2 ∇∇+∇+∇−∇=
ρ
μ

ρ
μ

ρ
      (6-15) 

i.e.      ( )vvpR
dt
vd divgrad

3
1grad1
ρ
μ

ρ
μ

ρ
+Δ+−=    (6-15a) 

ν
ρ
μ
=  - kinematic viscosity. 

∴ Governing equations of viscous fluid laminar flow (mathematical model)  
     = Navier-Stockes equations (6-15) + continuity equation (6-2) + energy equation (6-3).  

0)div( =+
∂
∂ v

t
ρρ ;  i.e.   ( ) ( ) ( ) 0=

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

z
v

y
v

x
v

t
zyx ρρρρ     (6-2) 

),.......,,,,( kcTpf p=ρ ;   for barotropic fluid  )( pf=ρ     (6-3) 
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⇒ The Navier-Stockes vector equation can be expressed as three scalar Navier-Stockes partial 

differential equations - equations of motion in Cartesian coordinates (Oxyz):  

x
x v

xx
p

x
U

dt
dv 2

3
∇+

∂
∂

+
∂
∂

−
∂
∂

= μθμρρ     (6-16a) 
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where is:  

z
v

y
v

x
v

tdt
d

zyx ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= ;  
z
v

y
v

x
vv zyx

∂
∂

+
∂
∂

+
∂
∂

== divθ ; 2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇  

In case of  2-D incompressible fluid laminar flow ⇒ 0div == vθ ;  ; 0=zv 0=
∂
∂
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⇒   the governing equations:  
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∴ Analytical solution of the system of governing partial differential equations is 
possible only for a few cases of laminar, steady flow of incompressible fluid.  

Several approximations are introduced in these cases.  ⇒  Results differ from 
reality.  
 

6.3. Fundamental concepts and solutions of the governing equations for some cases of 
laminar flow 

 
-  Steady laminar flow between parallel plates - see Fig. 6. 4: 
 
Approximations:  

steady laminar 2-D flow, incompressible viscous fluid, body forces are neglected ⇒    

0=
∂
∂
t

;  ;  ;   . ⇒  the system (6-17) is simplified ⇒ 0=yv ( )yxvv xx ,= 0=U

0=
∂
∂

x
vx         (6-18a) 
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y
p
∂
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−=0        (6-18c) 
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avexsr vv = ;  maxmax vvx =
Fig.6.4: Flow between parallel plates 

 
⇒ The system of the partial differential equations (6-18) can be transformed to one ordinary 

differential equation:  

2

2

dy
vd

dx
dp μ=       (6-19) 

Because, , , after the integration of (6-19), following the boundary conditions 
from Fig. 6.4 ⇒ velocity change/velocity distribution along "y": 

( )xpp = vyvvx == )(

( ) ( )
dx
dpyhyv 22

2
1

−−=
μ

    (6-20) 

Maximum velocity (at ):   0=y
dx
dphv

μ2

2

max −=       (6-21) 

 Average velocity:      
A
Q

dx
dphvvave =−==

μ33
2 2

max      (6-22) 

Where is:    and  bhA 2= ( )∫
+

−

−==
h

h dx
dpbhdyyvbQ 3

3
2
μ

 

The pressure distribution is assumed to be a straight line (see Fig. 6.4) ⇒  const
dx
dp

=   ⇒  

avev
h

Lpp 221
3μ

=−      (6-23) 

 
-  Steady laminar flow in a circular tube of a constant diameter - see Fig. 6. 7: 
 
Same approximations (steady laminar 2-D flow, incompressible viscous fluid) and similar approach 
as in the previous case:   

∴ After simplification and transformation of the system governing partial differential equations in 
cylindrical coordinates, an ordinary differential equation can be obtained as well.  

The integration with boundary conditions as on Fig. 6.7 gives the velocity distribution :  
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Maximum velocity (at ):   0=r
dz
dpDv

μ16

2

max −=     (6-25) 

Average velocity:    
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dpDvvave =⎟
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Where is:  ;   4/2DA π= ( )∫
=

=
2/

0

2
D

r

drrrvQ π

The pressure distribution along the pipe:  constk
dz
dp

=−=  ⇒ along a length L of the pipe ⇒  

221
32

D
Lvppp aveμ

=−=Δ      (6-27) 

avesr vv =  
Fig. 6-7:  Steady laminar flow in a circular tube of a constant diameter 

 
 

6.4. Fundamental concepts and equations for creeping motion and two-dimensional 
boundary layer 

 
-  Creeping flow 
 
Creeping fluid flow or Stokes flow (named after George Gabriel Stokes) is a type of incompressible  
fluid flow where inertial forces are small compared with viscous forces. The Reynolds number is 
low, i.e. .  0Re →

This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very 
large, or the length-scales of the flow are very small, such as in Microelectromechanical systems  
(MEMS) devices or in the flow of viscous polymers. 
 
∴  Inertial forces and body are neglected  ⇒  Stokes equations :  
 

vp Δ= μgrad        (6-28) 

Using the continuity equation for incompressible fluid flow, 0div =
∂
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+
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Laplace equation for pressure:  
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⇒  the pressure can be obtained directly from the Laplace equation (6-29), taking the boundary 
conditions into account.   
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- Creeping flow around a sphere - see Fig. 6.9:  

  This is a characteristic example! 

The Stockes equation (6-28) is solved in spherical coordinate system (r, θ,ϕ) - see Fig. 6.9, using 
the boundary conditions:  

for Rr =   ⇒  ;     for 0=v ∞→r   ⇒  ∞= vvx  and ∞= ppx  
 
∴  Stokes derived the acting force of the fluid on the sphere in the "x"  direction - Fx  
     = called the Drag force (FD)! :  

∞= RvFx πμ6        (6-30a) 
or 

AvCFF DDx 2

2
∞== ρ       (6-30b) 

Where is:  ;    2RA π=
Re
24

=DC  - theoretical Ctokes Drag coefficient;   
μ
ρRv 2Re ∞=  

∴    However, since the inertial forces are neglected  ⇒   
Re
24

≠DC .  

∴  CD  has to be obtained with experiment - see Fig. 6.9b. 
 

 
a) b) (Re)fCD =  - solid line = experiments;  

    (1) - Stokes' equation; (2) - Oseen's equation 

Fig. 6.9: Creeping flow around a sphere 
 
 
 

-  Two-dimensional boundary layer 
 
A boundary layer is that layer of fluid in the immediate vicinity of a bounding surface- Fig. 6.10a,b.  

In the Earth's atmosphere, the planetary boundary layer is the air layer near the ground affected by 
diurnal heat, moisture or momentum transfer to or from the surface.  

On an aircraft wing the boundary layer is the part of the flow close to the wing.  
The boundary layer effect occurs at the field region in which all changes occur in the flow pattern. 
The boundary layer distorts surrounding nonviscous flow.  
It is a phenomenon of viscous forces. This effect is related to the Reynolds number. 
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∴ Some conclusions: 
- With real fluids there is no "slip" at the riigid boundaries. The fluid velocity relative to the 

boundary is zero (see Fig. 6.10).  
- The velocity gradient and shear stress have maximum values at the boundaries.  
- Significant viscous shear occurs only within a thin layer next to the boundary (called 

"boundary layer" . Outside this layer viscous shear becomes small.  
- Inside the layer, the viscous effects override the inertia effects.  
- The stream lines of the main flow beyond the boundary layer conform essentially to a 

potential flow!!! 

 
Fig. 6.10 a,b: Boundary layer versus slip flow: (a) flat plate ;(b) cylinder 

 

  
      Fig. 6.10 c: Boundary layers in ducts   Fig. 6.10 d:Boundary layer thickness 
 
Numerous theoretical and experimental investigations are realized concerning the boundary layer 
phenomena! 
General classification: laminar and turbulent boundary layer (see Fig. 6.11).  

 
Fig. 6.11: Laminar and turbulent boundary layer 
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In this chapter only a basic approach to the laminar boundary layer is presented.  
Laminar boundary layers come in various forms and can be loosely classified according to their 
structure and the circumstances under which they are created. 
 

∴ For 2-D laminar boundary layer of creeping incompressible fluid flow (inertial and body 
forces are neglected) ⇒ 

Prandtl derived boundary layer equations from the governing equations for 2-D incompressible 
fluid laminar flow (equations (6-17)): 
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0=
∂
∂

t
vx  for steady flow.  

⇒ The  so-called displacement thickness of an imaginary boundary layer can be obtained, 
considering the continuity of the mass flow rate adjacent to the boundary layer (see Fig. 6.11):  

*δ

( )dyuUU
h

∫ −=
0

* ρδρ  

where is: ;  U - free stream velocity;   - mass flow rate in the absence of boundary 
layer.  

xvu = *δρU

dy
U
uh

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=

0

* 1δ       (6-32) 

∴ Difficulties in numerical obtaining of the overall boundary layer thickness δ ⇒ experiments , 
approximations:  

∴  δ  is defined as the distance to the point where Uvx 99.0=  (see Fig. 6.11).  
 

6.5. The notion of resistance, drag, and lift 
 
The investigation of the drag and lift concepts are very important for various fields oh Fluid 
Mechanics application: aeronautics, turbo machinery, multicomponents flows, chemical reactions etc.  

Drag (sometimes called resistance) is the force that resists the movement of a solid object through a 
fluid in the direction of its movement - in this case the object is moving in a quiescent fluid. 

Drag  force (FD ) can be also defined as the acting  force of the fluid flow on a immersed body, in 
the direction of the flow relative velocity V0  - see Fig. 6.12.  

The total drag force FD  can be expressed with its components as (see Fig.6.12): 

DpDfD FFF +=       (6-33) 

frictional drag :       (6-34) ∫=
S

Df dSF ϕτ sin0

pressure drag:        (6-35) ∫−=
S

Dp dSpF ϕsin
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S - total surface area.  
However, using the Stokes approaches (see equation (6-30b)), these components can be expressed 
as:  

fDfDf AVCF
2

2
0ρ=       (6-36) 

pDfDp AVCF
2

2
0ρ=        (6-37) 

CDf and CDp - corresponding drag (resistance) coefficients; Af  and Ap - reference areas.  
Usually, Af - the actual area over which the shear stresses act, e.g. the planform area of a wing or 
hydrofoil (see Fig. 6.13);  
 Ap - the frontal area of a wing or hydrofoil (see Fig. 6.13).  
 

∴ The total drag force can also be defined as:  

AVCF DD 2

2
0ρ=       (6-38) 

DpDfD CCC +=       (6-39) 

A - frontal area normal to V0 ⇒  PAA =
 

  

Fig. 6.12: Definition diagram for flow-induced forces 
 
Lift force is the sum of all the fluid dynamic forces on a body perpendicular to the direction of the 
external flow approaching that body - see Fig. 6.12 and Fig. 6.13. 
 
The lift force, lifting force or simply lift can also be defined as a mechanical force generated by 
solid objects as they move through a fluid. 
 
While many types of objects can generate lift, the most common and familiar object in this category 
is the airfoil, a relatively flat object of which the common airplane wing is an example - Fig. 6.13. 
 
For the lift force it is not customary to separate the frictional and pressure components. For bodies 
like the hydrofoil (Fig. 6.13), designed particularly for useful lift, the lift force is primarily a 
pressure-component effect.  

∴ The total lift is defined as:  

AVCLF LL 2

2
0ρ==        (6-40) 

CL - lift coefficient;  
 A - the planform area of a wing (largest projected area of the body, or the projected area normal to V0. 
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∴  CD and CL are usually experimentally obtained. Theoretical approaches exist but with many 
approximations.  

 
Fig. 6.13:Lift and drag on a hydrofoil section 

 
 
 

6.6. Basic concepts of incompressible viscous fluid turbulent flow 
 
Turbulent flow is a flow regime characterized by chaotic, stochastic property changes. 
Turbulent flow - a flow field that cannot be described with streamlines in the absolute sense. However, 
time-averaged streamlines can be defined to describe the average behavior of the flow. In turbulent flow, the 
inertia stresses dominate over the viscous stresses, leading to small-scale chaotic behavior in the fluid 
motion. 

∴ Turbulent flows are more common in the nature and more significant  
 

- Reynolds experiment and Reynolds number 

During the later half of the 19th century, Osborne Reynolds demonstrated the difference in laminar 
and turbulent flow and developed an equation to predict the transition from one flow regime to the 
other. 
Experiment includes (Fig. 6.16): 

- Water supply tank with clear test section tube and "bell mouth" entrance.  
- Dye injector with needle valve control for precision metering of dye.  
- Rotometer flow meter to measure water flow rate.  
- One bottle of dye.  

 
Fig. 6.16: Scheme of the Reynolds experiment 
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 As shown on Fig. 6.16, Reynolds injected a fine stream of dye into water flowing from a large tank 
into a glass tube. ⇒: 
- With low flow rates through the tube (small velocities), the dye stream persisted as a straight 

streak ⇒ ∴ the water moved in parallel stream lines or laminas ⇒ laminar flow.  
- As the flow was increased above a certain critical rate, the dye streak broke into irregular vortices 

and then (for very high velocities) mixed laterally throughout the cross section ⇒ turbulent flow.  
- See also Fig. 6.2. 
 
The dimensionless Reynolds number -  is an important parameter in the equations that describe 
whether flow conditions lead to laminar or turbulent flow:  

Re

 

number Reynolds
force/mass frictional

force/mass inertia
∝       (6-41) 

 
crReRe <  -  laminar flow;   - turbulent flow.  crReRe >

crRe - critical Reynolds number.  
 
Re  is one of the most important dimensionless numbers in fluid dynamics and is used, usually 
along with other dimensionless numbers, to provide a criterion for determining dynamic similitude. 
 
Concerning the definition (6-41) in the theory of similarity (see chapter 7) the following expression 
is derived: 

ν
Re 00 lvlv

==
μ
ρ       (6-42) 

0v  - characteristic velocity; l - characteristic length.  

For flow in circular pipes ⇒ 

μ
ρ dvm=Re         (6-43) 

AQvm /=  - mean velocity; d - pipe diameter. 
 
The transition between laminar and turbulent flow is often indicated by a critical Reynolds number 
(Recr), which depends on the exact flow configuration and must be determined experimentally. 
 

crReRe <  -  laminar flow;   - turbulent flow.  crReRe >
 
For example:  

2320Re =cr - critical Reynolds number for flow in pipes.  
1160Re =cr  - critical Reynolds number for flow wide channnels (the depth is characteristic length).  

 
However, within a certain range around the critical Re value, there is a region of gradual transition 
where the flow is neither fully laminar nor fully turbulent, and predictions of fluid behavior can be 
difficult.  
⇒ Many engineers will avoid any pipe configuration that falls within the range of Reynolds 
numbers from about 2000 to 3000 to ensure that the flow is either laminar or turbulent. 
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- Velocity in turbulent flow 

 
Turbulent flow has a random nature, making it difficult to describe exactly.  
It can be describe by a set of statistical properties.  
For this purpose, it is convenient to define the term of instantaneous flow properties  
 

uuu ′+=  ; vvv ′+=  ; www ′+=  ; ppp ′+=  etc.   (6-44) 
 
e.g.: v - instantaneous velocity; v  - mean value;  v′  - fluctuating component; ⇒ see Fig. 6.17. 

Here:   ; ;  xvu = yvv = zvw =   -  instantaneous velocities in the corresponding directions x,y,z. 
 

∫=
T

vdt
T

v
0

1         (6-45) 

⇒  ∫ ′=′
T

dtv
T

v
0

1  ;  ∫ ′′=′′
T

dtvu
T

vu
0

1 ;   etc.     (6-46) 

⇒ Kinetic energy of turbulence per unit mass:   

( )222

2
1

mass
 e turbulencof KE average wvu ′+′+′=    (6-47) 

 
⇒ ∴  For other properties the same approach can be applied! 

 
Fig. 6.17:  Turbulent flow instantaneous velocity 

 
Introducing the mean values, as given with equations (6-45) to (6-47), it is possible to obtain partial 
differential equations for mean flow of incompressible viscous fluid flow (from the governing 
equations derived in chapter 6.2).  

Reynolds converted the equations of motion for incompressible viscous fluid flow into such form 
⇒ Reynolds equations for incompressible turbulent flow.  
However, the introduced approximations make that the theoretically predicted behavior is different 
from the real behavior - the true details of the fluctuations are not established.   
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- Governing equations for turbulent flow  

 
The governing equations derived in chapter 6.2,  Navier-Stockes equations (6-16) + continuity 
equation (6-2) + energy equation (6-3) , are general and valid for turbulent flow as well.  
 
∴ The mathematical model of a turbulent compressible fluid  flow (general case) can be expressed 

with the following system of partial differential equations:  
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ρ  - density;  

xvu = ,  and    - velocities inyvv = zvw = x ,  and y z  directions;  
For turbulent flow:    uuu ′+=  ; vvv ′+=  ; www ′+=  ; ppp ′+=  etc.   
t  - time;  
p  - pressure;  
T  - temperature;  
k - heat conductivity coefficient;  

pc - specific heat at constant pressure; 
X , Y , Z - body force components per unit mass in  x, y and z direction;  

2)
3
2( θμλ +=Φ - dissipation function;  

)
3
2( μλ + - volumetric viscosity;     μ - dynamic viscosity; 
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∴   It is obvious that for turbulent flow the governing equations are scientifically complex. 

 
∴ Analytical solution of the system of governing partial differential equations is possible only for 

a few cases of laminar, steady flow of incompressible fluid (see chapter 6.3).  

∴   Several approximations are introduced in these cases ( 0=θ ; ntcos=ρ ; ; etc. ).            
⇒  Results differ from reality.  

constT =
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∴ Exact analytical solution of the mathematical model defined with the system partial differential 
equations (6-48) to (6-52) is not possible.  

 
 

6.7. Concepts for solving governing equations of viscous fluid flow 
 

For engineering problems solving, two general methods are available. 
• theoretical,  and 
• experimental. 

 
In the engineering analysis, and especially research work, for every problem it is necessary to figure 
out the use of one or the other method 

For most of the engineering problems the implementation of both methods is necessary.  

Which one will be used more (or less) depends of the nature of the problem and the available 
knowledge. 

The theory and the experiment have to be compatible. ⇒ more efficiency in solving the problems. 
 

- Features of theoretical methods 
 
The result of the theoretical method is definition of corresponding mathematical model, which gives 
the description of the investigated problem.  
 
If analytical solutions of the mathematical model are possible ⇒ overall results are obtained, which 
will be valid for different conditions. 
 
∴  The effort has to be in finding analytical solutions first of all. 
 
However, analytical solution of the system of governing partial differential equations is possible 
only for a few cases (see previous conclusions).  

⇒  Defining of corresponding numerical model.  
⇒ Several approximations are introduced in the process of numerical model definition.   
⇒  
∴  The numerical solutions give predictions for the corresponding process behavior. 
 
The use of sophisticated PC (even so-called "super computers") and software packages enable 
solving of such numerical models, for which extremely long execution time was needed in the past 
(or it was impossible to be solved). 

 
The features of the theoretical method can be summarized as follows: 
 

1. Often give results that are of general use rather than for restricted application.  

2. Invariably require the application of simplifying assumptions. Thus not the actual physical 
system but rather a simplified "mathematical model" of the system is studied. This means 
the theoretically predicted behavior is always different from the real behavior.  

3. In some cases, may lead to complicated mathematical problems. This has blocked 
theoretical treatment of many problems in the past. Today, increasing availability of high-
speed computing machines allows theoretical treatment of many problems that could not be 
so treated in the past.  
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4. Besides theoretical knowledge; require only pencil, paper, computing machines, etc. 
Extensive laboratory facilities are not required. (Some computers are very complex and 
expensive, but they can be used for solving all kinds of problems. Much laboratory 
equipment, on the other hand, is special-purpose and suited only to a limited variety of 
tasks.)  

5. No time delay engendered in building models, assembling and checking instrumentation, 
and gathering data.  

 
Concerning theoretical method for solving governing equations of viscous fluid flow: 
 
- Turbulence modeling is the area of physical modeling where a simpler mathematical model than 

the full time dependent Navier-Stokes equations is used to predict the effects of turbulence. 
 
- Reynolds-averaged Navier-Stokes equations (RANS) is the oldest approach to turbulence 

modeling. An ensemble version of the governing equations is solved, which introduces new 
apparent stresses known as Reynolds stresses. 

⇒  Mathematically, turbulent flow is represented via Reynolds decomposition, in which the flow is 
broken down into the sum of a steady component and a perturbation component   
⇒  see   previously defined instantaneous, mean and fluctuating flow properties - equations (6-44) 
to (6-47). 

⇒  Derivation of the Reynolds-averaged Navier-Stokes (RANS) equations, which are time-averaged 
equations of motion for fluid flow. They have been primarily used while dealing with turbulent flows.  
 
- Joseph Boussinesq was the first practitioner of this, introducing the concept of eddy viscosity. In 

this model, the additional turbulent stresses are given by augmenting the molecular viscosity with 
an eddy viscosity. This can be a simple constant eddy viscosity (which works well for some free 
shear flows such as axisymmetric jets, 2-D jets, and mixing layers).  

- Later, Ludwig Prandtl introduced the additional concept of the mixing length, along with the idea 
of a boundary layer. For wall-bounded turbulent flows, the eddy viscosity must vary with distance 
from the wall, hence the addition of the concept of a 'mixing length'. In the simplest wall-bounded 
flow model, the eddy viscosity is given by the equation. 

- However, since it is believed that turbulent flows obey the Navier-Stokes equations. Direct 
Numerical Simulation (DNS), based on the incompressible Navier-Stokes equations, makes it 
possible to simulate turbulent flows with moderate Reynolds numbers (restrictions depend on the 
power of computer and efficiency of solution algorithm). The results of DNS agree with the 
experimental data. The DNS is widly applied in Computational fluid dynamics approach (CFD). 

 
- Experimental and semi-empirical approach 

 
Especially, for problems being on the edge of knowledge, i.e. there are now enough adequate 
theoretical descriptions and predictions, extensive experimental investigations are needed.  

However, the links between the existing theory and the experiment have to be defined ⇒ 
Dimensional analysis and Theory of similarity are of great help. 

For conducting the experimental method, defining and realization of a physical model is needed 

The physical model has to be similar to the original (prototype) as much as possible. 
 
A corresponding laboratory installation has to be constructed for the defined physical model ⇒ 
experiments and measurements of the governing properties would be performed.  

A. Nospal 6.  Some fundamental concepts of viscous fluid flow 



 DEREC   Fluid Mechanics - Lectures         88 

 
The features of the experimental method can be summarized as follows: 
  

1. Often give results that apply only to the specific system being tested. However. techniques 
such as dimensional analysis may allow some generalization.  

2. No simplifying assumptions necessary if tests are run on an actual system. The true behavior 
of the system is revealed.  

3. Accurate measurements necessary to give a true picture. This may require expensive and 
complicated equipment. The characteristics of all the measuring and recording equipment 
must be thoroughly understood.  

4. Actual system or a scale model required. If a scale model is used, similarity of all significant 
features must be preserved.  

5. Considerable time required for design, construction, and debugging of apparatus.  

 
∴ The experimental method can help in resolving the problems of introducing the 

approximations in the process of solving the mathematical/numerical model.  
⇒ 
Types of problems that can be resoled by use of the experimental model;  
 

1. Testing the validity of theoretical predictions based on simplifying assumptions; 
improvement of theory, based on measured behaviour.  
⇒  semi-empirical approach for solving the governing equations.  

2. Formulation of generalized empirical relationships in situations where no adequate theory 
exists.  
Example: determination of friction factor for turbulent pipe flow.  

3. Determination of material, component, and system parameters, variables, and performance 
indices.  
Examples: determination of yield point of certain alloy steel, speed-torque curves for an 
electric motor, thermal efficiency of a steam turbine.  

4. Study of phenomena with hopes of developing a theory.  
Example: electron microscopy of metal fatigue cracks.  

5. Solution of mathematical equations by means of analogies.  
Example: solution of shaft torsion problems by measurements on soap bubbles.  

 
 

- CFD approach 
 
The development of the Numerical analysis, and especially the development and application of the 
sophisticated computers and software, have introduced numerical methods for solving the 
governing equations. These methods can be classified in general as:  

- integral method, 
- method of finite elements/differences,  
- method of finite volumes. 

 
A direct numerical simulation (DNS) is a simulation in computational fluid dynamics (CFD) in 
which the Navier-Stokes equations are numerically solved without any turbulence model. This 
means that the whole range of spatial and temporal scales of the turbulence must be resolved. All 
the spatial scales of the turbulence must be resolved in the computational mesh, 
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Direct numerical simulation (DNS) captures all of the relevant scales of turbulent motion, so no 
model is needed for the smallest scales. This approach is extremely expensive, if not intractable, for 
complex problems on modern computing machines, hence the need for models to represent the 
smallest scales of fluid motion. 
 
∴ 
The behavior of fluid flow is described by well-established partial differential equations – 
governing equations.  
Except for very simple conditions, these equations need to be solved numerically with the aid of 
computers.  
To this end, the predefined flow domain is covered by a numerical mesh, which defines nodes at 
mesh cross-sections and finite volumes or finite elements which are patches of area of volume cells 
around nodes or between consecutive mesh lines.  
The differential flow-governing equations are then approximated, using numerical discretisation 
schemes, as sets of algebraic equations, each pertaining to a node, finite volume or finite element. 
The collection of coupled algebraic equation are then solved, by linear-algebra methods, on a 
computer to yield discrete values of velocity and pressure at mesh nodes.  
 
The collection of theoretical, numerical and computational techniques that facilitate this process is 
called Computational Fluid Dynamics.  
 
Computational fluid dynamics (CFD) is one of the branches of fluid mechanics that uses numerical 
methods and algorithms to solve and analyze problems that involve fluid flows. Computers are used 
to perform the millions of calculations required to simulate the interaction of fluids with the 
complex surfaces used in engineering. 
 

What use is CFD? 
 
Knowing how fluids will flow, and what will be their quantitative effects on the solids 
with which they are in contact, CFD assists in:  

- building-services engineers and architects to provide comfortable and safe human 
environments;  

- power-plant designers to attain maximum efficiency, and reduce release of pollutants;  
- chemical engineers to maximize the yields from their reactors and processing equipment;  
- land-, air- and marine-vehicle designers to achieve maximum performance, at least cost;  
- risk-and-hazard analysts, and safety engineers, to predict how much damage to structures, 

equipment, human beings, animals and vegetation will be caused by fires, explosions and 
blast waves.  

 
CFD-based flow simulations enable:  

- metropolitan authorities need to determine where pollutant-emitting industrial plant may 
be safely located, and under what conditions motor-vehicle access must be restricted so as 
to preserve air quality;  

- meteorologists and oceanographers to foretell winds and water currents; - hydrologists and 
others concerned with ground-water to forecast the effects of changes to ground-surface 
cover, of the creation of dams and aquaducts on the quantity and quality of water supplies;  

- petroleum engineers to design optimum oil-recovery strategies, and the equipment for 
putting them into practice;  

- ... and so on.  
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Within a few years, it is to be expected, surgeons will conduct operations which may 
affect the flow of fluids within the human body (blood, urine, air, the fluid within the 
brain) only after their probable effects have been predicted by CFD methods.  

 
However, even with simplified equations and high-speed supercomputers, still approximate 
solutions can be achieved in many cases.  
More accurate software that can accurately and quickly simulate even complex scenarios such as 
transonic or turbulent flows are an ongoing area of research. Validation of such software is often 
performed using experiments on a physical model. . 
 

   
 

       
Fig. 6.18: Examples of CFD solutions 
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7. Basic consideration of Experimental Fluid Mechanics 
 

7.1. Basic approach to the Dimensional Analysis  
 
Why Dimensional Analysis?   
 

⇒ A significant help of Dimensional Analysis and Theory of similarity in defining a 
connection between the existing theory and the adequate experiment. 

⇒ In many cases the Dimensional analysis enables adequate generalizations and formulation 
of generalized empiric expressions. 

⇒ The gain of the dimensional analysis use is very important in reducing the experimental 
work, through transformation of certain functional relationship into relationship of 
dimensionless groups. 

 

∴ The bases of the dimensional analysis application are presented with concrete practical 
examples.  
The presented matter is also useful for figure out the dimensional formulae and measurement 
units of significant physical quantities ⇒ see the table in chapter 1.2.  

 

- dimensional homogeneity, Rayleigh method, the significance of non-dimensional 
relationships and numbers,  

 

Equations in physics have dimensional homogeneity - not only because of their theoretical 
derivation but also due to the way of measurements of the physical quantities.  

Definition: 
All members in an equation have the same physical meaning and are expressed with same 
measurement units. 
Example:  
A form of the Bernoulli equation 

 
22

2
0

00

2 vhpvhp ργργ ++=++    (7-1) 

⇒ All members have same dimensional formula -  [FL– 2]  i.e. [ML–1T– 2], and are expressed with 
same units -  [N/m2]. 

Another form of the Bernoulli equation: 
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⇒  each member has dimensional formula [L2T- 2], i.e. energy per unit mass [Nm/kg].  

The most known form: 
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⇒ Each member has dimensional formula  [L]   
⇒  work per unit force in [Nm/N] i.e. [m] = hydraulic head. 
 
In  the table Dimensional Formulae and Measurement Units -  see chapter 1.2 ⇒ dimensional 
formulae for the most used physical quantities in both systems of fundamental dimensions 
(M,L,T,θ) (M,L,T,θ) and (F,L,T, θ) ⇒ the corresponding measurement units are given as well. 
 
 

- Rayleigh's method 
 
Rayleigh's method = practical aproach to the dimensional analysis.  
Vaschy' s method = general theory of dimensional analysis.  
 
From his theoretical work in physics and experience, Lord Rayleigh made a conclusion that most of 
the solutions of theoretical analysis were in a form of products of powers of the involved variables 
and parameters:    

     (7-4) zyxw tsrqCP =

A simple example ⇒ the expression for the period of the simple pendulum with length l and driven 
by the gravity force: 

 
g
lπθ 2=     (7-5) 

∴    2/12/1 −== gClgCl yxθ
 
Another example ⇒ pressure drop per unit length in a horizontal circular pipe, for laminar steady 
flow:  

 232
d
v

L
p aveμ=

Δ     (7-6) 

μ  - dynamic viscosity;   - average velocity.  AQvave /=
 
If it is assumed that the equation (7-6) has not been discovered yet, but it is known that  

),,(/ dvfLp aveμ=Δ , from the Rayleigh's approach - expression (7-4) ⇒  

 zy
ave

x dvC
L
p μ=

Δ
    (7-7) 

From Rayleigh's method ⇒ the exponents can be obtained as 2  ,1  ,1 −=== zyx .   
The constant C cannot be determined with this method.  
 
In (7-4), in an arbitrarily manner, a function of four independent variables is presented.  
There is no loss of generality if other number of independent variables is used - it can be any 
number.  
However, the discussion should be based on lesser number of fundamental dimensions (M, L, T, θ).  
 
Rayleigh's method is based on dimensional homogeneity ⇒ in the equation (7-4) both sides should 
be with equal dimensions.  

⇒ it leads to as many algebraic equations as the number of the applied exponents. 

However, it is possible:   ;  ;  onentsequations nn exp= onentsequations nn exp> onentsequations nn exp<   ⇒  problem? 
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The concept of dependent and independent variables: 

In the expression (7-4):  
P - function (dependent variable;    q, r, s and t - independent variables.  
 
Same independent variables can be associated with different functions 
 
E.g., the wall shear stress of a laminar viscous flow in a circular pipe:  

 
d
vsr

w μτ 8=     (7-8) 

⇒ the same independent variables as in (7-6), but with different exponents. 
  
Which is dependent variable, and which are the independent variables, is related to the manner how 
the problem arises or is formulated. 
If in the case of laminar flow in a pipe, the average velocity was of interest ⇒  

 ),/,( dLpfvave Δ= μ    (7-9) 

vave  -  dependent variable;  
μ, Δp/L, d  - independent variables. 

∴  Important to notice:  
 
In the analysis of a specific problem, it is suggested not to include by mistake one or more 
additional dependent variable among the independent variables 
 
∴ A method older than one century but still responds excellent to the problems of the practical 
dimensional analysis.  
 
∴ Steps of the procedure :  
- Recognition of dependent (P) and independent (q,r,s,t,..) variables in a given problem;  
- Application of the general equation (7-4);  
- Satisfaction of the dimensional homogeneity;  
- Determination of algebraic equation, which correspond to the introduced exponents (w,x,y,z,..);  
- Calculation of as many exponents as possible;  
- Writing the final results. 
 
The Rayleigh's method will be illustrated through examples ⇒ 

 

Simple pendulum 

Assumption:  

Very little is known about this phenomenon, but enough to conclude that: 
 

 θ = f (g, l)    (7-10) 

According (7-4) ⇒              yx gCl=θ                    (7-11) 

From table Dimensional Formulae and Measurement Units -  1.2 ⇒ dimensional formulae:  

 [θ ] = L0T1  ;   [l ] = L1T0  ;   [g ] = L1T- 2   (7-12) 
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From (7-10) and (7-12) ⇒   L0T1 = (L)x (LyT-2y)    (7-13)  

⇒  ⇒              x = 1/2     and     y = - 1/2.     (7-14) 
y

yx
21

0
−=

+=

Finally: 
 2/12/1 −== gClgCl yxθ    (7-15) 

The constant C cannot be determined with this method ⇒ only with experiment, or analytically.  
 
Stokes law for fluid drag  

Laminar creeping flow around a sphere is treated - as in chapter 6.4 ⇒ inertial forces can be 
neglected ⇒   

∴ the flow is dominated be the viscous forces  ),,( dvfFD μ=  ⇒ 

    (7-16) zyx
D dvCF μ=

Dimensional formulae are: 

[FD] =MLT-2 ;   [μ] = ML-1T-1 ;   [v] = M0LT-1 ;   [d] = M0L1T0   (7-17) 

Applying the dimensional homogeneity in (7-16) ⇒ algebraic equations: 
  

 x = 1   for   M 
 - x + y + z = 1  for    L             (7-18)  
 - x - y = - 2  for   T 

⇒  Solutions:  x = 1 ,   y = 1 ,    z = 1 , ⇒  
 

 dvCFD μ=     (7-19) 

In chapter 6.4, it was shown the procedure for mathematical derivation of Drag force equation from 
the Stokes general equation - see equation (6-30) ;   ∞= RvFx πμ6 .       

∴  The equation (7-19), which doesn't defer from (6-30), was obtained much easier.  
      The constant C can be obtained with one good experiment. 
 

 

Venturi flow meter 
 
One of the classical methodologies for flow rate measurements.  

Herschell, inspired by Venturi's works, invented the Venturi flow meter. 
 
On Fig.7.1 the usual form of a Venturi meter is given.  

In chapter 5.2 the volume flow rate equation for steady flow of inviscid incompressible fluid was 
derived,  see equation (5.10), i.e:   
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If the Dimensional analysis is used ⇒  

),,,( DdpfQ ρΔ= ,      i. e.         (7-21) uzyx DdpCQ ρΔ=

The fluid is accelerated toward the throat due to the pressure forces; with very little contribution of 
the viscous forces ⇒  ∴  the viscous forces can be neglected! 

Applying the dimensional formulae ⇒ 
 

 M0L3T-1 = MxL-xT-2xMyL-3yLzLu    (7-22) 
⇒ 

         x + y = 0 
                                -x - 3y + z + u = 3     (7-23) 

        -2x = -1 

⇒     eksponentiravenki nn <     ⇒     x = 1/2,  y = -1/2,  z = 2 - u 

⇒ udDdpCQ )/(2

ρ
Δ

=     (7-24) 

∴ The expression (7-24) is similar to (7-20), but still all members are not defined.  

     Therefore, it is better to express the volume flow rate as:  

 )/(2 dDFdpQ
ρ

Δ
=      (7-25) 

∴  F(d/D)  can be determined by experiment.  
 

 

Δp = Δh (ρm-ρ) g

 
Fig. 7.1: Venturi pipe 

 
Venturi flow meter for viscous fluid flow - refined analysis: 
 
The viscosity of the fluid is taken into account ⇒ theoretical solution of this problem is not 
discovered yet.   

⇒ However, the application of the dimensional analysis and corresponding experiments have given 
very good results.   

Following the Rayleigh's approach (7-4), ⇒ 
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),,,,( μρ DdpfQ Δ=  =    (7-26)  vuzyx DdpC μρΔ

Applying the dimensional homogeneity and the corresponding dimensional formulae ⇒ 

L3T-1 = C (ML-1T-2)x(ML-3)yLzLu(ML-1T-1)v,  
 

⇒                 x + y + v = 0   ⇒  x = 1/2 - v/2 
               -x - 3y + z + u - v = 3    y = - 1/2 - v/2 
                              -2x - v = -1     z = 2 - u - v 

⇒  
v

dp

u

d
DdpCQ ⎟
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Δ
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ρ

μ
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2     (7-29) 

Rayleigh will define (7-29) as:  
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=     (7-30) 

or transformed as:                     
ρ

π
ρ

π pdC
D
dFpdQ d

Δ
=⎟

⎠
⎞

⎜
⎝
⎛⋅

Δ
=

2
4

Re,2
4

22

     (7-30a) 

where is:                                       

ρ
π pd

Q
D
dFCd Δ

=⎟
⎠
⎞

⎜
⎝
⎛=

2
4

Re, 2   = discharge coefficient           (7-31) 

Re=
Δ

μρ
ρ dp  - a form of Reynolds number 

∴ Cd  can be obtained with experiment. Some of the experimental results for Cd for orifice 
meter and Venturi meter are shown on Fig. 7.2.  

orifice

orifice

Venturi

 

Fig. 7.2: Discharge coefficient for orifice meter and Venturi meter in function of  Re 
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- Dimensionless groups 
 

Some of the examples lead to a transformation of certain functional dependence to another, which 
contains less variables. 

The new variables consist of products of powers of the old ones. 
 
For example, from the dimensional analysis of Venturi meter ⇒ 

Q = f (Δp, ρ, d, D)  (7-34)   ⇒  ( DdF
pd

Q
=

Δ
ρ

2

)          (7-36) 

Q = f (Δp, ρ, d, D, µ)  (7-35)  ⇒   ( DdF
pd

Q Re,
2

=
Δ
ρ

)  (7-37) 

The functions F(d/D)and F(Re, d/D) can be obtained experientially (with measurements), and 
sometimes analytically. 

Sometimes, the functional relationships can be determined so well, that only a constant remains to 
be found. 

Ponekoga{ funkcionalnite vrski mo`at da se  opredelat  taka dobro {to samo 
konstantata ostanuva kako nepoznata ⇒:    
 

Examples   ⇒  
( )

C
gl
T

=21 ;  C
dv
Lp

=
Δ

2μ
     (7-38) 

 
The last two examples show the essential gain of the dimensional analysis:  
∴  The form of the function is completely determined, and only a constant remains to be found.  
⇒ In theory, only one good experiment should be enough for this.  
 
The gain is also important in the examples (1-36) and (1-37): 

- Suppose that for a function of n = 1 variable, 10 experimental points are necessary (Fig. 7.3).  
- For a funcion of n=2 variables, family of 10 curves (102 experimental points) are needed.  
- For a funcion of n variables, ⇒ ∴ 10n experimental points.  

∴ It is obvious that, e.g. with the reduction of the expression (7-34) to an expression with only one 
variable (7-36), ⇒ 1000 times less experiments would be needed to determine the function! 
 

Besides this enormous gain in reducing the amount of experimental work, there are other 
advantages in applying the dimensional analysis and introducing of new variables in dimensionless 
forms.      ⇒  Vaschy's theorem. 
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Fig. 7.3: A function of n = 1 variable       Fig. 7.4: A function of n = 1 variables  
   - 10 experimental points          - 102 experimental points 

 
 

- Vaschy's theorem 
 
Any function f(u1 , u2 , u3 ,.. un) = 0, which is a relationship between "n" physical variables ui, and 
satisfies the dimensional homogeneity, can be reduced to a function F(G1, G2, G3, ..., Gn-r) = 0 with 
"n-r" dimensionless variables - where "r" is the rank of the matrix of the dimensions. 

In some literature this theorem is known as π theorem.  
 
The proof of this theorem is based mostly on physical arguments - working with some physical 
procedures requirements and data acquisitions..  

E.g., suppose that through experiments it is established a table of the values u1, u2, u3, ..., un; which 
define the function f(u1 , u2 , u3 ,.. un) = 0 in one usual system of fundamental dimensions (M,L,T 
for example):  
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 in M,L,T  system 

u1 u2 u3 u4 ... ui ... un

u11 u21 u31 u41 ... ui1 ... un1

u12 u22 u32 u42 ... ui2 ... un2

... ... ... ... ... ... ... ... 

 
 
 
 

 
⇒ Change of the fundamental dimensions:  

Suppose that r = 3, and that the new dimensions are U1,U2,U3 (which correspond to u1 , u2 , u3). 

⇒ The units of  U1,U2,U3 are identical with the values of u1, u2, u3  in every row in the table.  
⇒ The data in all firs three columns become one.  
⇒ The other columns obtain values defined with dimensionless combinations of u4, u5, u6, ..., un 

with u1, u2, u3:  
 

 1 1 1 u4/u1 ... ui/u1u2u3 ... un/u1u2

1 1 1 (u4/u1)1 ... (ui/u1u2u3)1 ... (un/u1u2)1

1 1 1 (u4/u1)2 ... (ui/u1u2u3)2 ... (un/u1u2)2

... ... ... ... ... ... ... ... 

 
in U1, U2, U3  system 
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To show the proof clearer, the case of fluid flow in a pipe, f(τ, ρ, u, d, μ, k) = 0, s presented. 

According the previously given approach, data obtained by experiment can be systemized in a table 
in M,L,T system:  
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           in M,L,T system  

Example for data systematization in case of investigation 
of flow in pipe  f(ρ, u, d, μ, k, τ) = 0 

ρ u d μ k τ 
ρ1 u1 d1 μ1 k1 τ1

ρ2 u2 d2 μ2 k2 τ2

ρ3 u3 d3 μ3 k3 τ3

 
 
 
 
 

If new dimensions D, V, L  (corresponding to ρ, u, d), 
⇒ according Vaschy, the function f(ρ, u, d, μ, k, τ) = 0 can be reduced to a funcon 

F(μ/ρud, k/d, τ/ρu2)= 0, and the table of the data acquisition can be simplified, i.e. the 
followingtable can be obtained:  

 
 
 
 
 

  in D, V, L  system   

Data acquisition for f(ρ, u, d, μ, k, τ) = 0 with new dimensions 
D, V, L  (ρ, u, d) 

1 1 1 μ/ρud k/d τ/ρu2

1 1 1 μ1/ρ1u1d1 k1/d1 (τ/ρu2)1

1 1 1 μ2/ρ2u2d2 k2/d2 (τ/ρu2)2

 
 
 
 

Re=ρud/μ - Reynolds number   
                                                                                        k -relative roughness     

Re k Cr
Re1 k1 Cr1
Re2 k2 Cr2
Re3 k3 Cr3

        Cr -  resistence coefficient 
 

   
The data reduction process, illustrated in the previous tables, is irreversible, but most useful for 
further analyses. 
 

⇒ Example: Ventury meter 
 

 f(ρ, Δp, d, D, μ, Q) = 0    (7-49) 

Following the above approach ⇒ 
The matrix of dimensions has to be writen, in order to determine the rank r of  the matrix of the 
fundamental dimensions.  

∴ The matrix in M,L,T system is:  
  

 ρ Δp d D μ Q  

M 1 1 0 0 1 0  

L -3 -1 1 1 -1 3 (7-50) 

T 0 -2 0 0 -1 -1  
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- Since there is at least one [ ] 0det ≠ija  ⇒  the rank is 3=r ! 
- The new system of dimensions hast to be chosen. Here, D, P, L (corresponding to ρ, Δp, d) 

are chosen to be the new dimensions; 

- The relationships M = M(D, P, L) ;   L = L(D, P, L)   and   T = T(D, P, L) have to be found; 

 From D = ML-3 ; P = ML-1T-2 ; L = L    

 - see Table of dimenssional formulae and matrix (7-50) 
 

⇒ M = DL3 ; T = D1/2PP

-1/2L ; L = L ,    (7-51) 

∴ The matrix with the new dimensionsis: 
 

 ρ Δp d D μ Q  

D 1 0 0 0 1/2 -1/2  

P 0 1 0 0 1/2 1/2 (7-52) 

L 0 0 1 1 1 2  

 
⇒ Forming of n-r dimensionless groups with ρ, Δp  i d;  ⇒ from f(u1 , u2 ,..., un) = 0   
⇒ F(G1, G2,..., Gn-r) = 0.  

 
Here, n = 6, and r = 3; ⇒ three dimensionless groups G1, G2 i G3, for which, using the dimensions 

of D, μ and Q in the new D, P, L system (see matrix (7-52)), it can be obtained: 
 

 
d
DG =1  ;      

dp
G 21212 Δ

=
ρ

μ  ;      221213 dp
QG
Δ

= −ρ
   (7-53) 

∴  The final result is: 

 0Re,,2 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ D
d

pd
QF

ρ
   (7-54) 

Compare (7-54) with (7-31)! 
 
 
 
 
7.2. Basic approach to the experimental investigation and application of the similarity 

theory - similitude 
 

Similitude is a concept used in the testing of engineering models.  

Engineering models are used to study complex fluid dynamics problems where calculations and 
computer simulations aren't reliable. Models are usually smaller than the final design, but not 
always. Scale models allow testing of a design prior to building, and in many cases are a critical 
step in the development process. 
 
⇒ Idea for experiments on a phenomenon in certain scale, in order to obtain data that can be 

converted to another scale.  
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⇒ To know the relationships between the results obtained in a model phenomenon, and the 

results that would be obtained in a prototype phenomenon. 

∴ Galileo Galilei was among the firsts that recognized that the relationships between the model 
and prototype are not simple.  

 
⇒  Definition of model and prototype:  
 
A physical model is used in various contexts to mean a physical representation of some thing. That 
thing may be a single item or object (for example, a bolt) or a large system (for example, the Solar 
System). 
A prototype (or original) is an original type, form, or instance of some thing serving as a typical 
example, basis,or standard for other things of the same category. 
 
∴ A model is said to have similitude with the prototype (real application) if the two share 

geometric similarity, kinematic similarity and dynamic similarity - see Fig. 7.4..  
• Geometric similarity - The model is the same shape as the application, usually scaled.  
• Kinematic similarity - Fluid flow of both the model and real application must undergo 

similar time rates of change motions. (fluid streamlines are similar)  
• Dynamic similarity - Ratios of all forces acting on corresponding fluid particles and 

boundary surfaces in the two systems are constant.  

 

Fig. 7.5: Concept of similarity 
 

∴ Procedure for obtaining results from experimental analysis on certain physical model in 
laboratory conditions:  

- Analysis of the problem and defining of the governing equations (laws) and properties;  
- Defining the similarity criteria between the model and the prototype;  
- Construction of the corresponding physical model;  
- Experiments on the model, measurements and data acquisition;  
- Systematization and analysis of the obtained results;  
- Transfer pf the obtained results from the model investigation to the prototype, using already 

defined similarity criteria. 
 
∴  The advantage of the physical model investigation is obvious! 
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- Fundamental scales of similarity:  
 

Following the concept of fundamental dimensions M,L,T; fundamental scales of similarity can be 
defined as well: 

 
Geometric symilarity:  

m

p
L l

l
S =        (7-55) 

pl  - characteristic length in the prototype;   - characteristic length in the model. ml
 
∴  2

LmpA SAAS ==  - for area;  3
LmpV SVVS ==  - for volume; etc. 

 
Kinematical symilarity:  

1−== TL
m

p
v SS

v
v

S       (7-56) 

pv  - characteristic velocity in the prototype;   - characteristic velocity in the model. mv
 
∴    - for acceleration;   - for volum flow rate; etc. 2/ −== TLmpa SSaaS 132 −== TLvLQ SSSSS
 
Material symilarity:  

m

p
M m

m
S =         (7-57) 

or                 31 −− ==
ΔΔ
ΔΔ

== LMVM
mm

pp

m

p SSSS
Vm
Vm

S
ρ
ρ

ρ      (7-58) 

 
pm  - mass in the prototype;  - mass in the model; etc. mm

 
Dynamic symilarity:  

2−=== TLM
mm

pp

m

p
F SSS

am
am

F
F

S       (7-59) 

or           (7-60) ρSSSS vLF
22=

pF  - force in the prototype;  - force in the model mF

⇒     MTLLF
mm

pp
W SSSSS

rdF
rdF

S 22

),(
),( −=== rr

rr

 -  for work 

MTLvM

mm

pp

Ek SSSSS
vm

vm
S 222

2

2

2
1
2
1

−===  - for kinetic energy 

∴  
kEW SS =

∴ If two quantities have the same dimensional formulae, they will have the same formulae of 
the similarity scales - see the table billow.   
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Scales and dimensional formulae for some physical 
quantities  

Scale Quantity Dimensional 
formula 

SL  Length  L 

ST  Time T 

S M  Mass  M 

S SM L
− 3  Density  ML-3

S S SL T M
− 2  Force  MLT-2

S S SL T M
2 2−  

Moment of a force; 
Kinetic energy;  
Work  

ML2T-2

S S SL T M
− −1 2  

Pressure; Shear 
stress; Turbulent 
(Reynolds) stress  

ML-1T-2

S S SL T M
− 1  Impuls;  

Momentum  MLT-1

S S SL T M
− 2  Momentum flux;   MLT-2

S S SL T M
2 1−  Moment of momentum ML2T-1

S S SL T M
− −2 2  Pressure gradient  ML-2T-2

 
 

-   similarity criteria for characteristic flow conditions  
 
 Viscous forces:  
 
Flow of incompressible fluid with linear viscous behavior (Newtonian fluid) is treated.  
 

According Newton (see chapter 6.1) ⇒ 
dn
dvμτ =   ⇒ 

dn
dvAF μμ =         (7-61) 

∴ The scale of similarity  for viscous forces will bee:  

12

.

. −=== TL

m

m
mm

p

p
pp

m

p
F SSS

dn
dvA

dn
dv

A

F
F

S μ
μ

μ

μ

μ

μ
      (7-62) 

From the fundamental laws of Mechanics (D'Alembert's principle) ⇒ 
 
Any force scale determined for a particular type of force must be equal to the determined scale of 
inertial force - see equation (7-59) ⇒  

FF SS =
μ

 ⇒      (7-63) 212 −− = TLMTL SSSSSSμ

⇒  From (7-63) the scale for dynamic viscosity can be obtained:  
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vLTLM SSSSSSS ρμ == −− 11      (7-64) 
 
Expressing the scales of symilarity for the separate quantities in equation (7-64) ⇒  

1

p

==

m

p

m

p

m

p

mvL v
v

l
l

S
SSS

μ
μ

ρ
ρ

μ

ρ       (7-65) 

∴ The Reynolds criterion or law of similarity for viscous flows (in which there is an 
interaction between viscous and inertial forces) is derived.  

∴ The Reynolds number of the prototype( ) should be equal to the Reynolds number of the 
model( ):  

pRe

mRe

m
m

mmm

p

ppp
p

lvlv
ReRe ===

μ
ρ

μ
ρ

      (7-66) 

Obviously the definition given in chapter 6.1 is valid.  
 

number Reynolds
force/mass frictional

force/mass inertia
∝  

 
 
Gravitational forces:  

mm

pp

m

p
G V

V
G
G

S
γ
γ

==        (7-67) 

pG  - gravitational force in the prototype;   - gravitational force in the model. mG

VVgmgG γρ ===  

Any force scale determined for a particular type of force must be equal to the determined scale of 
inertial force - see equation (7-59) ⇒  

FG SS =  ⇒      (7-67) 2−= TLMV SSSSSγ

Since:  ,    and   ⇒ a form of the Froude's criterion: 3
LV SS = ρSSS LM

3= 1−= υSSS LT

1
12

=
−

ργ

υ

SS
SS L        (7-68) 

Taking:  
m

p
L l

l
S = ; 

m

p
v v

v
S = ;  

m

pS
ρ
ρ

ρ = ;   g=ργ ;   etc. ⇒  

m
m

m

p

p
p gl

v
gl
v

FrFr ===       (7-69) 

∴ The Froude's number of the prototype ( ) should be equal to the Froude's number of the 
model ( ).  

pFr

mFr
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∴ In a similar way other similarity criteria for other accting forces can be determined.  
 For example:  

mp MM ===
m

m

p

p

c
v

c
v

  - Mach's criterion for elastic forces   (7-70) 

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
VEc  - acoustic velocity in the substance. 

m

mm

m

m

pp

p

p
p

l

v

l

v
WeWe ===

ρ
σ

ρ
σ

  - Weber's criterion for surface tension  (7-71) 

m
mm

m

pp

p
p v

p
v

p
EuEu 22 ===

ρρ
 - Euler's criterion     (7-72) 

 

Flow dominated by two forces - model and prototype in the same gravity field, and with same 
fluids:  

Example: Very often viscous and gravitational forces have to be taken into account. ⇒  
 

mp ReRe =   and mp FrFr =     ⇒   1=
ρμ

υ

SS
SS L   and  1

12

=
−

ργ

υ

SS
SS L    (7-73) 

⇒  
( )
( ) 31

32

ργ

ρμ

SS
SS

SL =       (7-74) 

If the model and the prototype have to be in the same gravitational field - which is reality ⇒: 

1/ == ργ SSSg  

⇒  1=
νS
SS Lv   and       (7-75) 112 =−

Lv SS

ρμ SSS /=ν  - scale of kinematic viscousity; mpv vvS /= ;  mpL llS /= . 

⇒  32)( νSSL =       (7-76) 
∴ SL and Sν  are directly relate.  

If  SL is chosen, the viscosity scale Sν  would be fixed.  
Example: if  SL = 20 ⇒ Sν ≈ 90 - If the fluid of the prototype is water, it is impossible to find 
corresponding fluid for the model! 

  
In practice, usually same fluids are used in the model and the prototype  ⇒  1/ ==ν ρμ SSS  

⇒ Problem ⇒ To solve it, use the art of symulation:  
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⇒ From case to case it is necessary to figure out which kind of forces is dominant ⇒ the 
corresponding criterion will be used as the basic criterion of similarity, and the others criteria as 
control criteria!  
 
 
Examples:  
 
-   If it is concluded that viscous forces are more dominant ⇒ the Re  law will be the basic one,  
     and Fr  will be used for control ⇒   

in  1=
νS
SS Lv ,  for   1/ ==ν ρμ SSS    ⇒     1=vLSS    ⇒    1−== L

m

p
v S

v
v

S    (7-77) 

Example:  for   ⇒    ⇒  Problem can arise for large scales! 50=LS pm vv 50=
 
-  If it is concluded that gravitational forces are more dominant ⇒ the Fr  law will be the basic one,  
     and Re  will be used for control ⇒ 
 

from (7-75) ⇒      ⇒    112 =−
Lv SS 2/1

L
m

p
v S

v
v

S ==     (7-78) 

∴ No problem of using the same fluid in the prototype and model.  
Whenever is possible to use the Froude's criterion as basic criterion, and others for control.  
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8. Methods and examples of Applied Fluid Mechanics 
 
In the engineering practice, very often the methods of applied fluid mechanics are used.  

Often the Applied fluid mechanics is known as Hydraulics.  

∴ Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on the 
engineering uses of fluid properties.  

Hydraulic topics range through most science and engineering disciplines, and cover concepts 
such as pipe flow, dam design, fluid control circuitry, pumps, turbines, hydropower, 
computational fluid dynamics, flow measurement, river channel behavior and erosion, etc.  

⇒  Some of characteristic cases of Applied Fluid Mechanics are presented in this chapter. 

 

8.1. Basic equations of flow in conduits and pipes   
 
The flow of liquids and their transport through a bounded space (pipes) is treated ⇒ 
 
This flow corresponds to a flow through a stream tube (stream filament) with defined cross-
section - see chapter 5.  

∴ The derived basic equations in chapter 5.1 can be used, if the friction due to the fluid 
viscosity is taken into account ⇒  

∴ The viscous friction is a cause for:  
- energy losses (see energy balance on Fig. 8.1), and 
- change of the velocity in certain cross-section (see Fig. 8.1 and Fig. 8.2) 

   
⇒  Correction of the derived equations in chapter 5.1.  
 

 
a)     b) 

Fig. 8.1: Energy balance and energy losses 
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- velocity distribution and average velocity; pressure; continuity equation; Bernoulli 

equation; momentum law 
 
- Velocity profile, average velocity and velocity correction factors; 

 
Due to the viscous friction ⇒ velocity change in the pipe cross-section  
⇒ velocity profile (see Fig. 8.2): 

)(rvv =   - at certain radius; 

      for  0=v Rr =   - at the pipe walls; 

       for     maxvv = 0=r    - at the pipe centerline. 

Many of the fluid flow properties can be expressed through the average velocity, .  avev
For example, the Reynolds number: 

ν
DvDv aveave ==

μ
ρRe        (8-1) 

RD 2= ;   ν - kinematic visosity. 
 

 
Fig. 8.2: Velocity distribution in a pipe cross-section 

 
The average velocity can be obtained from the equation:  
 

∫==
A

ave dArvQAv )(       (8-2) 

Since,  and π2RA = drrdA π2= (infinitesimal area dA on Fig. 8.2) ⇒  

∫ ∫===
A

R

ave rdrrv
R

dArv
AA

Qv
0

2 )(2)(1      (8-3) 

∴ If the profile  is known, the  can be easily obtained! )(rv avev
 

Upon an analogy derived from the averaged velocity definition (8-2), correction factors for some 
quantities can be defined:  

For quantities comprising  ⇒  )(2 rv ∫=
Aave

dArv
Av

)(1 2
2β      (8-4a) 

For quantities comprising  ⇒  )(3 rv ∫=
Aave

dArv
Av

)(1 3
3α     (8-4b) 
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For inviscid (ideal) fluid flows: constrv =)(  ⇒ 1== βα  

For viscous (real) fluid flows:  constrv ≠)(  ⇒ 1>α  and 1>β  

For turbulent flows:   1≈≈ βα  

For laminar flows:   1>α  and 1>β :  

According Joseph Boussinesq: 037.11 =+= λβ ; 111.1=α  
 
In the engineering practice usually 1≈≈ βα  - if the flow is not characteristically laminar. 
 

- Continuity equation 
 
Following the average velocity concept, the continuity equation for incompressible fluid flow (5-4), 
as derived in chapter 5.1, is valid in this case as well.   ⇒:  

constvAAvAvvdAvdAQ
A A

====== ∫ ∫ 2211

1 2

     (8-5) 

According Fig. 8.1, ⇒ , = velocity and area at the cross-section (1); , = velocity and area 
at the cross-section (2). 

1v 1A 2v 2A

 
- Bernoulli's  equation 

 
If the average velocities, in sections (1) and (2) on Fig. 8.1, are  and ; for steady viscous 
incompressible fluid flow, the energy losses have to be taken into account ⇒ the equation (4-25) has 
to be transformed (see also chapter 5.1) ⇒  

1v 2v

mhpz
g

vpz
g

v
+++=++

γγ
2

2

2
21

1

2
1

22
     (8-6) 

mh  - specific energy loss between section (1) and (2) = head loss in ⎥⎦
⎤

⎢⎣
⎡

N
Nm  or [  -.see Fig. 8.1, ]m

Bernoulli's energy equation can be expressed in Nm/kg as:  

mEpgz
g
vpgzv

+++=++
ρρ

2
2

2
21

1

2
1

2
  (8-7) 

wEEE += 21  (8-7a) 

mww ghEE =Δ=  - specific energy losses between (1) and (2) in 
kg
Nm . 

For unsteady flow, the time dependent member has to be added: 

mhds
t
v

g
pz

g
vpz

g
v

+
∂
∂

+++=++ ∫
)2(

)1(

2
2

2
21

1

2
1 1

22 γγ
   (8-8) 

For strongly laminar flow, the correction factors (8-4) have to be taken into account ⇒  

mhds
t
v

g
pz

g
vpz

g
v

+
∂
∂

+++=++ ∫
)2(

)1(

2
2

2
2

2
1

1

2
1

1
1

22
β

γ
α

γ
α    (8-9) 

 
In the engineering practice usually 1≈≈ βα , usually the equations (8-6) and (8-8) are used. 
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- Momentum law 
 

The equation (5-38),   ( ) ( ) 212
2
221

2
11 −++−+−= GAvpAvpF r ρρ , derived chapter 5.4, is transformed 

following the previously given definitions:  
 

For:  021 =−G  - no body forces; constp =  in the corresponding cross-section;  
   - horizontal plane; and streight pipe ⇒ 0=z 22 dAA +→ ; 11 dAA −→  ⇒ 

( ) ( ) r
AA

FdAvpdAvp =+−+ ∫∫
21

2
2

1
2 ρρ       (8-10) 

From the correction factor definition (8-4a) ⇒ 
 

( ) ( )AvpdAvp ave
A

22 βρρ +=+∫  

⇒  ( ) ( ) 212
2
2221

2
111 −−==+−+ FFAvpAvp rρβρβ     (8-11) 

 
v1 and v2 are average velocities in cross-sections (1) and (2).  
In the engineering practice usually 1≈≈ βα , than the equations derived in chapter 5 are valid here 
as well. 
  
 

- energy losses - linear and local losses 
 
As explained previously in this chapter, the energy losses are expressed through the head loss 

 - see Fig. 8.1 and equation (8-6).  mh
In general, head losses are caused by all resistances to the flow.  

The flow resistances in conduits and pipes can be classified in three groups:  
- flow resistance due to the friction in the straight pipe part - linear head losses;  
- local flow resistances - local head losses;  
- losses due to the hydraulic machine (pump/turbine/motor) built in the pipeline - built in 

hydraulic machine head losses.  
 

- Linear head losses 
 
The linear head losses are caused by the friction  forces in the fluid flow. They can be express by the 
pressure drop 21 ppp −=Δ  between the observed cross-sections (1) and (2) (see Fig. 8.1):  
 

2

2v
D
lp f
ρ

ξΔ =        (8-12) 

The equation (8-12) is obtained by use of Dimensional Analysis and Theory of similarity. 
AQvv ave /==  - average velocity; 

l  and  - pipe length and diameter between the observed cross-sections;  D
λξ =f  - pipe friction factor, usually obtained experimentally. 

)/(Re, Dkff == λξ       (8-13) 
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Dk / - relative roughness of the pipe wall.  

The head loss in mh
N

Nm  (or  m l. c.) can be expressed with the equation - Darcy's formula:  

g
v

D
l

g
pphm 2

2

λ
ρ
Δ

γ
Δ

===       (8-14) 

The hydraulic gradient (drop) , or pressure drop per unit length is defined as:  

( )
gD
v

ds
pd

ds
dhI m

2
/ 2

λ
γΔ
===      (8-15) 

For a pipe with ,  i.e. ,  can be obtained by integration of (8-15) ⇒ constD ≠ )(sDD = mh

∫=
)2(

)1(

2

2
1 dsv

Dg
hm

λ       (8-15a) 

If the cross-sections changes ( ) are on separate pipe parts ( ), the total linear head loss can be 
obtained as sum of the separate linear head losses:  

iD il

∑
=

=

=
ni

i
i

i

i
im v

D
l

g
h

1

2

2
1

λ       (8-16) 

As shown on Fig. 8.3 and Fig. 8.3A, the velocity profile changes, from the pipe entrance to certain 
length , after which the flow is fully developed (stabilized) fluid flow ⇒ after LElL =0 0 the profile 
doesn't change ⇒ constyv =∂∂ / .  

The length of entrance , can be obtained according Boussinesq, with the folloing 
expressions:  

ElL =0

λ
DL 84.30 =  -  for laminar flow;  

λ
DL 52.00 =  -  for turbulent flow  (8-17) 

 
Fig 8.3: Length of flow development 

 

 
Fig. 8.3A: Developmet of uniform boudary layers: a)circular tube; b) 2-D open channel 

A. Nospal                  8.  Methods and examples of Applied Fluid Mechanics 



 DEREC   Fluid Mechanics - Lectures        112 

A fully developed fluid flow is considered in this chapter.  

If the flow is fully developed, since constyv =∂∂ / , the shear stress (Fig. 8.4) will be also constant 
along the entire pipe length ⇒:  

const
y
v

Ry
w =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
=

μτ      (8-18)  

∴  The friction force will be: 
0AOlF www ττ ==       (8-19) 

O  - wetted perimeter of the pipe cross-section; 
OlA =0  - wetted area of the pipe walls on a distance L - between sections (1) and (2) - Fig.8.4.  

 
The pressure force between (1) and (2) is:  

( )AppFp 21 −=       (8-20) 

4/2DA π=  - area of the pipe cross-section.  
 

 
Fig. 8.4: Shear stress at pipe wall 

 
Summing all forces in the flow direction ⇒  

( ) OlpAApp wτΔ ==− 21  
⇒ head loss γΔ /phm = : 

gA
Olph wm ρ

τ
γ
Δ

==       (8-21) 

∴ ( )hm Rf
O
Afh =⎟
⎠
⎞

⎜
⎝
⎛=  

Hydraulic radius:   
O
ARh =       (8-22) 

A - area of the fluid flow cross-section;  O - wetted perimeter.  

Some examples given on Fig. 8.5. 

  
Fig. 8.5:Conduit cross-sections and hydraulic radius 
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For circular pipe, with a fully filled out cross-section ⇒  ; 4/2DA π= πDO =  ⇒  

4
4/2 D

D
DRh ==
π

π       (8-23) 

⇒ hydraulic diameter:  

O
ARDD hh

44 ===       (8-23a) 

∴ The Darcy's formula can be transformed into:  

g
v

D
l

g
v

R
lh

hh
m 224

2
'

2
' λλ ==       (8-24) 

∴ The equation (8-24) can be used for linear head loss for flow in conduits with any shape cross-
sections - noncircular sections as well (see Fig. 8,5).    

λλ G='  - corrected friction factor;            the coefficient G is different for different cross sections. 

λλ ≈'  - for turbulent flow;  
( λλ 5.14.0' ÷= )  - for laminar flow 

∴ The Chezy formula for the average velocity over the flow section can be determined from the 
equation (8-24):  

IRCIRgvv hhave ===
λ

8      (8-25) 

lhI m /=  - hydraulic gradient, defined according the equation (8-15) 

shape) chanel size, channel ,,,,(/8 kvfgC μρλ ==  - flow resistance factor   (8-26) 

⇒   2
8
C

g
=λ       (8-26a) 

Manning obtained experimentally the following equation;  

6/1
6/1

4
11

⎟
⎠
⎞

⎜
⎝
⎛== h

h
D

n
R

n
C      (8-26b) 

⇒    3/1

2

2
88

hR
gn

C
g
==λ        (8-26c) 

n - Manning's roughness coefficient; depends of the conduit roughness - see the Literature.  

040.0=n  - for very rough surfaces;  009.0=n  - for smooth pipes. 

For circular pipes with normal roughness 012.0≈n  ⇒   3/10179.0 −≈ Dλ
 
The Chezy formula is especially used for hydraulic computations of open channel flows (se Fig. 8.6)  
⇒ more details in chapter 8.4.  

The hydraulic gradient in this case (Fig. 8.6) can be easilly expressed as: 

( )
α

γ sin/ 2121 =
−

=
−

==
l

hh
l
pp

l
hI m     (8-27) 
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Fig. 8.6: Oppen channel - hydraulic gradient 

 
 

- Local head losses:  
 
Local head losses = local flow resistances that appear in nonuniform flows in conduits, as:  

- Increase or decrease in fluid velocity and pressure - e.g., change of the size or the shape 
of the conduit cross section (pipe diameter for example, or inflow in a reservoir);  

- Built in of metering devices - e.g., Venturi meter;   
- Flow control devices - e.g., valves, hydraulic components of automatic control, etc;  
- Change in flow direction - e.g., elbows etc;  
- Flow around immersed objects - e.g., flows in heat exchangers, porous media flows, 

multiphase flows etc.  
 
∴  Adequate energy dissipation or local head loss 
 
The local head losses can be express by the pressure drop pΔ  due to the local resistance, or as a 
corresponding head loss :  mh

g
v

g
pphm 2

2

ξ
ρ
Δ

γ
Δ

===       (8-28) 

AQvv ave /==  - average velocity in the uniform flow region; 
ξ  - local head loss coefficient;  

Re) geometry,(f=ξ       (8-29) 

⇒    is experimentally obtained  ⇒ see corresponding values for different local resistances in the 
literature.  

ξ

  
Usually there are several local resistances in a hydraulic conduit system (pipeline for example).  
In that case, the total local head loss will be:  

∑∑
=

==
m

i
ii

m
i

im v
gg

vh
1

2

1

2

2
1

2
ξξ        (8-30) 

m - number of the local resistances 
 
Examples for solving problems concerning energy losses - linear and local - will be presented 
on the tutorials classes. 
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- Losses due to a built in hydraulic machine:  

 
The head loss due to built in hydraulic machine (pump/turbine/motor) can be defined as:  

gQ
Nh M

M ρ
=        (8-31) 

NM  - hydraulic power of a hydraulic machine. ⇒ see also equation (5-50) in chapter 5.4. 

0>=
T

T
M

NN
η

   - for turbine/motor;   ppM NN η=    -  for pump    (8-32) 

TN  - power delivered to the turbine shaft;    power delivered from a motor to the pump shaft. PN

∴    - for a built in turbine;    0>Mh 0<Mh  - for a built in pump   (8-33) 
 

∴  The total head loss in a pipeline with "n" partial pipe parts an "m" local resistances in the 
pipeline with built in hydraulic machine will be - see Fig. 8.7:  

 

gQ
Nvv

D
l

g
h M

ni

i

mi

i
jji

i

i
im ρ

ξλ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑ ∑

=

=

=

=1 1

22

2
1      (8-34) 

vv

vp

vA

vB

v

vII

 
  a) built in pump     b) built in turbine 

 Fig. 8.7: Schemes of pipelines with built in hydraulic machine 
 
 

8.2. Laminar and turbulent incompressible flows in pipes  
 
- velocity profiles for laminar flow - velocity and friction laws  

Steady laminar flow in a circular pipe with uniform cross-section ( constD = ) is treated. 

According chapter 6.3 (Fig. 6.7) ⇒ velocity profile for steady laminar flow in a pipe, as on Fig. 8.8 
(see also Fig. 8.2 in this chapter):  

 
Fig. 8-8:  Steady laminar flow in a circular tube of a constant diameter 
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( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −== 2

2

24
1 rD

dz
dprvv

μ
      (8-35) 

Since in a cross-section (along the normal) ⇒ constdzdp =− /  ⇒ 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −== ∫

= dz
dpDdrrrvQ

D

r μ
π

π
128

2
42/

0

      (8-36) 

∴  average velocity:  

     ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=== ∫

= dz
dpDdrrrv

AA
Qv

D

r
ave μ

π
32

21 22/

0

          (8-37) 

According equation (6-26), max2
1 vvave =  

∴  The pressure distribution along the pipe (equation (6-27) in chapter 6.3) ⇒ 

221
32

D
Lvppp aveμ

Δ =−=       (8-38) 

∴  Head loss, obtained theoretically:  

g
v

D
L

Dvg
v

D
L

g
ph ave

ave

ave
m 2Re

64
2

64
22

===
ρ
μ

ρ
Δ      (8-39) 

Where is: L - pipe length between two secctions (1) and (2);  ;  4/2DA π=
νμ

ρ DvDv aveave ==Re  

2320Re <  for laminar flow. 

Comparing with Darcy's formula (8-14),  
g

v
D
lhm 2

2

λ= , ⇒ 

Pipe friction factor for laminar flow:             
Re
64

=λ      (8-40) 

According equation (8-18) and velocity distribution (8-35)  
⇒ the shear stress at any point in a cross-section:  

r
dz
dp

dr
dv

2
1

== μτ       (8-41a) 

⇒ maximum shear stress at pipe wall:  

R
dz
dp

w 2
1

=τ   and     ⇒    
R
r

w

=
τ
τ    (8-41b) 

Taking  (8-37) into account ⇒ :  

avew v
R
μ

τ
4

−=       (8-41c) 

Using the velocity profile equation (8-35) ⇒ the correction factors α and β  (equations (8-4)) can 
be easily obtained:  

0.2=α   and  33.1=β  
 

∴ Laminar flow in pipes is very rare.  
∴ Most of the flows in pipes are turbulent. 
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- velocity profiles for turbulent flow, velocity and friction laws, roughness effects  
 
Most of the flows in pipes are turbulent. 

Data based mostly on experiments ⇒ semi-empiric methods and experiments. 

CFD is playing a significant role it this field as well.  
 

- Velocity profiles for turbulent flow in pipes  
 

For friction factor determination, the velocity profile is important!  

Profiles of mean velocity v  are considered.     vvv ′+= , see expressions (6-44). 

Several empirical formulae are obtained, mainly based on Prandtl and Karman theories.  

The following conclusion can be derived from the performed experiments and obtained expressions:  
 
∴  The velocity profile in turbulent flow in pipes varies with the Reynolds number! - see Fig. 8.10.  
 

∴ Experiments show that, with respect to the nonuniform boundary layers, it is possible to 
represent the pipe-velocity profiles by a power law - see Fig. 8.10.  ⇒ :  

nn

x

x

R
r

R
y

v
v

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛= 1

max

     (8-42) 

⇒ the exponent .  (Re)fn =

From the Nikuradse experiments  (see also ⇒ Fig. 8.10): 
 

Re  4×103 2.3×104 1.1×105 1.1×106 2×106 3.2×106

n/1  6.0 6.6 7.0 8.8 10 10 

max/ xxave vv  0.791 0.806 0.817 0.853 0.865 0.865 

 

 
Fig. 8.10: Velocity profiles in pipe according Nikuradze 
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From the equation (8-42) and the average velocity definition (8-3, the ratio of the average velocity 
can be obtained:  ⇒ 

( )( )nnv
vave

++
=

21
2

max

      (8-43) 

For most common case:  ⇒ 7/1=n
7/17/1

max

1 ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛=

R
r

R
y

v
v

x

x ;   817.0
max

=
v
vave  

 
 

- Friction factor for turbulent flow in circular smooth pipes  
 

According the equation (8-21) and the Darcy's formula (8-14) for a circular smooth pipe ⇒ 
 

⇒  head loss,  
g

v
D
L

gD
L

gA
OLph ave

wwm 2
4 2

λ
ρ

τ
ρ

τ
γ
Δ

====     (8-44) 

⇒   pressure drop,    
4/D

Lp wτΔ =       (8-45) 

Where:  aveave vv =  - average mean velocity. 

From equation (8-44), the following quantities can be derived: 

pipe wall shear stress   
8

2
ave

w
vρ

λτ =        (8-46) 

     shear velocity        ρττ /wv =            (8-47) 

The shear velocity is defined in the Prandtl turbulent boundary layer theory (see also chapter 6). 
 
From (8-46) and (8-47) ⇒ 

8
λ

τ avevv =       (8-48) 

λτ

8
=

v
vave       (8-49) 

From the Prandtl's theory for turbulent flows and Nikuradze's experiments, also ⇒ 

5.5log75.5 +⎟
⎠
⎞

⎜
⎝
⎛=
ν
τ

τ

yv
v
vx      (8-50) 

for the circular pipe axis 5.5log75.5max +⎟
⎠
⎞

⎜
⎝
⎛=
ν
τ

τ

Rv
v

vx      (8-51) 

Where:  
ρ
μ

ν = ;  xx vv = .  - velocity at the pipe centerline (maxxv Ry = ).  

Taking into account the equation (8-49), the equation (8-51) can be transformed, and ⇒ 

∴ Friction law for smooth pipes: 

( ) BA += λ
λ

Relog1      (8-52) 

ν
Dvave=Re  - Reynolds number; A and B - constants, which can be experimentally obtained.  
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Experiments of many researchers show that 0.2=A  and 8.0−=B   ⇒ 
 

( ) 8.0Relog0.21
−= λ

λ
      (8-52a) 

However, for different regimes of flow in smooth pipes, expressions for certain values of  are 
derived:  

Re

For laminar flow , the equation (8-40) is valid: 2329Re <

Re
64

=λ        (8-53) 

For flows with , Blasius derived an empirical expression:  510Re2000 <<

( ) 4/1Re/316.0=λ      (8-54) 

∴  for flows in smooth pipes (Ref=λ )
 

- Roughness effects - friction factor for turbulent flow in rough circular pipes  
 
The general funcional dependence (8-13) has to be concidered: 

 
)/(Re, Dkf s=λ        (8-55) 

sk - sand grain roughness (absolute rougness) 
 

However, for "fully rough" conditions, using the previous approach, the experiments have 
shown that  has a very little influence, and the following dependence can be derived:  Re

( ) EkRC s += /log1
λ

      (8-56) 

C and E - constants, which can be experimentally obtained. 

Nikuradze, with his experiments for fully developed rough flow, derived the equation:  

                            ( ) 14.1/log21
+−= Dksλ

      (8-56a) 

Where, RD 2=  
 
For the transition zone, between smooth and fully rough conditions, obviously , 
and the Colebrook-White semi-empirical formula gives acceptable results:  

)/(Re, Dkf s=λ

⎟
⎠
⎞

⎜
⎝
⎛ +−=⎟

⎠
⎞

⎜
⎝
⎛+

λλ Re
/35.91log214.1log21 ss kD

D
k     (8-57) 

 
∴  Using the preceding results for smooth, rough, and smooth-to-rough transition factors, Moody 
developed a general resistance diagram for uniform flow in conduits. A form of the Moody's diagram 
(which has been widely used) is presented on Fig. 8.11. 
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    Fig. 8.11: Fricion factor versus Reynolds number - Moody's diagram;   )/(Re, Dkff s== λ
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- examples for pipe-flow computation 

 
The computation of steady flow of constant-density fluids flow through pipes involves the 
simultaniuos solutions of  the two equations:  

 
Continuity equation:   AvVAQ ave==  

Darcy' formula:   
g

V
D
L

g
phm 2

2

λ
ρ

=
Δ

=  

Where:  
ν

VD
=Re ;  - obtained from the diyagram on Fig. 8.11 )/(Re, Dkff ==λ

 
There are three basic problems, namely:  

(a)   Head loss   ⇒  for given: Q, L, D,ν, k; ⇒ find   mh

(b)   Flow rate   ⇒  for given: , L, D,ν, k; ⇒ find   Q mh

(c)   Diameter   ⇒  for given: , Q, L,ν, k; ⇒ find   D mh

∴ Examples for solving this kind of problems, as well as problems concerning energy losses 
(linear and local) in pipeline systems will be presented on the tutorial classes.  

 
8.3. Incompressible flow in noncircular ducts  
 
Some of flow patterns in noncircular ducts are shown in Fig. 8.12. 

 
 

Some theoretical and experimental investigations lead towards a conclusion that for the cases when 
the cross section has a ratio A/O close to circumscribing circle or semicircle, the head loss per unit 
lenght will be nearly the same as for a pipe.             A/O = area/wetted perimeter. 

This is the case for sections like squares, equilateral triangles, and ovals 

∴ The friction-loss data for circular pipes may be used. 
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- friction losses in closed conduits, two dimensional flows 

 
- Friction losses in clossed conduits  

 
The friction-loss data for circular pipes may be used.  
The Darcy equation can be employed in a slightly different form. 
 
Summing all forces in the flow direction, as on Fig. 8.13, ⇒  

( ) OLApp wτ=− 21  

From the previously defined procedure - equations (8-20) to (8-24) ⇒  
gA

Olph wm ρ
τ

γ
Δ

==  

g
V

D
L

g
v

R
Lh

h

ave

h
m 224

2
'

2
' λλ ==       (8-58) 

 
Steady flow in a constant area conduit (as shown on Fig. 8.13) is cocidered.  
 

∴ The equation (8-24) can be used for linear head loss for flow in conduits with any shape cross-
sections - noncircular sections as well (see Fig. 8.13 and Fig. 8.5).    

λλ G='  - corrected friction factor 

λλ ≈'  - for turbulent flow;  
( λλ 5.14.0' ÷= )  - for laminar flow 

⇒ The previously explained procedure and diagrams (e.g., diagram on Fig. 8.11) for determining 
 can be used as well, with taking into account that:  )/(Re, Dkff s==λ

O
ARh = ; 

O
ARDD hh

44 ===  

ν
hVR4Re =  and 

h

ss

R
k

D
k

4
=     (8-59) 

 

 
 

- Friction losses in 2-D flows;  
 
A flow between two plates (Poiseuile flow) can be treated as 2-D flow.  
The basic equation for steady laminar flow are derived in chapter 6.3. ⇒  see equations (6-20) 
to (6-22).  

A. Nospal                  8.  Methods and examples of Applied Fluid Mechanics 



 DEREC   Fluid Mechanics - Lectures        123 

The friction factor for laminar flow between two plates can be calculated from the expression:  
 

Re
96

=λ       (8-60) 

ν
hVR4Re = ;   h

O
ARh ==  

 
For 2-D turbulent flow, experimental results for fully developed turbulent flows in rectangular 
channels with cross-section as shown on Fig. 8.12, with 1:60: =BA  and , the 
friction laws can be expressed as follows:  

1:12: =BA

 

for λ  in smooth channels  47.02log03.21
−⎟

⎠
⎞

⎜
⎝
⎛= λ

νλ
BV    (8-61) 

for λ  in rough channels   11.22/log03.21
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

sk
B

λ
    (8-62) 

avevV = ;  -see Fig. 8.14.  hB 2=
 

 
Fig. 8.14: Two dimensional flow between two plates 
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8.4. Flow in prismatic open channels  

Open channel is a conduit in which a dense fluid flow under gravity with a definite interface 
separating it from an overlying lighter fluid.  

Usually: dense fluid = liquid; overlying lighter fluid = gas ⇒ e.g.,  water and air.  

⇒  Free surface = the interface between the liquid and the gas. 

Natural open channels (e.g., rivers etc.) vary in size, shapes, and roughness ⇒ irregular nonuniform 
sections to the flow. 

Artificial channels also vary in size, but have a narrower range of roughness ⇒ usually built with 
regular geometric shapes.  
⇒  Prismatic channels = channels with constant channel section and bottom slope.  
⇒ Rectangles, trapezoids, triangles, circles, parabolas and combinations are commonly used as 
prismatic channel sections. 
 

 
Fig. 8.15: Some open channel surface profiles 
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Open channels are, in general, noncircular.  
Many open channels are wide ⇒ the velocity-friction relations can be examined on a two 
dimensional basis.  
∴ Usually, the relations among energy flux, momentum flux, flow depth, and friction are treated 

by one-dimensional analysis.  
∴ A basic approach and basic equations, using one-dimensional relations for prismatic open 

channel, are presented in this chapter. .⇒ Uniform flow in a prismatic open channel is 
considered. 

 
- one dimensional open-channel equations, head-loss equations 

 
The one-dimensional total head or energy per unit weight H (in Nm/N) for each fluid element  ⇒ 

g
VphH
2

2

++=
γ

       (8-63) 

avevV = ; gργ = ;   

The basic notation and expressions for flow in open channels are given in the table below, 
according Fig. 8.17. 

 
  - according previous notation ⇒  OP = OARh /=  
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Fig. 8.17: Notations for one-dimensional open channels 

 
According Fig. 8.17, and the given notations, it is assumed that: 

- The flow is uniform or gradually varying in the flow direction ⇒  
The following quantities can be neglected:  acceleration normal to the bottom, static pressure 
variation due to turbulence. ⇒ 

consthp
=+

γ
, over a normal to the channel floor ("y" direction), ⇒ according Fig. 8.17:  

bottom slope  000 /sin Sdxdh =−=α      (8-64) 

Since, from Fig. 8.17 ⇒  - depth;    0y ( ) 000 cos/ αγ yp =  -  pressure head on the channel floor  ⇒ 
the total head equation (8-63) is transformed into:  

g
VyhH
2

cos
2

000 ++= α        (8-65) 

For small slopes  (e.g. , ) ⇒  0
0 10<α 018.00 <S 1cos 0 ≈α  ⇒ 

00

2

00 2
Hh

g
VyhH +=++=        (8-66) 

gVyH 22
00 +=  - specific head. 

 
∴ The head loss on a distance L will be:  
 

( ) ( ) ∫=+−+=−=
L

L dx
dx
dHHhHhHHH

0
20010021     (8-67) 

HSdxdH −=/  - energy grade line slope. 
 

Differentiating eq. (8-66) ⇒  
dx

dH
dx
dh

dx
dH 00 +=   ⇒  

dx
dHSSH

0
0 +−=−  ⇒  

HSS
dx
dy

dy
dH

dx
dH

−== 0
0

0

00      (8-68) 

Basic differential equation for one-dimensional open channel flow:       
00

00

/ dydH
SS

dx
dy H−

=         (8-69) 

For steady uniform flow ⇒ ;   consty =0 constV = ;   ⇒  0SSS H ==   ⇒    constH =0
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∴ The head loss equation reduces (from eq. (8-67)) to:  

fHL hLSLShhH ===−= 00201      (8-70) 

Comparing the equation (8-70) with equation (8-27), it is obvious that:  
  

( )
0

2121 sin/
α

γ
=

−
=

−
====

L
hh

L
pp

L
h

L
h

SI mf  

SI =  - hydraulic gradient or slope;  fm hh =  - linear head loss. 
 
Free surfaces are subjects to gravity waves  ⇒  "c" - celerity = speed of the wave. 
The free surface behavior = f(V/c).  
 
For elementary gravity waves  (with depths small compared to wavelength) ⇒ 

0gyc =       (8-71)  

Froude number for open channels:  

0

Fr
gy
V

=      (8-72) 

1Fr =  ⇒  - critical velocity;   cV =

1Fr <  ⇒  - subcritical;  cV < 1Fr >  ⇒  - supercritical  cV >
 
- velocity and friction laws for two-dimensional channels, computation examples 

 
- Head loss, friction factor and average velocity  

 
Darcy equation expressed in the form for noncircular conduits is widely used ⇒ the hydraulic 
radius and Chezy-Maning formulae are applied  - see equations (8-21) to (8-26) in chapter 8.1. 
⇒ 

g
V

R
Lhh

h
mf 24

2

λ==        (8-73) 

==
O
ARh flow cross section/wetted perimeter 

shape) chanel size, channel ,,,,( kv μρλλ =  
 

∴ For channel sections Rh close to that of a circumscribing circle or semicircle,  λ can be 
evaluated from the pipe-friction diagram (Fig. 8.11).  

⇒ To use Fig. 8.11, ⇒ 

ν
hVR4Re = ; 

h

ss

R
k

D
k

4
=  

∴ For very wide channels, the pipe-friction factors become less applicable!  
 
∴ Most open channels are physically large compared to pipes and other closed ducts. ⇒ 

 very large,  ⇒ turbulent flow in fully rough regime ⇒ →Re

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

h

s

D
k

λλ  
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∴ Chezy and Manning formulae are widely applied - see equations (8-25) and (8-26) ⇒ 
 

SRCSRgvV hhave ===
λ

8     (8-74) 

dxdH
L
h

SSS f
H /0 −===  - hydraulic gradient or slope (see equation (8-70));  

shape) chanel size, channel ,,,,(/8 kvfgC μρλ ==  - flow resistance factor  

Manning  derived corresponding formulae:    
6/1

6/1

4
11

⎟
⎠
⎞

⎜
⎝
⎛== h

h
D

n
R

n
C      (8-75) 

3/1

2

2
88

hR
gn

C
g
==λ       (8-76) 

2/13/21 SR
n

V h=       (8-77) 

n - Manning's roughness coefficient; depends of the conduit roughness - see the Literature.  

040.0=n  - for very rough surfaces (earth with weeds and stones);   

012.0=n  - for normally rough surfaces (finished concrete).  
 

- Velocity profile:  

Consider:  
- open channel whose width is many times its depth;  
- the flow is approximately two-dimensional;  
- fully developed velocity profiles for steady uniform flow;  
- Velocity profiles are logarithmic (as found for pipes) - see Fig. 8.3A(b), and Fig. 8.18. 

(see about Prandtl and Karman theories in chapter 8.2).  

 
Fig. 8.18: Velocity profile for steady uniform 2-D flow in open channel 

 

0

max log2
y
y

kv
vv x −=

−

τ

      (8-78) 

0/ SgRv hw == ρττ ;  - Karman's constant 4.0≈k
 
 

- Computation examples: 
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The three basic problems for open channel flow are:  

(a) Channel slope (Head loss) 

Given:  Q, L, ρμν /= , size, shape, and roughness. ⇒  Find: HSS =0  

(b) Flow rate 

Given:  S0, L, ρμν /= , size, shape, and roughness. ⇒  Find: V and Q 

(c) Size (Rh for a given shape) 

Given:  S0, Q, L, ρμν /= , size, shape, and roughness. ⇒  Find: Rh 

 

These problems are solved with steps analogous to pipe flow problems ⇒ examples will be 
presented on the tutorial classes.  

∴ In all three problems, the fundamental step is determination of λ .  

⇒ Application of the Darcy pipe friction approach or Chazy approach.  

 
 

8.5. Immersed bodies, drag and lift  
 

The investigation of the drag and lift concepts are very important for various fields oh Fluid 
Mechanics application: aeronautics, turbo machinery, multicomponents flows, chemical reactions etc.  

 
- hydrodynamic forces and force coefficients, drag of symmetrical bodies, lift and drag of 

nonsymmetrical bodies 
 
Some of the definition from chapter 6.5 are repeated here:  
 
Drag (sometimes called resistance) is the force that resists the movement of a solid object through a 
fluid in the direction of its movement - in this case the object is moving in a quiescent fluid. 

Drag  force (FD ) can be also defined as the acting  force of the fluid flow on a immersed body, in 
the direction of the flow relative velocity V0  - see Fig. 6.12.  

∴  The total drag  force FD  is defined as (see Fig.6.12): 

AVCDF DD 2

2
0ρ==       (8-79) 

A - frontal area normal to V0 ⇒  PAA =
 

∴ The total lift is defined as (see Fig.6.12): 

AVCLF LL 2

2
0ρ==        (8-80) 

CL - lift coefficient;  
 A - the planform area of a wing (largest projected area of the body, or the projected area normal to V0. 
 

∴ CD and CL are usually experimentally obtained.  

∴ CFD application in solving numerical models with the contemporary PCs, using the 
experimental verifications, give reasonable results.  
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Following the dynamic similitude (see chapter 7) ⇒ 

( )MFr,Re,,geometryDD CC =      (8-81) 

( )MFr,Re,,geometryLL CC =      (8-82) 
 

For example, consider the drag coefficient for characteristic flow and fluid conditions ⇒:  
 
-  Incompressible fluids in enclosed systems:   ( )Re,geometryDD CC =   

-  Incompressible fluids in systems having an interface: ( )FrRe,,geometryDD CC =  

-  Compressible fluids:     ( )M,geometryDD CC =  
  
⇒   Some data for the drag coefficients for symetric bodies are shown in the diagrams on Fig. 8.19. 
       See Literature! 
 

 
 
 
 

Fig. 8.19:  Some data for the drag coefficients for symetric bodies 
 
Some experimental data for the lift and drag coefficients for nonsymetric body are shown in the 
diagrams on Fig. 8.20.   ⇒    See Literature! 
 
Recently, numerous data of numerical CFD solving of the governing equations are available! 
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⇒  
Airfoil geometry        

 
Fig. 8.20: Experimental data for the lift and drag coefficients for an airfoil 
 
 
 
8.6. Basic approach to turbulent jets and diffusion processes  
 
- free turbulence, diffusion processes in nonhomogeneous fluids 

The term wall turbulence is used to describe turbulence generated in velocity gradients caused by 
the no-slip condition.  
The term free turbulence, on the other hand, describes turbulent motions which are not affected by 
the presence of solid boundaries. 
 Some examples of free turbulent flows are shown in Fig. 8.21 and Fig. 8.22:  

(a) the spreading of the edge of a plane jet;  
(b) (b) a round jet issuing from a slot into a surrounding fluid of the same phase (water into 

water or air into air); and  
(c) (c) the flow in the wake of an immersed body.  

In all cases velocity gradients are generated. If the Reynolds numbers are sufficiently high, the flow 
is unstable and zones of turbulent mixing are developed.  
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Fig.8.21:  Free turbulent flows 

 

 
Fig. 8.22:  Development of a turbulent jet 

 
Diffusion is the spontaneous net movement of particles from an area of high concentration to an 
area of low concentration in a given volume of fluid (either liquid or gas) down the concentration 
gradient.  
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For example, diffusing molecules will move randomly between areas of high and low concentration 
but because there are more molecules in the high concentration region, more molecules will leave 
the high concentration region than the low concentration one.  
Therefore, there will be a net movement of molecules from high to low concentration. Initially, a 
concentration gradient leaves a smooth decrease in concentration from high to low which will form 
between the two regions. As time progresses, the gradient will grow increasingly shallow until the 
concentrations are equalized. 
 
∴   Diffusion is a characteristic process for turbulent jets, and turbulent buoyant jets and plumes! 
 
∴ In hydrodynamics, a plume is a column of one fluid moving through another- see Fig.8.23 and 

Fig. 8.24. 
 
∴ A thermal plume is one which is generated by gas rising from above heat source. The gas rises 

because thermal expansion makes warm gas less dense than the surrounding cooler gas. 
 
⇒  Some flow field characteristics of buoyant jets and plumees can be seen on Figres 8.23. 

 
Fig. 8.23   :  Buoyant jets in uniform surrounding 

 
⇒   Several effects control the motion of the fluid, including:  
momentum, buoyancy and density difference.  

- When momentum effects are more important than density differences and buoyancy effects, the 
plume is usually described as a jet - buoyant jet. 
-  Usually, as a plume moves away from its source, it widens because of entrainment of the 
surrounding fluid at its edges.  
This usually causes a plume which has initially been 'momentum-dominated' to become 'buoyancy-
dominated' (this transition is usually predicted by a dimensionless number called the Richardson 
number). 

-  A further phenomenon of importance is whether a plume is in laminar flow or turbulent flow. 
Usually there is a transition from laminar to turbulent as the plume moves away from its source. 

 This phenomenon can be clearly seen in the rising column of smoke from a cigarette. 

A. Nospal                  8.  Methods and examples of Applied Fluid Mechanics 



 DEREC   Fluid Mechanics - Lectures        134 

-  Another phenomenon which can also be seen clearly in the flow of smoke from a cigarette is that 
the leading-edge of the flow, or the starting-plume, is quite often approximately in the shape of a 
ring-vortex (smoke ring).  
 

∴ Plumes and buoyant jets  are of considerable importance in the dispersion of air pollution - 
see Fig. 8.24.   

The problem of reducing the pollution of our water bodies and of the atmosphere has been and still 
is a serious problem; and concerns to legislators, scientists and engineers.  

In order to minimize the impact of some unavoidable emission of pollutants into our environment, 
the dispersion of pollutants should be predictable.  

The fluid motion governing this dispersion is mostly turbulent and under gravitational influence, it 
is important to study turbulent buoyant flows and to develop reli able methods for their prediction.  
 
A number of methods have been proposed for calculating the practically important cases of 
turbulent buoyant jets and plumes, ranging from simple empirical formulae to complex models 
involving partial differential equations - see chapter 6.  

Experimental data are required by all the methods, either as a direct basis for the empirical 
formulae or to determina empirical constants or functions appearing in the methods. They are also 
needed to define the range of validity of a method.  

Simple Plume Modelling

Quite simple modelling will enable many properties of fully-developed, turbulent plumes to be 
investigated.  

1) It is usually sufficient to assume that the pressure gradient is set by the gradient far from the 
plume (this approximation is similar to the usual Boussinesq approximation) 

2) The distribution of density and velocity across the plume are modelled either with simple 
Gaussian distributions or else are taken as uniform across the plume (the so-called 'top hat' model). 

3) Mass entrainment velocity into the plume is given by a simple constant times the local velocity - 
this constant typically has a value of about 0.08 for vertical jets and 0.12 for vertical, buoyant 
plumes. For bent-over plumes, the entrainment coefficient is about 0.6. 

4) Conservation equations for mass flux (including entrainment) and momentum flux (allowing for 
buoyancy) then give sufficient information for many purposes. 

For a simple rising plume these equations predict that the plume will widen at a constant half-angle 
of about 6 to 15 degrees. 

A top-hat model of a circular plume entraining in a fluid of the same density ρ is as follows: 
 
The Momentum M of the flow is conserved so that:  

constMvA ==2ρ      

The mass flux J varies, due to entrainment at the edge of the plume, as 

dJ / dx = dAρv / dx = krρv  

where k is an entrainment constant, r is the radius of the plume at distance x, and A is its cross-
sectional area. 
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∴ This shows that the mean velocity v falls inversely as the radius rises, and the plume grows at a 
constant angle dr/dx= k'. 

 Atmospheric dispersion modeling 

Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in 
the ambient atmosphere.  
It is performed with computer programs that solve the mathematical equations and algorithms 
which simulate the pollutant dispersion.  
The dispersion models are used to estimate or to predict the downwind concentration of air 
pollutants emitted from sources such as industrial plants and vehicular traffic.  

Such models are important to governmental agencies tasked with protecting and managing the 
ambient air quality.  
The models are typically employed to determine whether existing or proposed new industrial 
facilities are or will be in compliance with the National Ambient Air Quality Standards (NAAQS) 
in the United States and other nations.  
The models also serve to assist in the design of effective control strategies to reduce emissions of 
harmful air pollutants.  

∴ Both theoretical and experimental methods have been widely applied for buoyant jets and 
plumes flows quantities determination.  

∴ The CFD approach for solving the governing equations of different flow casesinduced by 
buoyan jets and plumes is widely used ⇒ see chapter 6.7. 

 
The use of sophisticated PC (even so-called "super computers") and software packages enable 
solving of numerical models, for which extremely long execution time was needed in the past (or it 
was impossible to be solved). Reducing many of the aproximations that were needed.  
 
⇒  Some results of CFD solving the buoyant jets governing equations are given on Fig. 8.25: 
 
 

             
          Industrial air pollution plumes                          Large Natural Convection Plume 

 
Fig. 8.24  : Some examples of turbulent buoyant jets 
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Fig. 8.25: Some results of CFD solving the buoyan jets governing equations 

 
8.7. Basic approach to multiphase flow 

In fluid mechanics, multiphase flow is a generalisation of the modelling used in two-phase flow to 
cases where the two phases are not chemically related (e.g. dusty gases) or where more than two 
phases are present (e.g. in modelling of propagating steam explosions). 

Each of the phases is considered to have a separately defined volume fraction (the sum of which is 
unity), and velocity field. Conservation equations for the flow of each species (perhaps with terms 
for interchange between the phases), can then be written down straightforwardly. 

The momentum equation for each phase is less straightforward.  
It can be shown that a common pressure field can be defined, and that each phase is subject to the 
gradient of this field, weighted by its volume fraction.  
Transfer of momentum between the phases is sometimes less straightforward to determine, and in 
addition, a very light phase in bubble form has a virtual mass associated with its acceleration. (The 
virtual mass of a single bubble is about half its displaced mass). 

These terms, often called constitutive relations, are often strongly dependent on flow regime. 

Two-phase flow is a particular example of multiphase flow. 

In fluid mechanics, two-phase flow occurs in a system containing gas and liquid with a meniscus 
separating the two phases. 

Historically, probably the most commonly-studied cases of two-phase flow are in large-scale power 
systems. Coal and gas-fired power stations used very large boilers to produce steam for use in 
turbines.  
In such cases, pressurised water is passed through heated pipes and it changes to steam as it moves 
through the pipe.  
The design of boilers requires a detailed understanding of two-phase flow heat-transfer and pressure 
drop behaviour, which is significantly different from the single-phase case.  
Even more critically, nuclear reactors use water to remove heat from the reactor core using two-
phase flow.  
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A great deal of study has been performed on the nature of two-phase flow in such cases, so that 
engineers can design against possible failures in pipework, loss of pressure, and so on (a loss-of-
coolant accident (LOCA)). 

Another case where two-phase flow can occur is in pump cavitation.  
Here a pump is operating close the vapor pressure of the fluid being pumped. If pressure drops 
further, which can happen locally near the vanes for the pump, for example, then a phase change 
can occur and gas will be present in the pump. Similar effects can also occur on marine propellors; 
wherever it occurs, it is a serious problem for designers. When the vapor bubble collapses, it can 
produce very large pressure spikes, which over time will cause damage on the propellor or turbine. 

The above two-phase flow cases are for a single fluid occurring by itself as two different phases, 
such as steam and water. The term 'two-phase flow' is also applied to mixtures of different fluids 
having different phases, such as air and water, or oil and natural gas. Sometimes even three-phase 
flow is considered, such as in oil and gas pipelines where there might be a significant fraction of 
solids. 

Other interesting areas where two-phase flow is studied includes in climate systems such as clouds, 
and in groundwater flow, in which the movement of water and air through the soil is studied. 

Other examples of two-phase flow include bubbles, rain, waves on the sea, foam, fountains, 
mousse, and oil slicks. 

Several features make two-phase flow an interesting and challenging branch of fluid mechanics: 
• Surface tension makes all dynamical problems nonlinear (see Weber number).  
• In the case of air and water at Standard Temperature and Pressure, the density of the two 

phases differs by a factor of about 1000. Similar differences are typical of water liquid/water 
vapor densities.  

• The sound speed changes dramatically for materials undergoing phase change, and can be 
orders of magnitude different. This introduces compressible effects into the problem.  

• The phase changes are not instantaneous, and the liquid vapor system will not necessarily be 
in phase equilibrium.  

∴ Both theoretical and experimental methods have been widely applied for multiphase flows 
quantities determination.  

∴ The CFD approach for solving the governing equations of different multiphase flows cases 
is widely used ⇒ see chapter 6.7. 

CFD has been used to improve process design by allowing engineers to simulate the performance of 
alternative configurations, eliminating guesswork that would normally be used to establish 
equipment geometry and process conditions. 
 
A CFD analysis yields values for pressure, fluid velocity, temperature, and species or phase 
concentration on a computational grid throughout the solution domain. 

Example:  

Major advancements in the area of gas-solid multiphase flow modeling offer substantial process 
improvements that have the potential to significantly improve process plant operations.  

Prediction of gas-solid flow fields, in processes such as pneumatic transport lines, risers, fluidized 
bed reactors, hoppers and precipitators are crucial to the operation of most process plants.  
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An initially stationary bed of solids is fluidized by the action of a central jet.  
Red indicates regionsof maximum solids volume fraction(~0.6), and blue indicates regions of maximum air 
volume fraction (1.0). 
 

 
Flow field of a process in  Velocity vectors in a boiler furnace 
 a fluidised bed 

Fig 8.26: Some results of Fluent CFD solving of fundamental equations of some multiphase flow  processes 
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Fluid Mechanics 
 
Theory Homework No. 1 
 
1. What are the definitions for fluid and fluid mechanics? 

2. Define the dimensional homogeneity! 

3. Which are the basic definitions and formulae for pressure, temperature, density, specific weight 
and viscosity?  

4. Which are the dimensional formulae and SI units for pressure, temperature, density, specific 
weight and viscosity?  

5. Write down the definitions, corresponding formulae and SI units for specific heat, specific 
internal energy, and specific enthalpy! 

6. Define compressibility, bulk modulus of elasticity and velocity of sound! Write down the 
corresponding formulae!  

7. Give the basic definitions for vapor pressure (cavitation pressure) and surface tension!  

8. Give the definition for an equation of state! Which are the basic equations of state for liquids 
and gasses? 

9. What kinds of forces generally act on a fluid element?  

10. Define and write down the basic expressions for body force and surface force! 

11. Give the definition and basic equatioin for pressure! 

12. Define the hydrostatic pressure! Which are the two important characteristics ohf hydrostatic 
pressure?  

13. Write down the expressions for elementary pressure force and resultant pressure force! 

14. Derive the Euler's equation - Fig. 2-3! 

15. Define the potential of a force and equipotential surface! 

16. Derive the basic equations for equilibrium in gravity field! 

17. Derive basic equations for equilibrium of incompressible fluid in gravity field - Fig.2.6! Define 
(write down the corresponding expressions) the absolute pressure, gauge pressure and vacuum.  

18. For open interconnected vessels appp == 21 (Fig. 2.7), prove that 012 =− hh ! 

19. For the hydrostatic manometers on Fig. 2.8, write down the expressions for gauge pressure and 
vacuum!  

20. Write down the definition of the Pascal's Law, and prove it - Fig 2.10! 

21. Derive the expression for the force on the piston K1 ( ?1 =P ) - Fig. 2.11, if the force on K2 is 

P
b
aP =2  ! 

22. Derive the basic equations for a container with linear movement with constant acceleration - 
Fig. 2.12. 

23. Derive the basic equations for rotation of a liquid container around vertical axis - Fig. 2.13. 

24. What are the expressions for the pressure force P, and the coordinates of its acting point D? - 
Fig. 2.14.  
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25. For a case as on Fig. 2.16, write down thw exprwssions for the Pressure force P, and its 
componennt PH and PV ! 

26. Give the expressions for pressure and pressure force for each of the cases presented on Fig. 2.17! 

27. What are the pressure force componenents acting on a curved surface - Fig. 2.18, Fig. 2.19. Fig. 2.21? 

28. Give a definition for buoyant force! Which are the expressions for the acting forces on a 
immersed body - Fig. 2.23? Which one is the Archimed force? 

29. Describe the cases shown on Fig. 2.24 and Fig. 2.25! 
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Fluid Mechanics 
 
Theory Homework No. 2 
 
1. Define velocity field!  

2. Why Eulerian approach has advantage compared to Lagrangian?  

3. What is a steady flow? 

4. Write down the expressions for velocity components in Cartesian and polar coordinate system! 

5. Define streamline and pathline? What is the difference between them in case of steady flow? 

6. Express the velocity component using a stream funcion! Which is the stream funvtion along a 
streamline? 

7. Define stream tube! 

8. Write down the rate of change of the velocity in the x-direction (total derivative)! Indicate the 
velocity gradients and "local" change in the expression.  

9. Write down the expressions for volume flow rate and mass flow rate! 

10. Derive the continuity equation (Fig. 3.16)! 

11. Write down the equations of continuity for unsteady compressible fluid flow and steady 
incompressible fluid flow.  

12. Write down the expressions for the acceleration vector and its components for 3-D fluid flow.  

13. Write down the expressions for total velocity derivative and acceleration for one dimensional  
flow along a stream line "s" - Fig. 3.17! 

14. Define relative, periferial and absolute velocity for a flow along a rotating stream line (Fig. 3.20)! 
Write down the corresponding equations.  

15. Write down the expression for the overall acceleration vector in case of  2-D flow with rotation 
axis normal to the flow plane (Fig. 3.20)! 
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Fluid Mechanics 
 
Theory Homework No. 3 
 
1. Which are the acting forces in case of an inviscid fluid flow?  Write down the basic expressions 

and basic vector equation. 

2. Write down the Bernoulli equation for unsteady inviscid compressible fluid flow along a 
streamline (Fig. 4.1a).  

3. Write down the Bernoulli equation for steady inviscid incompressible fluid flow. Explain its 
meaning according Fig. 4.2.  

4. What is the pressure change if the stream line (Fig. 4.1) is a straight line ( ), for steady 
inviscid incompressible fluid flow.  

∞=kr

5. Write down the Bernoulli equation for compressible fluid flow along a rotating streamline (Fig 
4.4). What is the difference if the fluid is incompressible?  

6. Define irrotational (potential) fluid flow!  

7. What are the expressions for velocity components  and obtained with the potential and stream 
functions (Fig. 4.5)?  

xv yv

8. Write down the continuity equation in integral form for flow without singularities for 
compressible and incompressible fluid flow.  

9. Write down the expressions for Momentum Law and Moment of Momentum Law for a closed 
control surface K bounding a mass m (see Fig. 4.18).  

10. Give the definition of the first law of thermodynamics! Write down the corresponding equation 
that describes it.  

11. What is the expression for specific enthalpy? 
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Fluid Mechanics 
 
Theory Homework No. 4 
 
1. Write down and explain the continuity equation in integral form and Bernoulli's equation for a 

flow in a stream tube (Fig. 5.1 and Fig. 5.2). 

2. What is the expression for the Momentum Law for flow through stream tube (Fig 5.3)? Give the 

expression for the resultant force RF acting on the fluid mass bounded by the control surface!  

3. Give the expression for the acting force from the fluid to the solid boundaries - Fig. 5.4. 

4. Derive the expression for volume flow rate (discharge) through a Ventury tube (Fig. 5.5). 

5. Derive the Torricelli's formula - Fig. 5.7. 

6. What is the general expression fror the entire discharge Q, for discharge into the atmosphere 
through large openings - Fig. 5.10.  

7. What is the expression for the discharge through the entire opening in case of submerged 
discharge as on Fig. 5.12.  

8. Write down the Bernoulli's equation from cross-section "0" to cross-section "A", and for the the 
rotating pipe (from "A" to "2") - Fig. 5.16.  

9. Give the definition for cavitation! 

10. Write down the Bernoulli's equation for steady adiabatic fluid flow! What is κ ? 

11. What are the expressions for the force on bended pipe rF
r

- Fig. 5.24?  

12. Write down the expression for the the reaction to the jet force  - Fig. 5.25. rxF

13. What is the expression for the missile reaction force - Fig. 5.26? Explain the procedure of 
obtaining the expression for the missile velocity! 

 

A. Nospal Homework No. 4  
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Fluid Mechanics 
 
Theory Homework No. 5 
 
1. Define fluid shear stress, dynamic and kinematic viscosity. 

2. Explain Fig. 6.1.  

3. Give basic definitions for laminar and turbulent flow. Define Reynolds number. 

4. Which is the procedure for obtaining the Navier-Stockes equations (give a general explanation)? 

5. Which are the governing equations of viscous fluid laminar flow? For which cases the system 
of governing equations can be solved?   

6.  What are the approximations for solving the governing equations for the cases presented on Fig 6.4 
and Fig. 6.5? Which properties can be obtained?  

7. Give the basic definition for creeping fluid flow! Write down the expression for the Drag force 
for the flow as on Fig. 6.9 - name the properties in the expression! 

8. Give the basic definition and characteristics concerning boundary layer! 

9. Explain Fig. 6.10! 

10. Give the definitions for Drag force and Lift force - Fig. 6.12 and Fig. 6.13! Write down the 
general expressions for Drag and Lift force (name the properties in the expressions).  

11. Give the definition, and write down the general expression for Reynolds number - name the 
properties in the expression! Define the critical Reynolds number! 

12. What does the mathematical model (6-48) to (6-52) present? Write down the general 
expressions for the instantaneous flow properties u, v, w, and p!  

13. Which are the basic features of the theoretical method for solving engineering problems? Give 
a short comment! 

14. Which are the basic features of the experimental method for solving engineering problems? 
Give a short comment! 

15. Shortly explain the CFD approach! 

A. Nospal Homework No. 5  
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Fluid Mechanics 
 
Theory Homework No. 6 
 
1. Write down the dimensional formulae and SI units for: acceleration, volume flow rate, 

circulation, kinematic viscosity, pressure, density, work, dynamic viscosity, bulk modulus of 
elasticity, mass flow rate, surface tension, quantity of heat, specific enthalpy.  

2. Derive the expression for volume flow rate in Venturi meter using the Rayleigh's method! 

3. Show the significance of the dimensionless groups with the example of the use of Rayleigh's 
method for Ventiri meter.  

4. Derive the expression for flow in Venturi meter using the Vaschy's theorem.  

5. Write down the fundamental scales for geometric, kinematic and dynamic similarity. What is 
the meaning of the properties in the corresponding scale expressions?  

6. Write down the expressions of similarity scales for flow gate, force and work. What is the 
meaning of the properties in the corresponding scale expressions?  

7. Derive the similarity criteria for flow dominated by viscous forces!  

8. Which are the similarity criteria for model and prototype in the same gravity field and with 
same fluids?  

A. Nospal Homework No. 6  
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Fluid Mechanics 
 
Theory Homework No. 7 
 
1. How is treated a flow of liquids through pipes? What are the causes of viscous friction 

existence in this case?  

2. Define the term velocity profile! Derive the expression for average velocity (fig. 8.2)!   

3. Write down the basic equations for incompressible fluid flow in pipes!  

4. Write down the Darcy's formula. What every member in the formula presents?  

5. Derive the head loss expression according Fig. 8.4!  Define the term of hydraulic radius and 
write down the corresponding formula!  

6. Write down the equation for linear head loss for incompressible fluid flow in conduits with any 
shape cross-section! What every member in the formula presents?  

7. Write down the Chezy formula for the average velocity over a flow section! What every 
member in the formula presents?  

8. Write down the expression for hydraulic gradient for open channel flow as on Fig. 8.6.  

9. Write down the expression for local head loss! What every member in the formula presents? 
What is the general dependence of the local head loss coefficient?  

10. Write down the expression for total head loss in a pipe line as shown on Fig. 8.7.  

11. What expression is used for pipe friction factor λ  in case of laminar flow? What is the 
magnitude of the average velocity in this case?  

12. Explain the Fig. 8.10! For most common case what is approximately the magnitude of the 
average mean velocity avev ?  

13. Write down the dependence formulae (general forms) for friction factor of turbulent flow in 
pipes - smooth pipes, fully rough and transition zone! 

14. Write down the formula for total head in one-dimensional open channel (Fig. 8.17)! What 
every member in the formula presents?  

15. What is the expression for head loss on a distance L according Fig. 8.17?  What is the head loss 
equation for steady uniform flow?  

16. Write down the Darcy's equation foropen channel flow . What every member in the formula 
presents? 

17. Write down the Chezy formula for the average velocity in open channel flow! What every 
member in the formula presents? 

18. Give the definitions for drag force and lift force and write down the corresponding equations! 
What are the general dependence expressions for the drag and lift coefficients?  

A. Nospal Homework No. 7  
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Fluid Mechanics 
 
Theory Homework No. 8 
 
1. Give the definition for free turbulence!   

2. Give the definition for diffusion! For which flows the diffusion is characteristic?  

3. What are the definitions for turbulent jets, buoyant jets and plumes (Fig. 8.23)?  

4. Define the term of entrainment! What is the result of the entrainment into a buoyant jet?  

5. Give a definition for dispersion of air pollution! Which fluid motions are characteristic for this 
dispersion?  

6. What are the bases for atmospheric dispersion modelling?  

7. Give the definition for multiphase flow! Give a general quotation of the processes and equations 
which govern this flow!  

8. Define two-phase flow in fluid mechanics! Give characteristic examples for two-phase flow!  

9. Which features make two-phase flow an interesting and challenging branch of fluid mechanics?  

10. Why it is important the modelling of gas-solid multiphase flow?  For which processes of the 
process plants operation, the prediction of gas-solid flow fields is crucial?  

A. Nospal Homework No. 8  
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